Torque3D/Engine/source/math/mathUtils.cpp
rextimmy 54970b0ad6 Corrects OpenGL projection matrix
Corrects OpenGL glPolygonOffset values
Corrects Direct3D11 DepthBias values
2017-08-25 13:13:47 +10:00

1920 lines
54 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "math/util/frustum.h"
#include "math/mathUtils.h"
#include "math/mMath.h"
#include "math/mRandom.h"
#include "math/util/frustum.h"
#include "platform/profiler.h"
#include "core/tAlgorithm.h"
#include "gfx/gfxDevice.h"
namespace MathUtils
{
MRandomLCG sgRandom(0xdeadbeef); ///< Our random number generator.
//-----------------------------------------------------------------------------
bool capsuleCapsuleOverlap(const Point3F & a1, const Point3F & b1, F32 rad1, const Point3F & a2, const Point3F & b2, F32 rad2)
{
F32 s,t;
Point3F c1,c2;
F32 dist = segmentSegmentNearest(a1,b1,a2,b2,s,t,c1,c2);
return dist <= (rad1+rad2)*(rad1+rad2);
}
//-----------------------------------------------------------------------------
F32 segmentSegmentNearest(const Point3F & p1, const Point3F & q1, const Point3F & p2, const Point3F & q2, F32 & s, F32 & t, Point3F & c1, Point3F & c2)
{
Point3F d1 = q1-p1;
Point3F d2 = q2-p2;
Point3F r = p1-p2;
F32 a = mDot(d1,d1);
F32 e = mDot(d2,d2);
F32 f = mDot(d2,r);
const F32 EPSILON = 0.001f;
if (a <= EPSILON && e <= EPSILON)
{
s = t = 0.0f;
c1 = p1;
c2 = p2;
return mDot(c1-c2,c1-c2);
}
if (a <= EPSILON)
{
s = 0.0f;
t = mClampF(f/e,0.0f,1.0f);
}
else
{
F32 c = mDot(d1,r);
if (e <= EPSILON)
{
t = 0.0f;
s = mClampF(-c/a,0.0f,1.0f);
}
else
{
F32 b = mDot(d1,d2);
F32 denom = a*e-b*b;
if (denom != 0.0f)
s = mClampF((b*f-c*e)/denom,0.0f,1.0f);
else
s = 0.0f;
F32 tnom = b*s+f;
if (tnom < 0.0f)
{
t = 0.0f;
s = mClampF(-c/a,0.0f,1.0f);
}
else if (tnom>e)
{
t = 1.0f;
s = mClampF((b-c)/a,0.0f,1.0f);
}
else
t = tnom/e;
}
}
c1 = p1 + d1*s;
c2 = p2 + d2*t;
return mDot(c1-c2,c1-c2);
}
//-----------------------------------------------------------------------------
bool capsuleSphereNearestOverlap(const Point3F & A0, const Point3F A1, F32 radA, const Point3F & B, F32 radB, F32 & t)
{
Point3F V = A1-A0;
Point3F A0B = A0-B;
F32 d1 = mDot(A0B,V);
F32 d2 = mDot(A0B,A0B);
F32 d3 = mDot(V,V);
F32 R2 = (radA+radB)*(radA+radB);
if (d2<R2)
{
// starting in collision state
t=0;
return true;
}
if (d3<0.01f)
// no movement, and don't start in collision state, so no collision
return false;
F32 b24ac = mSqrt(d1*d1-d2*d3+d3*R2);
F32 t1 = (-d1-b24ac)/d3;
if (t1>0 && t1<1.0f)
{
t=t1;
return true;
}
F32 t2 = (-d1+b24ac)/d3;
if (t2>0 && t2<1.0f)
{
t=t2;
return true;
}
if (t1<0 && t2>0)
{
t=0;
return true;
}
return false;
}
//-----------------------------------------------------------------------------
void vectorRotateZAxis( Point3F &vector, F32 radians )
{
F32 sin, cos;
mSinCos(radians, sin, cos);
F32 x = cos * vector.x - sin * vector.y;
F32 y = sin * vector.x + cos * vector.y;
vector.x = x;
vector.y = y;
}
void vectorRotateZAxis( F32 radians, Point3F *vectors, U32 count )
