Torque3D/Engine/source/materials/processedShaderMaterial.cpp

1444 lines
50 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "materials/processedShaderMaterial.h"
#include "core/util/safeDelete.h"
#include "gfx/sim/cubemapData.h"
#include "gfx/gfxShader.h"
#include "gfx/genericConstBuffer.h"
#include "gfx/gfxPrimitiveBuffer.h"
#include "scene/sceneRenderState.h"
#include "shaderGen/shaderFeature.h"
#include "shaderGen/shaderGenVars.h"
#include "shaderGen/featureMgr.h"
#include "shaderGen/shaderGen.h"
#include "materials/sceneData.h"
#include "materials/materialFeatureTypes.h"
#include "materials/materialManager.h"
#include "materials/shaderMaterialParameters.h"
#include "materials/matTextureTarget.h"
#include "gfx/util/screenspace.h"
#include "math/util/matrixSet.h"
#include "renderInstance/renderProbeMgr.h"
// We need to include customMaterialDefinition for ShaderConstHandles::init
#include "materials/customMaterialDefinition.h"
#include "ts/tsShape.h"
///
/// ShaderConstHandles
///
void ShaderConstHandles::init( GFXShader *shader, CustomMaterial* mat /*=NULL*/ )
{
mDiffuseColorSC = shader->getShaderConstHandle("$diffuseMaterialColor");
mTexMatSC = shader->getShaderConstHandle(ShaderGenVars::texMat);
mToneMapTexSC = shader->getShaderConstHandle(ShaderGenVars::toneMap);
mSpecularColorSC = shader->getShaderConstHandle(ShaderGenVars::specularColor);
mSmoothnessSC = shader->getShaderConstHandle(ShaderGenVars::smoothness);
mMetalnessSC = shader->getShaderConstHandle(ShaderGenVars::metalness);
mAccuScaleSC = shader->getShaderConstHandle("$accuScale");
mAccuDirectionSC = shader->getShaderConstHandle("$accuDirection");
mAccuStrengthSC = shader->getShaderConstHandle("$accuStrength");
mAccuCoverageSC = shader->getShaderConstHandle("$accuCoverage");
mAccuSpecularSC = shader->getShaderConstHandle("$accuSpecular");
mParallaxInfoSC = shader->getShaderConstHandle("$parallaxInfo");
mFogDataSC = shader->getShaderConstHandle(ShaderGenVars::fogData);
mFogColorSC = shader->getShaderConstHandle(ShaderGenVars::fogColor);
mDetailScaleSC = shader->getShaderConstHandle(ShaderGenVars::detailScale);
mVisiblitySC = shader->getShaderConstHandle(ShaderGenVars::visibility);
mColorMultiplySC = shader->getShaderConstHandle(ShaderGenVars::colorMultiply);
mAlphaTestValueSC = shader->getShaderConstHandle(ShaderGenVars::alphaTestValue);
mModelViewProjSC = shader->getShaderConstHandle(ShaderGenVars::modelview);
mWorldViewOnlySC = shader->getShaderConstHandle(ShaderGenVars::worldViewOnly);
mWorldToCameraSC = shader->getShaderConstHandle(ShaderGenVars::worldToCamera);
mCameraToWorldSC = shader->getShaderConstHandle(ShaderGenVars::cameraToWorld);
mWorldToObjSC = shader->getShaderConstHandle(ShaderGenVars::worldToObj);
mViewToObjSC = shader->getShaderConstHandle(ShaderGenVars::viewToObj);
mCubeTransSC = shader->getShaderConstHandle(ShaderGenVars::cubeTrans);
mCubeMipsSC = shader->getShaderConstHandle(ShaderGenVars::cubeMips);
mObjTransSC = shader->getShaderConstHandle(ShaderGenVars::objTrans);
mCubeEyePosSC = shader->getShaderConstHandle(ShaderGenVars::cubeEyePos);
mEyePosSC = shader->getShaderConstHandle(ShaderGenVars::eyePos);
mEyePosWorldSC = shader->getShaderConstHandle(ShaderGenVars::eyePosWorld);
m_vEyeSC = shader->getShaderConstHandle(ShaderGenVars::vEye);
mEyeMatSC = shader->getShaderConstHandle(ShaderGenVars::eyeMat);
mOneOverFarplane = shader->getShaderConstHandle(ShaderGenVars::oneOverFarplane);
mAccumTimeSC = shader->getShaderConstHandle(ShaderGenVars::accumTime);
mMinnaertConstantSC = shader->getShaderConstHandle(ShaderGenVars::minnaertConstant);
mSubSurfaceParamsSC = shader->getShaderConstHandle(ShaderGenVars::subSurfaceParams);
mDiffuseAtlasParamsSC = shader->getShaderConstHandle(ShaderGenVars::diffuseAtlasParams);
mDiffuseAtlasTileSC = shader->getShaderConstHandle(ShaderGenVars::diffuseAtlasTileParams);
mBumpAtlasParamsSC = shader->getShaderConstHandle(ShaderGenVars::bumpAtlasParams);
mBumpAtlasTileSC = shader->getShaderConstHandle(ShaderGenVars::bumpAtlasTileParams);
mRTSizeSC = shader->getShaderConstHandle( "$targetSize" );
mOneOverRTSizeSC = shader->getShaderConstHandle( "$oneOverTargetSize" );
mDetailBumpStrength = shader->getShaderConstHandle( "$detailBumpStrength" );
mViewProjSC = shader->getShaderConstHandle( "$viewProj" );
// MFT_ImposterVert
mImposterUVs = shader->getShaderConstHandle( "$imposterUVs" );
mImposterLimits = shader->getShaderConstHandle( "$imposterLimits" );
for (S32 i = 0; i < TEXTURE_STAGE_COUNT; ++i)
mRTParamsSC[i] = shader->getShaderConstHandle( String::ToString( "$rtParams%d", i ) );
// MFT_HardwareSkinning
mNodeTransforms = shader->getShaderConstHandle( "$nodeTransforms" );
// Clear any existing texture handles.
dMemset( mTexHandlesSC, 0, sizeof( mTexHandlesSC ) );
if(mat)
{
for (S32 i = 0; i < Material::MAX_TEX_PER_PASS; ++i)
mTexHandlesSC[i] = shader->getShaderConstHandle(mat->mSamplerNames[i]);
}
// Deferred Shading
mMatInfoFlagsSC = shader->getShaderConstHandle(ShaderGenVars::matInfoFlags);
}
///
/// ShaderRenderPassData
///
void ShaderRenderPassData::reset()
{
Parent::reset();
shader = NULL;
for ( U32 i=0; i < featureShaderHandles.size(); i++ )
delete featureShaderHandles[i];
featureShaderHandles.clear();
}
String ShaderRenderPassData::describeSelf() const
{
// First write the shader identification.