{
F32 sin, cos;
mSinCos(radians, sin, cos);
F32 x, y;
const Point3F *end = vectors + count;
for ( ; vectors != end; vectors++ )
{
x = cos * vectors->x - sin * vectors->y;
y = sin * vectors->x + cos * vectors->y;
vectors->x = x;
vectors->y = y;
}
}
//-----------------------------------------------------------------------------
void getZBiasProjectionMatrix( F32 bias, const Frustum &frustum, MatrixF *outMat, bool rotate )
{
Frustum temp(frustum);
temp.setNearDist(frustum.getNearDist() + bias);
temp.getProjectionMatrix(outMat, rotate);
}
//-----------------------------------------------------------------------------
MatrixF createOrientFromDir( const Point3F &direction )
{
Point3F j = direction;
Point3F k(0.0f, 0.0f, 1.0f);
Point3F i;
mCross( j, k, &i );
if( i.magnitudeSafe() == 0.0f )
{
i.set( 0.0f, -1.0f, 0.0f );
}
i.normalizeSafe();
mCross( i, j, &k );
MatrixF mat( true );
mat.setColumn( 0, i );
mat.setColumn( 1, j );
mat.setColumn( 2, k );
return mat;
}
//-----------------------------------------------------------------------------
void getMatrixFromUpVector( const VectorF &up, MatrixF *outMat )
{
AssertFatal( up.isUnitLength(), "MathUtils::getMatrixFromUpVector() - Up vector was not normalized!" );
AssertFatal( outMat, "MathUtils::getMatrixFromUpVector() - Got null output matrix!" );
AssertFatal( outMat->isAffine(), "MathUtils::getMatrixFromUpVector() - Got uninitialized matrix!" );
VectorF forward = mPerp( up );
VectorF right = mCross( forward, up );
right.normalize();
forward = mCross( up, right );
forward.normalize();
outMat->setColumn( 0, right );
outMat->setColumn( 1, forward );
outMat->setColumn( 2, up );
}
//-----------------------------------------------------------------------------
void getMatrixFromForwardVector( const VectorF &forward, MatrixF *outMat )
{
AssertFatal( forward.isUnitLength(), "MathUtils::getMatrixFromForwardVector() - Forward vector was not normalized!" );
AssertFatal( outMat, "MathUtils::getMatrixFromForwardVector() - Got null output matrix!" );
AssertFatal( outMat->isAffine(), "MathUtils::getMatrixFromForwardVector() - Got uninitialized matrix!" );
VectorF up = mPerp( forward );
VectorF right = mCross( forward, up );
right.normalize();
up = mCross( right, forward );
up.normalize();
outMat->setColumn( 0, right );
outMat->setColumn( 1, forward );
outMat->setColumn( 2, up );
}
//-----------------------------------------------------------------------------
Point3F randomDir( const Point3F &axis, F32 thetaAngleMin, F32 thetaAngleMax,
F32 phiAngleMin, F32 phiAngleMax )
{
MatrixF orient = createOrientFromDir( axis );
Point3F axisx;
orient.getColumn( 0, &axisx );
F32 theta = (thetaAngleMax - thetaAngleMin) * sgRandom.randF() + thetaAngleMin;
F32 phi = (phiAngleMax - phiAngleMin) * sgRandom.randF() + phiAngleMin;
// Both phi and theta are in degs. Create axis angles out of them, and create the
// appropriate rotation matrix...