String desc = String::ToString( "%s\n", shader->describeSelf().c_str() );
// Let the parent get the rest.
desc += Parent::describeSelf();
return desc;
}
///
/// ProcessedShaderMaterial
///
ProcessedShaderMaterial::ProcessedShaderMaterial()
: mDefaultParameters( NULL ),
mInstancingState( NULL )
{
VECTOR_SET_ASSOCIATION( mShaderConstDesc );
VECTOR_SET_ASSOCIATION( mParameterHandles );
}
ProcessedShaderMaterial::ProcessedShaderMaterial(Material &mat)
: mDefaultParameters( NULL ),
mInstancingState( NULL )
{
VECTOR_SET_ASSOCIATION( mShaderConstDesc );
VECTOR_SET_ASSOCIATION( mParameterHandles );
mMaterial = &mat;
}
ProcessedShaderMaterial::~ProcessedShaderMaterial()
{
SAFE_DELETE(mInstancingState);
SAFE_DELETE(mDefaultParameters);
for (U32 i = 0; i < mParameterHandles.size(); i++)
SAFE_DELETE(mParameterHandles[i]);
}
//
// Material init
//
bool ProcessedShaderMaterial::init( const FeatureSet &features,
const GFXVertexFormat *vertexFormat,
const MatFeaturesDelegate &featuresDelegate )
{
// Load our textures
_setStageData();
// Determine how many stages we use
mMaxStages = getNumStages();
mVertexFormat = vertexFormat;
mFeatures.clear();
mStateHint.clear();
SAFE_DELETE(mInstancingState);
for( U32 i=0; i<mMaxStages; i++ )
{
MaterialFeatureData fd;
// Determine the features of this stage
_determineFeatures( i, fd, features );
// Let the delegate poke at the features.
if ( featuresDelegate )
featuresDelegate( this, i, fd, features );
// Create the passes for this stage
if ( fd.features.isNotEmpty() )
if( !_createPasses( fd, i, features ) )
return false;
}
_initRenderPassDataStateBlocks();
_initMaterialParameters();
mDefaultParameters = allocMaterialParameters();
setMaterialParameters( mDefaultParameters, 0 );
mStateHint.init( this );
// Enable instancing if we have it.
if ( mFeatures.hasFeature( MFT_UseInstancing ) )
{
mInstancingState = new InstancingState();
mInstancingState->setFormat( _getRPD( 0 )->shader->getInstancingFormat(), mVertexFormat );
}
if (mMaterial && mMaterial->mDiffuseMapFilename[0].isNotEmpty() && mMaterial->mDiffuseMapFilename[0].substr(0, 1).equal("#"))
{
String texTargetBufferName = mMaterial->mDiffuseMapFilename[0].substr(1, mMaterial->mDiffuseMapFilename[0].length() - 1);
NamedTexTarget *texTarget = NamedTexTarget::find(texTargetBufferName);
RenderPassData* rpd = getPass(0);
if (rpd)
{
rpd->mTexSlot[0].texTarget = texTarget;
rpd->mTexType[0] = Material::TexTarget;
rpd->mSamplerNames[0] = "diffuseMap";
}
}
return true;
}
U32 ProcessedShaderMaterial::getNumStages()
{
// Loops through all stages to determine how many
// stages we actually use.
//
// The first stage is always active else we shouldn't be
// creating the material to begin with.
U32 numStages = 1;
U32 i;
for( i=1; i<Material::MAX_STAGES; i++ )
{
// Assume stage is inactive
bool stageActive = false;
// Cubemaps only on first stage
if( i == 0 )
{
// If we have a cubemap the stage is active
if( mMaterial->mCubemapData || mMaterial->mDynamicCubemap )
{
numStages++;
continue;
}
}
// If we have a texture for the a feature the
// stage is active.
if ( mStages[i].hasValidTex() )
stageActive = true;
// If this stage has specular lighting, it's active
if ( mMaterial->mPixelSpecular[i] )
stageActive = true;
// If this stage has diffuse color, it's active
if ( mMaterial->mDiffuse[i].alpha > 0 &&
mMaterial->mDiffuse[i] != LinearColorF::WHITE )
stageActive = true;
// If we have a Material that is vertex lit
// then it may not have a texture
if( mMaterial->mVertLit[i] )
stageActive = true;
// Increment the number of active stages
numStages += stageActive;
}
return numStages;
}
void ProcessedShaderMaterial::_determineFeatures( U32 stageNum,
MaterialFeatureData &fd,
const FeatureSet &features )
{
PROFILE_SCOPE( ProcessedShaderMaterial_DetermineFeatures );
const F32 shaderVersion = GFX->getPixelShaderVersion();
AssertFatal(shaderVersion > 0.0 , "Cannot create a shader material if we don't support shaders");
bool lastStage = stageNum == (mMaxStages-1);
// First we add all the features which the
// material has defined.
if (mMaterial->mInvertSmoothness[stageNum])
fd.features.addFeature(MFT_InvertSmoothness);
if ( mMaterial->isTranslucent() )
{
// Note: This is for decal blending into the deferred
// for AL... it probably needs to be made clearer.
if ( mMaterial->mTranslucentBlendOp == Material::LerpAlpha &&
mMaterial->mTranslucentZWrite )
fd.features.addFeature( MFT_IsTranslucentZWrite );
else
{
fd.features.addFeature( MFT_IsTranslucent );
fd.features.addFeature( MFT_ForwardShading );
}
}
// TODO: This sort of sucks... BL should somehow force this
// feature on from the outside and not this way.
if ( dStrcmp( LIGHTMGR->getId(), "BLM" ) == 0 )
fd.features.addFeature( MFT_ForwardShading );
// Disabling the InterlacedDeferred feature for now. It is not ready for prime-time
// and it should not be triggered off of the DoubleSided parameter. [2/5/2010 Pat]
/*if ( mMaterial->isDoubleSided() )
{
fd.features.addFeature( MFT_InterlacedDeferred );
}*/
// Allow instancing if it was requested and the card supports
// SM 3.0 or above.
//
// We also disable instancing for non-single pass materials
// and glowing materials because its untested/unimplemented.
//
if ( features.hasFeature( MFT_UseInstancing ) &&
mMaxStages == 1 &&
!mMaterial->mGlow[0] &&
shaderVersion >= 3.0f )
fd.features.addFeature( MFT_UseInstancing );
if ( mMaterial->mAlphaTest )
fd.features.addFeature( MFT_AlphaTest );
if (mMaterial->mEmissive[stageNum])
{
fd.features.addFeature(MFT_IsEmissive);
}
else
{
fd.features.addFeature(MFT_RTLighting);
if (mMaterial->isTranslucent())
fd.features.addFeature(MFT_ReflectionProbes);
}
if ( mMaterial->mAnimFlags[stageNum] )
fd.features.addFeature( MFT_TexAnim );
if ( mMaterial->mVertLit[stageNum] )
fd.features.addFeature( MFT_VertLit );
// cubemaps only available on stage 0 for now - bramage
if ( stageNum < 1 && mMaterial->isTranslucent() &&
( ( mMaterial->mCubemapData && mMaterial->mCubemapData->mCubemap ) ||
mMaterial->mDynamicCubemap ) && !features.hasFeature(MFT_ReflectionProbes))
{
fd.features.addFeature( MFT_CubeMap );
}
if (features.hasFeature(MFT_SkyBox))
{
fd.features.addFeature(MFT_StaticCubemap);
fd.features.addFeature(MFT_CubeMap);
fd.features.addFeature(MFT_SkyBox);
fd.features.removeFeature(MFT_ReflectionProbes);
}
fd.features.addFeature( MFT_Visibility );
if ( lastStage &&
( !gClientSceneGraph->usePostEffectFog() ||
fd.features.hasFeature( MFT_IsTranslucent ) ||
fd.features.hasFeature( MFT_ForwardShading )) )
fd.features.addFeature( MFT_Fog );
if ( mMaterial->mMinnaertConstant[stageNum] > 0.0f )
fd.features.addFeature( MFT_MinnaertShading );
if ( mMaterial->mSubSurface[stageNum] )
fd.features.addFeature( MFT_SubSurface );
if ( !mMaterial->mCellLayout[stageNum].isZero() )
{
fd.features.addFeature( MFT_DiffuseMapAtlas );
if ( mMaterial->mNormalMapAtlas )
fd.features.addFeature( MFT_NormalMapAtlas );
}
// Grab other features like normal maps, base texture, etc.
FeatureSet mergeFeatures;
mStages[stageNum].getFeatureSet( &mergeFeatures );
fd.features.merge( mergeFeatures );
if ( fd.features[ MFT_NormalMap ] )
{
if ( mStages[stageNum].getTex( MFT_NormalMap )->mFormat == GFXFormatBC3 &&
!mStages[stageNum].getTex( MFT_NormalMap )->mHasTransparency )
fd.features.addFeature( MFT_IsBC3nm );
else if ( mStages[stageNum].getTex(MFT_NormalMap)->mFormat == GFXFormatBC5 &&
!mStages[stageNum].getTex(MFT_NormalMap)->mHasTransparency )
fd.features.addFeature( MFT_IsBC5nm );
}
// Now for some more advanced features that we
// cannot do on SM 2.0 and below.
if ( shaderVersion > 2.0f )
{
if ( mMaterial->mParallaxScale[stageNum] > 0.0f &&
fd.features[ MFT_NormalMap ] )
fd.features.addFeature( MFT_Parallax );
// If not parallax then allow per-pixel specular if
// we have real time lighting enabled.
else if ( fd.features[MFT_RTLighting] &&
mMaterial->mPixelSpecular[stageNum] )
fd.features.addFeature( MFT_PixSpecular );
}
// Without realtime lighting and on lower end
// shader models disable the specular map.
if ( !fd.features[ MFT_RTLighting ] || shaderVersion == 2.0 )
fd.features.removeFeature( MFT_SpecularMap );
// If we have a specular map then make sure we
// have per-pixel specular enabled.
if( fd.features[ MFT_SpecularMap ] )
{
fd.features.addFeature( MFT_PixSpecular );
// Check for an alpha channel on the specular map. If it has one (and it
// has values less than 255) than the artist has put the gloss map into
// the alpha channel.
if( mStages[stageNum].getTex( MFT_SpecularMap )->mHasTransparency )
fd.features.addFeature( MFT_GlossMap );
}
if ( mMaterial->mAccuEnabled[stageNum] )
{
mHasAccumulation = true;
}
// we need both diffuse and normal maps + sm3 to have an accu map
if( fd.features[ MFT_AccuMap ] &&
( !fd.features[ MFT_DiffuseMap ] ||
!fd.features[ MFT_NormalMap ] ||
GFX->getPixelShaderVersion() < 3.0f ) ) {
AssertWarn(false, "SAHARA: Using an Accu Map requires SM 3.0 and a normal map.");
fd.features.removeFeature( MFT_AccuMap );
mHasAccumulation = false;
}
// Without a base texture use the diffuse color
// feature to ensure some sort of output.
if (!fd.features[MFT_DiffuseMap])
{
fd.features.addFeature( MFT_DiffuseColor );
// No texture coords... no overlay.
fd.features.removeFeature( MFT_OverlayMap );
}
// If we have a diffuse map and the alpha on the diffuse isn't
// zero and the color isn't pure white then multiply the color.
else if ( mMaterial->mDiffuse[stageNum].alpha > 0.0f &&
mMaterial->mDiffuse[stageNum] != LinearColorF::WHITE )
fd.features.addFeature( MFT_DiffuseColor );
// If lightmaps or tonemaps are enabled or we
// don't have a second UV set then we cannot
// use the overlay texture.
if ( fd.features[MFT_LightMap] ||
fd.features[MFT_ToneMap] ||
mVertexFormat->getTexCoordCount() < 2 )
fd.features.removeFeature( MFT_OverlayMap );
// If tonemaps are enabled don't use lightmap
if ( fd.features[MFT_ToneMap] || mVertexFormat->getTexCoordCount() < 2 )
fd.features.removeFeature( MFT_LightMap );
// Don't allow tonemaps if we don't have a second UV set
if ( mVertexFormat->getTexCoordCount() < 2 )
fd.features.removeFeature( MFT_ToneMap );
// Always add the HDR output feature.
//
// It will be filtered out if it was disabled
// for this material creation below.
//
// Also the shader code will evaluate to a nop
// if HDR is not enabled in the scene.
//
fd.features.addFeature( MFT_HDROut );
// If vertex color is enabled on the material's stage and
// color is present in vertex format, add diffuse vertex
// color feature.
if ( mMaterial->mVertColor[ stageNum ] &&
mVertexFormat->hasColor() )
fd.features.addFeature( MFT_DiffuseVertColor );
// Allow features to add themselves.
for ( U32 i = 0; i < FEATUREMGR->getFeatureCount(); i++ )
{
const FeatureInfo &info = FEATUREMGR->getAt( i );
info.feature->determineFeature( mMaterial,
mVertexFormat,
stageNum,
*info.type,
features,
&fd );
}
// Need to add the Hardware Skinning feature if its used
if ( features.hasFeature( MFT_HardwareSkinning ) )
{
fd.features.addFeature( MFT_HardwareSkinning );
}
// Now disable any features that were
// not part of the input feature handle.