AngAxisF thetaRot(axisx, theta * (M_PI_F / 180.0f));
AngAxisF phiRot(axis, phi * (M_PI_F / 180.0f));
Point3F ejectionAxis = axis;
MatrixF temp(true);
thetaRot.setMatrix(&temp);
temp.mulP(ejectionAxis);
phiRot.setMatrix(&temp);
temp.mulP(ejectionAxis);
return ejectionAxis;
}
//-----------------------------------------------------------------------------
Point3F randomPointInSphere( F32 radius )
{
AssertFatal( radius > 0.0f, "MathUtils::randomPointInRadius - radius must be positive" );
#define MAX_TRIES 20
Point3F out;
F32 radiusSq = radius * radius;
for ( S32 i = 0; i < MAX_TRIES; i++ )
{
out.x = sgRandom.randF(-radius,radius);
out.y = sgRandom.randF(-radius,radius);
out.z = sgRandom.randF(-radius,radius);
if ( out.lenSquared() < radiusSq )
return out;
}
AssertFatal( false, "MathUtils::randomPointInRadius - something is wrong, should not fail this many times." );
return Point3F::Zero;
}
//-----------------------------------------------------------------------------
Point2F randomPointInCircle( F32 radius )
{
AssertFatal( radius > 0.0f, "MathUtils::randomPointInRadius - radius must be positive" );
#define MAX_TRIES 20
Point2F out;
F32 radiusSq = radius * radius;
for ( S32 i = 0; i < MAX_TRIES; i++ )
{
out.x = sgRandom.randF(-radius,radius);
out.y = sgRandom.randF(-radius,radius);
if ( out.lenSquared() < radiusSq )
return out;
}
AssertFatal( false, "MathUtils::randomPointInRadius - something is wrong, should not fail this many times." );
return Point2F::Zero;
}
//-----------------------------------------------------------------------------
void getAnglesFromVector( const VectorF &vec, F32 &yawAng, F32 &pitchAng )
{
yawAng = mAtan2( vec.x, vec.y );
if( yawAng < 0.0f )
yawAng += M_2PI_F;
if( mFabs(vec.x) > mFabs(vec.y) )
pitchAng = mAtan2( mFabs(vec.z), mFabs(vec.x) );
else
pitchAng = mAtan2( mFabs(vec.z), mFabs(vec.y) );
if( vec.z < 0.0f )
pitchAng = -pitchAng;
}
//-----------------------------------------------------------------------------
void getVectorFromAngles( VectorF &vec, F32 yawAng, F32 pitchAng )
{
VectorF pnt( 0.0f, 1.0f, 0.0f );
EulerF rot( -pitchAng, 0.0f, 0.0f );
MatrixF mat( rot );
rot.set( 0.0f, 0.0f, yawAng );
MatrixF mat2( rot );
mat.mulV( pnt );
mat2.mulV( pnt );
vec = pnt;
}
F32 getAngleBetweenVectors(VectorF vecA, VectorF vecB)
{
F32 dot = mDot(vecA, vecB);
F32 lenSq1 = vecA.lenSquared();
F32 lenSq2 = vecB.lenSquared();
F32 angle = mAcos(dot / mSqrt(lenSq1 * lenSq2));
return angle;
}
F32 getSignedAngleBetweenVectors(VectorF vecA, VectorF vecB, VectorF norm)
{
// angle in 0-180
F32 angle = getAngleBetweenVectors(vecA, vecB);
F32 sign = mSign(mDot(norm, mCross(vecA, vecB)));
// angle in -179-180
F32 signed_angle = angle * sign;
return signed_angle;
}
//-----------------------------------------------------------------------------
void transformBoundingBox(const Box3F &sbox, const MatrixF &mat, const Point3F scale, Box3F &dbox)
{
Point3F center;
// set transformed center...