fd.features.filter( features );
}
bool ProcessedShaderMaterial::_createPasses( MaterialFeatureData &stageFeatures, U32 stageNum, const FeatureSet &features )
{
// Creates passes for the given stage
ShaderRenderPassData passData;
U32 texIndex = 0;
for( U32 featureIDx=0; featureIDx < FEATUREMGR->getFeatureCount(); featureIDx++ )
{
const FeatureInfo &info = FEATUREMGR->getAt(featureIDx);
if ( !stageFeatures.features.hasFeature( *info.type ) )
continue;
U32 numTexReg = info.feature->getResources( stageFeatures ).numTexReg;
// adds pass if blend op changes for feature
_setPassBlendOp( info.feature, passData, texIndex, stageFeatures, stageNum, features );
// Add pass if num tex reg is going to be too high
if( passData.mNumTexReg + numTexReg > GFX->getNumSamplers() )
{
if( !_addPass( passData, texIndex, stageFeatures, stageNum, features ) )
return false;
_setPassBlendOp( info.feature, passData, texIndex, stageFeatures, stageNum, features );
}
passData.mNumTexReg += numTexReg;
passData.mFeatureData.features.addFeature( *info.type );
#if defined(TORQUE_DEBUG) && defined( TORQUE_OPENGL)
U32 oldTexNumber = texIndex;
#endif
info.feature->setTexData( mStages[stageNum], stageFeatures, passData, texIndex );
#if defined(TORQUE_DEBUG) && defined( TORQUE_OPENGL)
if(oldTexNumber != texIndex)
{
for(int texNum = oldTexNumber; texNum < texIndex; texNum++)
{
AssertFatal(passData.mSamplerNames[ oldTexNumber ].isNotEmpty(), avar( "ERROR: ShaderGen feature %s don't set used sampler name", info.feature->getName().c_str()) );
}
}
#endif
// Add pass if tex units are maxed out
if( texIndex > GFX->getNumSamplers() )
{
if( !_addPass( passData, texIndex, stageFeatures, stageNum, features ) )
return false;
_setPassBlendOp( info.feature, passData, texIndex, stageFeatures, stageNum, features );
}
}
#if defined(TORQUE_DEBUG) && defined( TORQUE_OPENGL)
for(int samplerIDx = 0; samplerIDx < texIndex; samplerIDx++)
{
AssertFatal(passData.mSamplerNames[samplerIDx].isNotEmpty(),"");
}
#endif
const FeatureSet &passFeatures = passData.mFeatureData.codify();
if ( passFeatures.isNotEmpty() )
{
mFeatures.merge( passFeatures );
if( !_addPass( passData, texIndex, stageFeatures, stageNum, features ) )
{
mFeatures.clear();
return false;
}
}
return true;
}
void ProcessedShaderMaterial::_initMaterialParameters()
{
// Cleanup anything left first.
SAFE_DELETE( mDefaultParameters );
for ( U32 i = 0; i < mParameterHandles.size(); i++ )
SAFE_DELETE( mParameterHandles[i] );
// Gather the shaders as they all need to be
// passed to the ShaderMaterialParameterHandles.
Vector<GFXShader*> shaders;
shaders.setSize( mPasses.size() );
for ( U32 i = 0; i < mPasses.size(); i++ )
shaders[i] = _getRPD(i)->shader;
// Run through each shader and prepare its constants.
for ( U32 i = 0; i < mPasses.size(); i++ )
{
const Vector<GFXShaderConstDesc>& desc = shaders[i]->getShaderConstDesc();
Vector<GFXShaderConstDesc>::const_iterator p = desc.begin();
for ( ; p != desc.end(); p++ )
{
// Add this to our list of shader constants
GFXShaderConstDesc d(*p);
mShaderConstDesc.push_back(d);
ShaderMaterialParameterHandle* smph = new ShaderMaterialParameterHandle(d.name, shaders);
mParameterHandles.push_back(smph);
}
}
}
bool ProcessedShaderMaterial::_addPass( ShaderRenderPassData &rpd,
U32 &texIndex,
MaterialFeatureData &fd,
U32 stageNum,
const FeatureSet &features )
{
// Set number of textures, stage, glow, etc.
rpd.mNumTex = texIndex;
rpd.mStageNum = stageNum;
rpd.mGlow |= mMaterial->mGlow[stageNum];
// Copy over features
rpd.mFeatureData.materialFeatures = fd.features;
Vector<String> samplers;
samplers.setSize(Material::MAX_TEX_PER_PASS);
for(int i = 0; i < Material::MAX_TEX_PER_PASS; ++i)
{
samplers[i] = (rpd.mSamplerNames[i].isEmpty() || rpd.mSamplerNames[i][0] == '$') ? rpd.mSamplerNames[i] : "$" + rpd.mSamplerNames[i];
}
// Generate shader
GFXShader::setLogging( true, true );
rpd.shader = SHADERGEN->getShader( rpd.mFeatureData, mVertexFormat, &mUserMacros, samplers );
if( !rpd.shader )
return false;
rpd.shaderHandles.init( rpd.shader );
// If a pass glows, we glow
if( rpd.mGlow )
mHasGlow = true;
ShaderRenderPassData *newPass = new ShaderRenderPassData( rpd );
mPasses.push_back( newPass );
//initSamplerHandles
ShaderConstHandles *handles = _getShaderConstHandles( mPasses.size()-1 );
AssertFatal(handles,"");
for(int i = 0; i < rpd.mNumTex; i++)
{
if(rpd.mSamplerNames[i].isEmpty())
{
handles->mTexHandlesSC[i] = newPass->shader->getShaderConstHandle( String::EmptyString );
handles->mRTParamsSC[i] = newPass->shader->getShaderConstHandle( String::EmptyString );
continue;
}
String samplerName = rpd.mSamplerNames[i];
if( !samplerName.startsWith("$"))
samplerName.insert(0, "$");
GFXShaderConstHandle *handle = newPass->shader->getShaderConstHandle( samplerName );
handles->mTexHandlesSC[i] = handle;
handles->mRTParamsSC[i] = newPass->shader->getShaderConstHandle( String::ToString( "$rtParams%s", samplerName.c_str()+1 ) );
AssertFatal( handle,"");
}
// Give each active feature a chance to create specialized shader consts.
for( U32 i=0; i < FEATUREMGR->getFeatureCount(); i++ )
{
const FeatureInfo &info = FEATUREMGR->getAt( i );
if ( !fd.features.hasFeature( *info.type ) )
continue;
ShaderFeatureConstHandles *fh = info.feature->createConstHandles( rpd.shader, mUserObject );
if ( fh )
newPass->featureShaderHandles.push_back( fh );
}
rpd.reset();
texIndex = 0;
return true;
}
void ProcessedShaderMaterial::_setPassBlendOp( ShaderFeature *sf,
ShaderRenderPassData &passData,
U32 &texIndex,
MaterialFeatureData &stageFeatures,
U32 stageNum,
const FeatureSet &features )
{
if( sf->getBlendOp() == Material::None )
{
return;
}
// set up the current blend operation for multi-pass materials
if( mPasses.size() > 0)
{
// If passData.numTexReg is 0, this is a brand new pass, so set the
// blend operation to the first feature.