sbox.getCenter(&center);
center.convolve(scale);
mat.mulP(center);
dbox.minExtents = center;
dbox.maxExtents = center;
Point3F val;
for(U32 ix=0; ix<2; ix++)
{
if(ix & 0x1)
val.x = sbox.minExtents.x;
else
val.x = sbox.maxExtents.x;
for(U32 iy=0; iy<2; iy++)
{
if(iy & 0x1)
val.y = sbox.minExtents.y;
else
val.y = sbox.maxExtents.y;
for(U32 iz=0; iz<2; iz++)
{
if(iz & 0x1)
val.z = sbox.minExtents.z;
else
val.z = sbox.maxExtents.z;
Point3F v1, v2;
v1 = val;
v1.convolve(scale);
mat.mulP(v1, &v2);
dbox.minExtents.setMin(v2);
dbox.maxExtents.setMax(v2);
}
}
}
}
//-----------------------------------------------------------------------------
bool mProjectWorldToScreen( const Point3F &in,
Point3F *out,
const RectI &view,
const MatrixF &world,
const MatrixF &projection )
{
MatrixF worldProjection = projection;
worldProjection.mul(world);
return mProjectWorldToScreen( in, out, view, worldProjection );
}
//-----------------------------------------------------------------------------
bool mProjectWorldToScreen( const Point3F &in,
Point3F *out,
const RectI &view,
const MatrixF &worldProjection )
{
Point4F temp(in.x,in.y,in.z,1.0f);
worldProjection.mul(temp);
// Perform the perspective division. For orthographic
// projections, temp.w will be 1.
temp.x /= temp.w;
temp.y /= temp.w;
temp.z /= temp.w;
// Take the normalized device coordinates (NDC) and transform them
// into device coordinates.
out->x = (temp.x + 1.0f) / 2.0f * view.extent.x + view.point.x;
out->y = (1.0f - temp.y) / 2.0f * view.extent.y + view.point.y;
out->z = temp.z;
if ( out->z < 0.0f || out->z > 1.0f ||
out->x < (F32)view.point.x || out->x > (F32)view.point.x + (F32)view.extent.x ||
out->y < (F32)view.point.y || out->y > (F32)view.point.y + (F32)view.extent.y )
return false;
return true;
}
//-----------------------------------------------------------------------------
void mProjectScreenToWorld( const Point3F &in,
Point3F *out,
const RectI &view,
const MatrixF &world,
const MatrixF &projection,
F32 zfar,
F32 znear )
{
MatrixF invWorldProjection = projection;
invWorldProjection.mul(world);
invWorldProjection.inverse();
Point3F vec;
vec.x = (in.x - view.point.x) * 2.0f / view.extent.x - 1.0f;
vec.y = -(in.y - view.point.y) * 2.0f / view.extent.y + 1.0f;
vec.z = (znear + in.z * (zfar - znear))/zfar;
invWorldProjection.mulV(vec);
vec *= 1.0f + in.z * zfar;
invWorldProjection.getColumn(3, out);
(*out) += vec;
}
//-----------------------------------------------------------------------------
bool pointInPolygon( const Point2F *verts, U32 vertCount, const Point2F &testPt )
{
U32 i, j, c = 0;
for ( i = 0, j = vertCount-1; i < vertCount; j = i++ )
{
if ( ( ( verts[i].y > testPt.y ) != ( verts[j].y > testPt.y ) ) &&
( testPt.x < ( verts[j].x - verts[i].x ) *
( testPt.y - verts[i].y ) /
( verts[j].y - verts[i].y ) + verts[i].x ) )
c = !c;
}
return c != 0;
}
//-----------------------------------------------------------------------------
F32 mTriangleDistance( const Point3F &A, const Point3F &B, const Point3F &C, const Point3F &P, IntersectInfo* info )
{
Point3F diff = A - P;
Point3F edge0 = B - A;
Point3F edge1 = C - A;
F32 a00 = edge0.lenSquared();
F32 a01 = mDot( edge0, edge1 );
F32 a11 = edge1.lenSquared();
F32 b0 = mDot( diff, edge0 );
F32 b1 = mDot( diff, edge1 );
F32 c = diff.lenSquared();
F32 det = mFabs(a00*a11-a01*a01);
F32 s = a01*b1-a11*b0;
F32 t = a01*b0-a00*b1;
F32 sqrDistance;
if (s + t <= det)
{
if (s < 0.0f)
{
if (t < 0.0f) // region 4
{
if (b0 < 0.0f)
{
t = 0.0f;
if (-b0 >= a00)
{
s = 1.0f;
sqrDistance = a00 + (2.0f)*b0 + c;
}
else
{
s = -b0/a00;
sqrDistance = b0*s + c;
}
}
else
{
s = 0.0f;
if (b1 >= 0.0f)
{
t = 0.0f;
sqrDistance = c;
}
else if (-b1 >= a11)
{
t = 1.0f;
sqrDistance = a11 + 2.0f*b1 + c;
}
else
{
t = -b1/a11;
sqrDistance = b1*t + c;
}
}
}
else // region 3
{
s = 0.0f;
if (b1 >= 0.0f)
{
t = 0.0f;
sqrDistance = c;
}
else if (-b1 >= a11)
{
t = 1.0f;
sqrDistance = a11 + 2.0f*b1 + c;
}
else
{
t = -b1/a11;
sqrDistance = b1*t + c;
}
}
}
else if (t < 0.0f) // region 5
{
t = 0.0f;
if (b0 >= 0.0f)
{
s = 0.0f;
sqrDistance = c;
}
else if (-b0 >= a00)
{
s = 1.0f;
sqrDistance = a00 + 2.0f*b0 + c;
}
else
{
s = -b0/a00;
sqrDistance = b0*s + c;
}
}
else // region 0
{
// minimum at interior point
F32 invDet = 1.0f / det;
s *= invDet;
t *= invDet;
sqrDistance = s * (a00*s + a01*t + 2.0f*b0) +
t * (a01*s + a11*t + 2.0f*b1) + c;
}
}
else
{
F32 tmp0, tmp1, numer, denom;
if (s < 0.0f) // region 2
{
tmp0 = a01 + b0;
tmp1 = a11 + b1;
if (tmp1 > tmp0)
{
numer = tmp1 - tmp0;
denom = a00 - 2.0f*a01 + a11;
if (numer >= denom)
{
s = 1.0f;
t = 0.0f;
sqrDistance = a00 + 2.0f*b0 + c;
}
else
{
s = numer/denom;
t = 1.0f - s;
sqrDistance = s * (a00*s + a01*t + 2.0f*b0) +
t * (a01*s + a11*t + 2.0f*b1) + c;
}
}
else
{
s = 0.0f;
if (tmp1 <= 0.0f)
{
t = 1.0f;
sqrDistance = a11 + 2.0f*b1 + c;
}
else if (b1 >= 0.0f)
{
t = 0.0f;
sqrDistance = c;
}
else
{
t = -b1/a11;
sqrDistance = b1*t + c;
}
}
}
else if (t < 0.0f) // region 6
{
tmp0 = a01 + b1;
tmp1 = a00 + b0;
if (tmp1 > tmp0)
{
numer = tmp1 - tmp0;
denom = a00 - 2.0f*a01 + a11;
if (numer >= denom)
{
t = 1.0f;
s = 0.0f;
sqrDistance = a11 + 2.0f*b1 + c;
}
else
{
t = numer/denom;
s = 1.0f - t;
sqrDistance = s * (a00*s + a01*t + 2.0f*b0) +
t * (a01*s + a11*t + 2.0f*b1) + c;
}
}
else
{
t = 0.0f;
if (tmp1 <= 0.0f)
{
s = 1.0f;
sqrDistance = a00 + 2.0f*b0 + c;
}
else if (b0 >= 0.0f)
{
s = 0.0f;
sqrDistance = c;
}
else
{
s = -b0/a00;
sqrDistance = b0*s + c;
}
}
}
else // region 1
{
numer = a11 + b1 - a01 - b0;
if (numer <= 0.0f)
{
s = 0.0f;
t = 1.0f;
sqrDistance = a11 + 2.0f*b1 + c;
}
else
{
denom = a00 - 2.0f*a01 + a11;
if (numer >= denom)
{
s = 1.0f;
t = 0.0f;
sqrDistance = a00 + 2.0f*b0 + c;
}
else
{
s = numer/denom;
t = 1.0f - s;
sqrDistance = s * (a00*s + a01*t + 2.0f*b0) +
t * (a01*s + a11*t + 2.0f*b1) + c;
}
}
}
}
// account for numerical round-off error
if (sqrDistance < 0.0f)
sqrDistance = 0.0f;
// This also calculates the barycentric coordinates and the closest point!