if( passData.mNumTexReg == 0 )
{
passData.mBlendOp = sf->getBlendOp();
}
else
{
// numTegReg is more than zero, if this feature
// doesn't have the same blend operation, then
// we need to create yet another pass
if( sf->getBlendOp() != passData.mBlendOp && mPasses[mPasses.size()-1]->mStageNum == stageNum)
{
_addPass( passData, texIndex, stageFeatures, stageNum, features );
passData.mBlendOp = sf->getBlendOp();
}
}
}
}
//
// Runtime / rendering
//
bool ProcessedShaderMaterial::setupPass( SceneRenderState *state, const SceneData &sgData, U32 pass )
{
PROFILE_SCOPE( ProcessedShaderMaterial_SetupPass );
// Make sure we have the pass
if(pass >= mPasses.size())
{
// If we were rendering instanced data tell
// the device to reset that vb stream.
if ( mInstancingState )
GFX->setVertexBuffer( NULL, 1 );
return false;
}
_setRenderState( state, sgData, pass );
// Set shaders
ShaderRenderPassData* rpd = _getRPD(pass);
if( rpd->shader )
{
GFX->setShader( rpd->shader );
GFX->setShaderConstBuffer(_getShaderConstBuffer(pass));
_setShaderConstants(state, sgData, pass);
// If we're instancing then do the initial step to get
// set the vb pointer to the const buffer.
if ( mInstancingState )
stepInstance();
}
else
{
GFX->setupGenericShaders();
GFX->setShaderConstBuffer(NULL);
}
// Set our textures
setTextureStages( state, sgData, pass );
_setTextureTransforms(pass);
return true;
}
void ProcessedShaderMaterial::setTextureStages( SceneRenderState *state, const SceneData &sgData, U32 pass )
{
PROFILE_SCOPE( ProcessedShaderMaterial_SetTextureStages );
ShaderConstHandles *handles = _getShaderConstHandles(pass);
AssertFatal(handles,"");
// Set all of the textures we need to render the give pass.
#ifdef TORQUE_DEBUG
AssertFatal( pass<mPasses.size(), "Pass out of bounds" );
#endif
RenderPassData *rpd = mPasses[pass];
GFXShaderConstBuffer* shaderConsts = _getShaderConstBuffer(pass);
NamedTexTarget *texTarget;
GFXTextureObject *texObject;
for( U32 i=0; i<rpd->mNumTex; i++ )
{
U32 currTexFlag = rpd->mTexType[i];
if (!LIGHTMGR || !LIGHTMGR->setTextureStage(sgData, currTexFlag, i, shaderConsts, handles))
{
switch( currTexFlag )
{
// If the flag is unset then assume its just
// a regular texture to set... nothing special.
case 0:
default:
GFX->setTexture(i, rpd->mTexSlot[i].texObject);
break;
case Material::NormalizeCube:
GFX->setCubeTexture(i, Material::GetNormalizeCube());
break;
case Material::Lightmap:
GFX->setTexture( i, sgData.lightmap );
break;
case Material::ToneMapTex:
shaderConsts->setSafe(handles->mToneMapTexSC, (S32)i);
GFX->setTexture(i, rpd->mTexSlot[i].texObject);
break;
case Material::Cube:
GFX->setCubeTexture( i, rpd->mCubeMap );
break;
case Material::SGCube:
GFX->setCubeTexture( i, sgData.cubemap );
break;
case Material::BackBuff:
GFX->setTexture( i, sgData.backBuffTex );
break;
case Material::AccuMap:
if ( sgData.accuTex )
GFX->setTexture( i, sgData.accuTex );
else
GFX->setTexture( i, GFXTexHandle::ZERO );
break;
case Material::TexTarget:
{
texTarget = rpd->mTexSlot[i].texTarget;
if ( !texTarget )
{
GFX->setTexture( i, NULL );
break;
}
texObject = texTarget->getTexture();
// If no texture is available then map the default 2x2
// black texture to it. This at least will ensure that
// we get consistant behavior across GPUs and platforms.
if ( !texObject )
texObject = GFXTexHandle::ZERO;
if ( handles->mRTParamsSC[i]->isValid() && texObject )
{
const Point3I &targetSz = texObject->getSize();
const RectI &targetVp = texTarget->getViewport();
Point4F rtParams;
ScreenSpace::RenderTargetParameters(targetSz, targetVp, rtParams);
shaderConsts->set(handles->mRTParamsSC[i], rtParams);
}
GFX->setTexture( i, texObject );
break;
}
}
}
}
}
void ProcessedShaderMaterial::_setTextureTransforms(const U32 pass)
{
PROFILE_SCOPE( ProcessedShaderMaterial_SetTextureTransforms );
ShaderConstHandles* handles = _getShaderConstHandles(pass);
if (handles->mTexMatSC->isValid())
{
MatrixF texMat( true );
mMaterial->updateTimeBasedParams();
F32 waveOffset = _getWaveOffset( pass ); // offset is between 0.0 and 1.0
// handle scroll anim type
if( mMaterial->mAnimFlags[pass] & Material::Scroll )
{
if( mMaterial->mAnimFlags[pass] & Material::Wave )
{
Point3F scrollOffset;
scrollOffset.x = mMaterial->mScrollDir[pass].x * waveOffset;
scrollOffset.y = mMaterial->mScrollDir[pass].y * waveOffset;
scrollOffset.z = 1.0;
texMat.setColumn( 3, scrollOffset );
}
else
{
Point3F offset( mMaterial->mScrollOffset[pass].x,
mMaterial->mScrollOffset[pass].y,
1.0 );
texMat.setColumn( 3, offset );
}
}
// handle rotation
if( mMaterial->mAnimFlags[pass] & Material::Rotate )
{
if( mMaterial->mAnimFlags[pass] & Material::Wave )
{
F32 rotPos = waveOffset * M_2PI;
texMat.set( EulerF( 0.0, 0.0, rotPos ) );
texMat.setColumn( 3, Point3F( 0.5, 0.5, 0.0 ) );
MatrixF test( true );
test.setColumn( 3, Point3F( mMaterial->mRotPivotOffset[pass].x,
mMaterial->mRotPivotOffset[pass].y,
0.0 ) );
texMat.mul( test );
}
else
{
texMat.set( EulerF( 0.0, 0.0, mMaterial->mRotPos[pass] ) );
texMat.setColumn( 3, Point3F( 0.5, 0.5, 0.0 ) );
MatrixF test( true );
test.setColumn( 3, Point3F( mMaterial->mRotPivotOffset[pass].x,