//m_kClosestPoint0 = P;
//m_kClosestPoint1 = A + s*edge0 + t*edge1;
//m_afTriangleBary[1] = s;
//m_afTriangleBary[2] = t;
//m_afTriangleBary[0] = (Real)1.0 - fS - fT;
if(info)
{
info->segment.p0 = P;
info->segment.p1 = A + s*edge0 + t*edge1;
info->bary.x = s;
info->bary.y = t;
info->bary.z = 1.0f - s - t;
}
return sqrDistance;
}
//-----------------------------------------------------------------------------
Point3F mTriangleNormal( const Point3F &a, const Point3F &b, const Point3F &c )
{
// Vector from b to a.
const F32 ax = a.x-b.x;
const F32 ay = a.y-b.y;
const F32 az = a.z-b.z;
// Vector from b to c.
const F32 cx = c.x-b.x;
const F32 cy = c.y-b.y;
const F32 cz = c.z-b.z;
Point3F n;
// This is an in-line cross product.
n.x = ay*cz - az*cy;
n.y = az*cx - ax*cz;
n.z = ax*cy - ay*cx;
m_point3F_normalize( (F32*)(&n) );
return n;
}
//-----------------------------------------------------------------------------
Point3F mClosestPointOnSegment( const Point3F &a, const Point3F &b, const Point3F &p )
{
Point3F c = p - a; // Vector from a to Point
Point3F v = (b - a);
F32 d = v.len(); // Length of the line segment
v.normalize(); // Unit Vector from a to b
F32 t = mDot( v, c ); // Intersection point Distance from a
// Check to see if the point is on the line
// if not then return the endpoint
if(t < 0) return a;
if(t > d) return b;
// get the distance to move from point a
v *= t;
// move from point a to the nearest point on the segment
return a + v;
}
//-----------------------------------------------------------------------------
void mShortestSegmentBetweenLines( const Line &line0, const Line &line1, LineSegment *outSegment )
{
// compute intermediate parameters
Point3F w0 = line0.origin - line1.origin;
F32 a = mDot( line0.direction, line0.direction );
F32 b = mDot( line0.direction, line1.direction );
F32 c = mDot( line1.direction, line1.direction );
F32 d = mDot( line0.direction, w0 );
F32 e = mDot( line1.direction, w0 );
F32 denom = a*c - b*b;
if ( denom > -0.001f && denom < 0.001f )
{
outSegment->p0 = line0.origin;
outSegment->p1 = line1.origin + (e/c)*line1.direction;
}
else
{
outSegment->p0 = line0.origin + ((b*e - c*d)/denom)*line0.direction;
outSegment->p1 = line1.origin + ((a*e - b*d)/denom)*line1.direction;
}
}
//-----------------------------------------------------------------------------
U32 greatestCommonDivisor( U32 u, U32 v )
{
// http://en.wikipedia.org/wiki/Binary_GCD_algorithm
S32 shift;
/* GCD(0,x) := x */
if (u == 0 || v == 0)
return u | v;
/* Left shift := lg K, where K is the greatest power of 2
dividing both u and v. */
for (shift = 0; ((u | v) & 1) == 0; ++shift) {
u >>= 1;
v >>= 1;
}
while ((u & 1) == 0)
u >>= 1;
/* From here on, u is always odd. */
do {
while ((v & 1) == 0) /* Loop X */
v >>= 1;
/* Now u and v are both odd, so diff(u, v) is even.