mMaterial->mRotPivotOffset[pass].y,
0.0 ) );
texMat.mul( test );
}
}
// Handle scale + wave offset
if( mMaterial->mAnimFlags[pass] & Material::Scale &&
mMaterial->mAnimFlags[pass] & Material::Wave )
{
F32 wOffset = fabs( waveOffset );
texMat.setColumn( 3, Point3F( 0.5, 0.5, 0.0 ) );
MatrixF temp( true );
temp.setRow( 0, Point3F( wOffset, 0.0, 0.0 ) );
temp.setRow( 1, Point3F( 0.0, wOffset, 0.0 ) );
temp.setRow( 2, Point3F( 0.0, 0.0, wOffset ) );
temp.setColumn( 3, Point3F( -wOffset * 0.5, -wOffset * 0.5, 0.0 ) );
texMat.mul( temp );
}
// handle sequence
if( mMaterial->mAnimFlags[pass] & Material::Sequence )
{
U32 frameNum = (U32)(MATMGR->getTotalTime() * mMaterial->mSeqFramePerSec[pass]);
F32 offset = frameNum * mMaterial->mSeqSegSize[pass];
if ( mMaterial->mAnimFlags[pass] & Material::Scale )
texMat.scale( Point3F( mMaterial->mSeqSegSize[pass], 1.0f, 1.0f ) );
Point3F texOffset = texMat.getPosition();
texOffset.x += offset;
texMat.setPosition( texOffset );
}
GFXShaderConstBuffer* shaderConsts = _getShaderConstBuffer(pass);
shaderConsts->setSafe(handles->mTexMatSC, texMat);
}
}
//--------------------------------------------------------------------------
// Get wave offset for texture animations using a wave transform
//--------------------------------------------------------------------------
F32 ProcessedShaderMaterial::_getWaveOffset( U32 stage )
{
switch( mMaterial->mWaveType[stage] )
{
case Material::Sin:
{
return mMaterial->mWaveAmp[stage] * mSin( M_2PI * mMaterial->mWavePos[stage] );
break;
}
case Material::Triangle:
{
F32 frac = mMaterial->mWavePos[stage] - mFloor( mMaterial->mWavePos[stage] );
if( frac > 0.0 && frac <= 0.25 )
{
return mMaterial->mWaveAmp[stage] * frac * 4.0;
}
if( frac > 0.25 && frac <= 0.5 )
{
return mMaterial->mWaveAmp[stage] * ( 1.0 - ((frac-0.25)*4.0) );
}
if( frac > 0.5 && frac <= 0.75 )
{
return mMaterial->mWaveAmp[stage] * (frac-0.5) * -4.0;
}
if( frac > 0.75 && frac <= 1.0 )
{
return -mMaterial->mWaveAmp[stage] * ( 1.0 - ((frac-0.75)*4.0) );
}
break;
}
case Material::Square:
{
F32 frac = mMaterial->mWavePos[stage] - mFloor( mMaterial->mWavePos[stage] );
if( frac > 0.0 && frac <= 0.5 )
{
return 0.0;
}
else
{
return mMaterial->mWaveAmp[stage];
}
break;
}
}
return 0.0;
}
void ProcessedShaderMaterial::_setShaderConstants(SceneRenderState * state, const SceneData &sgData, U32 pass)
{
PROFILE_SCOPE( ProcessedShaderMaterial_SetShaderConstants );
GFXShaderConstBuffer* shaderConsts = _getShaderConstBuffer(pass);
ShaderConstHandles* handles = _getShaderConstHandles(pass);
U32 stageNum = getStageFromPass(pass);
// First we do all the constants which are not
// controlled via the material... we have to
// set these all the time as they could change.
if ( handles->mFogDataSC->isValid() )
{
Point3F fogData;
fogData.x = sgData.fogDensity;
fogData.y = sgData.fogDensityOffset;
fogData.z = sgData.fogHeightFalloff;
shaderConsts->set( handles->mFogDataSC, fogData );
}
shaderConsts->setSafe(handles->mFogColorSC, sgData.fogColor);
if( handles->mOneOverFarplane->isValid() )
{
const F32 &invfp = 1.0f / state->getFarPlane();
Point4F oneOverFP(invfp, invfp, invfp, invfp);
shaderConsts->set( handles->mOneOverFarplane, oneOverFP );
}
shaderConsts->setSafe( handles->mAccumTimeSC, MATMGR->getTotalTime() );
// If the shader constants have not been lost then
// they contain the content from a previous render pass.
//
// In this case we can skip updating the material constants
// which do not change frame to frame.
//
// NOTE: This assumes we're not animating material parameters
// in a way that doesn't cause a shader reload... this isn't
// being done now, but it could change in the future.
//
if ( !shaderConsts->wasLost() )
return;
shaderConsts->setSafe(handles->mSmoothnessSC, mMaterial->mSmoothness[stageNum]);
shaderConsts->setSafe(handles->mMetalnessSC, mMaterial->mMetalness[stageNum]);
shaderConsts->setSafe(handles->mParallaxInfoSC, mMaterial->mParallaxScale[stageNum]);
shaderConsts->setSafe(handles->mMinnaertConstantSC, mMaterial->mMinnaertConstant[stageNum]);
if ( handles->mSubSurfaceParamsSC->isValid() )
{
Point4F subSurfParams;
dMemcpy( &subSurfParams, &mMaterial->mSubSurfaceColor[stageNum], sizeof(LinearColorF) );
subSurfParams.w = mMaterial->mSubSurfaceRolloff[stageNum];
shaderConsts->set(handles->mSubSurfaceParamsSC, subSurfParams);
}
if ( handles->mRTSizeSC->isValid() )
{
const Point2I &resolution = GFX->getActiveRenderTarget()->getSize();
Point2F pixelShaderConstantData;
pixelShaderConstantData.x = resolution.x;
pixelShaderConstantData.y = resolution.y;
shaderConsts->set( handles->mRTSizeSC, pixelShaderConstantData );
}
if ( handles->mOneOverRTSizeSC->isValid() )
{
const Point2I &resolution = GFX->getActiveRenderTarget()->getSize();
Point2F oneOverTargetSize( 1.0f / (F32)resolution.x, 1.0f / (F32)resolution.y );
shaderConsts->set( handles->mOneOverRTSizeSC, oneOverTargetSize );
}
// set detail scale
shaderConsts->setSafe(handles->mDetailScaleSC, mMaterial->mDetailScale[stageNum]);
shaderConsts->setSafe(handles->mDetailBumpStrength, mMaterial->mDetailNormalMapStrength[stageNum]);
// MFT_ImposterVert
if ( handles->mImposterUVs->isValid() )
{
U32 uvCount = getMin( mMaterial->mImposterUVs.size(), 64 ); // See imposter.hlsl
AlignedArray<Point4F> imposterUVs( uvCount, sizeof( Point4F ), (U8*)mMaterial->mImposterUVs.address(), false );
shaderConsts->set( handles->mImposterUVs, imposterUVs );
}
shaderConsts->setSafe( handles->mImposterLimits, mMaterial->mImposterLimits );
// Diffuse
shaderConsts->setSafe(handles->mDiffuseColorSC, mMaterial->mDiffuse[stageNum]);
shaderConsts->setSafe( handles->mAlphaTestValueSC, mClampF( (F32)mMaterial->mAlphaRef / 255.0f, 0.0f, 1.0f ) );
if(handles->mDiffuseAtlasParamsSC)
{
Point4F atlasParams(1.0f / mMaterial->mCellLayout[stageNum].x, // 1 / num_horizontal
1.0f / mMaterial->mCellLayout[stageNum].y, // 1 / num_vertical
mMaterial->mCellSize[stageNum], // tile size in pixels
getBinLog2(mMaterial->mCellSize[stageNum]) ); // pow of 2 of tile size in pixels 2^9 = 512, 2^10=1024 etc
shaderConsts->setSafe(handles->mDiffuseAtlasParamsSC, atlasParams);
}
if(handles->mBumpAtlasParamsSC)
{
Point4F atlasParams(1.0f / mMaterial->mCellLayout[stageNum].x, // 1 / num_horizontal
1.0f / mMaterial->mCellLayout[stageNum].y, // 1 / num_vertical
mMaterial->mCellSize[stageNum], // tile size in pixels
getBinLog2(mMaterial->mCellSize[stageNum]) ); // pow of 2 of tile size in pixels 2^9 = 512, 2^10=1024 etc
shaderConsts->setSafe(handles->mBumpAtlasParamsSC, atlasParams);
}
if(handles->mDiffuseAtlasTileSC)
{
// Sanity check the wrap flags
//AssertWarn(mMaterial->mTextureAddressModeU == mMaterial->mTextureAddressModeV, "Addresing mode mismatch, texture atlasing will be confused");
Point4F atlasTileParams( mMaterial->mCellIndex[stageNum].x, // Tile co-ordinate, ie: [0, 3]
mMaterial->mCellIndex[stageNum].y,
0.0f, 0.0f ); // TODO: Wrap mode flags?
shaderConsts->setSafe(handles->mDiffuseAtlasTileSC, atlasTileParams);
}
if(handles->mBumpAtlasTileSC)
{
// Sanity check the wrap flags
//AssertWarn(mMaterial->mTextureAddressModeU == mMaterial->mTextureAddressModeV, "Addresing mode mismatch, texture atlasing will be confused");
Point4F atlasTileParams( mMaterial->mCellIndex[stageNum].x, // Tile co-ordinate, ie: [0, 3]
mMaterial->mCellIndex[stageNum].y,
0.0f, 0.0f ); // TODO: Wrap mode flags?
shaderConsts->setSafe(handles->mBumpAtlasTileSC, atlasTileParams);
}
// Deferred Shading: Determine Material Info Flags
S32 matInfoFlags =
(mMaterial->mEmissive[stageNum] ? 1 : 0) | //emissive
(mMaterial->mSubSurface[stageNum] ? 2 : 0); //subsurface
mMaterial->mMatInfoFlags[stageNum] = matInfoFlags / 255.0f;
shaderConsts->setSafe(handles->mMatInfoFlagsSC, mMaterial->mMatInfoFlags[stageNum]);
if( handles->mAccuScaleSC->isValid() )
shaderConsts->set( handles->mAccuScaleSC, mMaterial->mAccuScale[stageNum] );
if( handles->mAccuDirectionSC->isValid() )
shaderConsts->set( handles->mAccuDirectionSC, mMaterial->mAccuDirection[stageNum] );
if( handles->mAccuStrengthSC->isValid() )
shaderConsts->set( handles->mAccuStrengthSC, mMaterial->mAccuStrength[stageNum] );
if( handles->mAccuCoverageSC->isValid() )
shaderConsts->set( handles->mAccuCoverageSC, mMaterial->mAccuCoverage[stageNum] );
if( handles->mAccuSpecularSC->isValid() )
shaderConsts->set( handles->mAccuSpecularSC, mMaterial->mAccuSpecular[stageNum] );
}
bool ProcessedShaderMaterial::_hasCubemap(U32 pass)
{
// Only support cubemap on the first stage
if( mPasses[pass]->mStageNum > 0 )
return false;
if( mPasses[pass]->mCubeMap )
return true;
return false;
}
void ProcessedShaderMaterial::setTransforms(const MatrixSet &matrixSet, SceneRenderState *state, const U32 pass)
{
PROFILE_SCOPE( ProcessedShaderMaterial_setTransforms );
GFXShaderConstBuffer* shaderConsts = _getShaderConstBuffer(pass);
ShaderConstHandles* handles = _getShaderConstHandles(pass);
// The MatrixSet will lazily generate a matrix under the
// various 'get' methods, so inline the test for a valid
// shader constant handle to avoid that work when we can.
if ( handles->mModelViewProjSC->isValid() )
shaderConsts->set( handles->mModelViewProjSC, matrixSet.getWorldViewProjection() );
if ( handles->mObjTransSC->isValid() )
shaderConsts->set( handles->mObjTransSC, matrixSet.getObjectToWorld() );
if ( handles->mWorldToObjSC->isValid() )
shaderConsts->set( handles->mWorldToObjSC, matrixSet.getWorldToObject() );
if ( handles->mWorldToCameraSC->isValid() )
shaderConsts->set( handles->mWorldToCameraSC, matrixSet.getWorldToCamera() );
if (handles->mCameraToWorldSC->isValid())
shaderConsts->set(handles->mCameraToWorldSC, matrixSet.getCameraToWorld());
if ( handles->mWorldViewOnlySC->isValid() )
shaderConsts->set( handles->mWorldViewOnlySC, matrixSet.getObjectToCamera() );
if ( handles->mViewToObjSC->isValid() )
shaderConsts->set( handles->mViewToObjSC, matrixSet.getCameraToObject() );
if ( handles->mViewProjSC->isValid() )
shaderConsts->set( handles->mViewProjSC, matrixSet.getWorldToScreen() );
if ( handles->mCubeTransSC->isValid() &&
( _hasCubemap(pass) || mMaterial->mDynamicCubemap ) )
{
// TODO: Could we not remove this constant? Use mObjTransSC and cast to float3x3 instead?