Let u = min(u, v), v = diff(u, v)/2. */
if (u < v) {
v -= u;
} else {
U32 diff = u - v;
u = v;
v = diff;
}
v >>= 1;
} while (v != 0);
return u << shift;
}
//-----------------------------------------------------------------------------
bool mLineTriangleCollide( const Point3F &p1, const Point3F &p2,
const Point3F &t1, const Point3F &t2, const Point3F &t3,
Point3F *outUVW, F32 *outT )
{
VectorF ab = t2 - t1;
VectorF ac = t3 - t1;
VectorF qp = p1 - p2;
// Compute triangle normal. Can be precalculated or cached if
// intersecting multiple segments against the same triangle
VectorF n = mCross( ab, ac );
// Compute denominator d. If d <= 0, segment is parallel to or points
// away from triangle, so exit early
F32 d = mDot( qp, n );
if ( d <= 0.0f )
return false;
// Compute intersection t value of pq with plane of triangle. A ray
// intersects if 0 <= t. Segment intersects iff 0 <= t <= 1. Delay
// dividing by d until intersection has been found to pierce triangle
VectorF ap = p1 - t1;
F32 t = mDot( ap, n );
if ( t < 0.0f )
return false;
if ( t > d )
return false; // For segment; exclude this code line for a ray test
// Compute barycentric coordinate components and test if within bounds
VectorF e = mCross( qp, ap );
F32 v = mDot( ac, e );
if ( v < 0.0f || v > d )
return false;
F32 w = -mDot( ab, e );
if ( w < 0.0f || v + w > d )
return false;
// Segment/ray intersects triangle. Perform delayed division and
// compute the last barycentric coordinate component
const F32 ood = 1.0f / d;
if ( outT )
*outT = t * ood;
if ( outUVW )
{
v *= ood;
w *= ood;
outUVW->set( 1.0f - v - w, v, w );
}
return true;
}
//-----------------------------------------------------------------------------
bool mRayQuadCollide( const Quad &quad,
const Ray &ray,
Point2F *outUV,
F32 *outT )
{
static const F32 eps = F32(10e-6);
// Rejects rays that are parallel to Q, and rays that intersect the plane of
// Q either on the left of the line V00V01 or on the right of the line V00V10.
// p01-----eXX-----p11
// ^ . ^ |
// | . |
// e03 e02 eXX
// | . |
// | . |
// p00-----e01---->p10
VectorF e01 = quad.p10 - quad.p00;
VectorF e03 = quad.p01 - quad.p00;
// If the ray is perfectly perpendicular to e03, which
// represents the entire planes tangent, then the
// result of this cross product (P) will equal e01
// If it is parallel it will result in a vector opposite e01.
// If the ray is heading DOWN the cross product will point to the RIGHT
// If the ray is heading UP the cross product will point to the LEFT
// We do not reject based on this though...
//
// In either case cross product will be more parallel to e01 the more
// perpendicular the ray is to e03, and it will be more perpendicular to
// e01 the more parallel it is to e03.
VectorF P = mCross(ray.direction, e03);
// det can be seen as 'the amount of vector e01 in the direction P'
F32 det = mDot(e01, P);
// Take a Abs of the dot because we do not care if the ray is heading up or down,
// but if it is perfectly parallel to the quad we want to reject it.
if ( mFabs(det) < eps )
return false;
F32 inv_det = 1.0f / det;
VectorF T = ray.origin - quad.p00;
// alpha can be seen as 'the amount of vector T in the direction P'
// T is a vector up from the quads corner point 00 to the ray's origin.
// P is the cross product of the ray and e01, which should be "roughly"
// parallel with e03 but might be of either positive or negative magnitude.
F32 alpha = mDot(T, P) * inv_det;
if ( alpha < 0.0f )
return false;
// if (alpha > real(1.0)) return false; // Uncomment if VR is used.
// The cross product of T and e01 should be roughly parallel to e03
// and of either positive or negative magnitude.
VectorF Q = mCross(T, e01);
F32 beta = mDot(ray.direction, Q) * inv_det;
if ( beta < 0.0f )
return false;
// if (beta > real(1.0)) return false; // Uncomment if VR is used.
if ( alpha + beta > 1.0f )
//if ( false )
{
// Rejects rays that intersect the plane of Q either on the
// left of the line V11V10 or on the right of the line V11V01.