shaderConsts->set(handles->mCubeTransSC, matrixSet.getObjectToWorld(), GFXSCT_Float3x3);
}
if ( handles->m_vEyeSC->isValid() )
shaderConsts->set( handles->m_vEyeSC, state->getVectorEye() );
}
void ProcessedShaderMaterial::setNodeTransforms(const MatrixF *transforms, const U32 transformCount, const U32 pass)
{
PROFILE_SCOPE( ProcessedShaderMaterial_setNodeTransforms );
GFXShaderConstBuffer* shaderConsts = _getShaderConstBuffer(pass);
ShaderConstHandles* handles = _getShaderConstHandles(pass);
if ( handles->mNodeTransforms->isValid() )
{
S32 realTransformCount = getMin( transformCount, TSShape::smMaxSkinBones );
shaderConsts->set( handles->mNodeTransforms, transforms, realTransformCount, GFXSCT_Float4x3 );
}
}
void ProcessedShaderMaterial::setSceneInfo(SceneRenderState * state, const SceneData& sgData, U32 pass)
{
PROFILE_SCOPE(ProcessedShaderMaterial_setSceneInfo);
GFXShaderConstBuffer* shaderConsts = _getShaderConstBuffer(pass);
ShaderConstHandles* handles = _getShaderConstHandles(pass);
// Set cubemap stuff here (it's convenient!)
const Point3F &eyePosWorld = state->getCameraPosition();
if (_hasCubemap(pass) || mMaterial->mDynamicCubemap)
{
if (handles->mCubeEyePosSC->isValid())
{
Point3F cubeEyePos = eyePosWorld - sgData.objTrans->getPosition();
shaderConsts->set(handles->mCubeEyePosSC, cubeEyePos);
}
}
if (sgData.cubemap)
shaderConsts->setSafe(handles->mCubeMipsSC, (F32)sgData.cubemap->getMipMapLevels());
else
shaderConsts->setSafe(handles->mCubeMipsSC, 1.0f);
shaderConsts->setSafe(handles->mVisiblitySC, sgData.visibility);
shaderConsts->setSafe(handles->mEyePosWorldSC, eyePosWorld);
if ( handles->mEyePosSC->isValid() )
{
MatrixF tempMat( *sgData.objTrans );
tempMat.inverse();
Point3F eyepos;
tempMat.mulP( eyePosWorld, &eyepos );
shaderConsts->set(handles->mEyePosSC, eyepos);
}
shaderConsts->setSafe(handles->mEyeMatSC, state->getCameraTransform());
ShaderRenderPassData *rpd = _getRPD(pass);
for (U32 i = 0; i < rpd->featureShaderHandles.size(); i++)
rpd->featureShaderHandles[i]->setConsts(state, sgData, shaderConsts);
LIGHTMGR->setLightInfo(this, mMaterial, sgData, state, pass, shaderConsts);
PROBEMGR->setProbeInfo(this, mMaterial, sgData, state, pass, shaderConsts);
}
void ProcessedShaderMaterial::setBuffers( GFXVertexBufferHandleBase *vertBuffer, GFXPrimitiveBufferHandle *primBuffer )
{
PROFILE_SCOPE(ProcessedShaderMaterial_setBuffers);
// If we're not instanced then just call the parent.
if ( !mInstancingState )
{
Parent::setBuffers( vertBuffer, primBuffer );
return;
}
PROFILE_SCOPE(ProcessedShaderMaterial_setBuffers_instancing);
const S32 instCount = mInstancingState->getCount();
AssertFatal( instCount > 0,
"ProcessedShaderMaterial::setBuffers - No instances rendered!" );
// Nothing special here.
GFX->setPrimitiveBuffer( *primBuffer );
// Set the first stream the the normal VB and set the
// correct frequency for the number of instances to render.
GFX->setVertexBuffer( *vertBuffer, 0, instCount );
// Get a volatile VB and fill it with the vertex data.
const GFXVertexFormat *instFormat = mInstancingState->getFormat();
GFXVertexBufferDataHandle instVB;
instVB.set( GFX, instFormat->getSizeInBytes(), instFormat, instCount, GFXBufferTypeVolatile );
U8 *dest = instVB.lock();
if(!dest) return;
dMemcpy( dest, mInstancingState->getBuffer(), instFormat->getSizeInBytes() * instCount );
instVB.unlock();
// Set the instance vb for streaming.
GFX->setVertexBuffer( instVB, 1, 1 );
// Finally set the vertex format which defines
// both of the streams.
GFX->setVertexFormat( mInstancingState->getDeclFormat() );
// Done... reset the count.
mInstancingState->resetStep();
}
bool ProcessedShaderMaterial::stepInstance()
{
PROFILE_SCOPE(ProcessedShaderMaterial_stepInstance);
AssertFatal( mInstancingState, "ProcessedShaderMaterial::stepInstance - This material isn't instanced!" );
return mInstancingState->step( &_getShaderConstBuffer( 0 )->mInstPtr );
}
MaterialParameters* ProcessedShaderMaterial::allocMaterialParameters()
{
ShaderMaterialParameters* smp = new ShaderMaterialParameters();
Vector<GFXShaderConstBufferRef> buffers( __FILE__, __LINE__ );
buffers.setSize(mPasses.size());
for (U32 i = 0; i < mPasses.size(); i++)
buffers[i] = _getRPD(i)->shader->allocConstBuffer();
// smp now owns these buffers.
smp->setBuffers(mShaderConstDesc, buffers);
return smp;
}
MaterialParameterHandle* ProcessedShaderMaterial::getMaterialParameterHandle(const String& name)
{
// Search our list
for (U32 i = 0; i < mParameterHandles.size(); i++)
{
if (mParameterHandles[i]->getName().equal(name))
return mParameterHandles[i];
}
// If we didn't find it, we have to add it to support shader reloading.
Vector<GFXShader*> shaders;
shaders.setSize(mPasses.size());
for (U32 i = 0; i < mPasses.size(); i++)
shaders[i] = _getRPD(i)->shader;
ShaderMaterialParameterHandle* smph = new ShaderMaterialParameterHandle( name, shaders );
mParameterHandles.push_back(smph);
return smph;
}
/// This is here to deal with the differences between ProcessedCustomMaterials and ProcessedShaderMaterials.
GFXShaderConstBuffer* ProcessedShaderMaterial::_getShaderConstBuffer( const U32 pass )
{
if (mCurrentParams && pass < mPasses.size())
{
return static_cast<ShaderMaterialParameters*>(mCurrentParams)->getBuffer(pass);
}
return NULL;
}
ShaderConstHandles* ProcessedShaderMaterial::_getShaderConstHandles(const U32 pass)
{
if (pass < mPasses.size())
{
return &_getRPD(pass)->shaderHandles;
}
return NULL;
}
void ProcessedShaderMaterial::dumpMaterialInfo()
{
for ( U32 i = 0; i < getNumPasses(); i++ )
{
const ShaderRenderPassData *passData = _getRPD( i );
if ( passData == NULL )
continue;
const GFXShader *shader = passData->shader;
if ( shader == NULL )
Con::printf( " [%i] [NULL shader]", i );
else
Con::printf( " [%i] %s", i, shader->describeSelf().c_str() );
}
}