VectorF e23 = quad.p01 - quad.p11;
VectorF e21 = quad.p10 - quad.p11;
VectorF P_prime = mCross(ray.direction, e21);
F32 det_prime = mDot(e23, P_prime);
if ( mFabs(det_prime) < eps)
return false;
F32 inv_det_prime = 1.0f / det_prime;
VectorF T_prime = ray.origin - quad.p11;
F32 alpha_prime = mDot(T_prime, P_prime) * inv_det_prime;
if (alpha_prime < 0.0f)
return false;
VectorF Q_prime = mCross(T_prime, e23);
F32 beta_prime = mDot(ray.direction, Q_prime) * inv_det_prime;
if (beta_prime < 0.0f)
return false;
}
// Compute the ray parameter of the intersection point, and
// reject the ray if it does not hit Q.
F32 t = mDot(e03, Q) * inv_det;
if ( t < 0.0f )
return false;
// Compute the barycentric coordinates of the fourth vertex.
// These do not depend on the ray, and can be precomputed
// and stored with the quadrilateral.
F32 alpha_11, beta_11;
VectorF e02 = quad.p11 - quad.p00;
VectorF n = mCross(e01, e03);
if ( mFabs(n.x) >= mFabs(n.y) &&
mFabs(n.x) >= mFabs(n.z) )
{
alpha_11 = ( e02.y * e03.z - e02.z * e03.y ) / n.x;
beta_11 = ( e01.y * e02.z - e01.z * e02.y ) / n.x;
}
else if ( mFabs(n.y) >= mFabs(n.x) &&
mFabs(n.y) >= mFabs(n.z) )
{
alpha_11 = ((e02.z * e03.x) - (e02.x * e03.z)) / n.y;
beta_11 = ((e01.z * e02.x) - (e01.x * e02.z)) / n.y;
}
else
{
alpha_11 = ((e02.x * e03.y) - (e02.y * e03.x)) / n.z;
beta_11 = ((e01.x * e02.y) - (e01.y * e02.x)) / n.z;
}
// Compute the bilinear coordinates of the intersection point.
F32 u,v;
if ( mFabs(alpha_11 - 1.0f) < eps)
{
// Q is a trapezium.
u = alpha;
if ( mFabs(beta_11 - 1.0f) < eps)
v = beta; // Q is a parallelogram.
else
v = beta / ((u * (beta_11 - 1.0f)) + 1.0f); // Q is a trapezium.
}
else if ( mFabs(beta_11 - 1.0f) < eps)
{
// Q is a trapezium.
v = beta;
u = alpha / ((v * (alpha_11 - 1.0f)) + 1.0f);
}
else
{
F32 A = 1.0f - beta_11;
F32 B = (alpha * (beta_11 - 1.0f))
- (beta * (alpha_11 - 1.0f)) - 1.0f;
F32 C = alpha;
F32 D = (B * B) - (4.0f * A * C);
F32 Q = -0.5f * (B + (B < 0.0f ? -1.0f : 1.0f) ) * mSqrt(D);
u = Q / A;
if ((u < 0.0f) || (u > 1.0f)) u = C / Q;
v = beta / ((u * (beta_11 - 1.0f)) + 1.0f);
}
if ( outUV )
outUV->set( u, v );
if ( outT )
*outT = t;
return true;
}
//-----------------------------------------------------------------------------
// Used by sortQuadWindingOrder.
struct QuadSortPoint
{
U32 id;
F32 theta;
};
// Used by sortQuadWindingOrder.
S32 QSORT_CALLBACK cmpAngleAscending( const void *a, const void *b )
{
const QuadSortPoint *p0 = (const QuadSortPoint*)a;
const QuadSortPoint *p1 = (const QuadSortPoint*)b;
F32 diff = p1->theta - p0->theta;
if ( diff > 0.0f )
return -1;
else if ( diff < 0.0f )
return 1;
else
return 0;
}
// Used by sortQuadWindingOrder.
S32 QSORT_CALLBACK cmpAngleDescending( const void *a, const void *b )
{
const QuadSortPoint *p0 = (const QuadSortPoint*)a;
const QuadSortPoint *p1 = (const QuadSortPoint*)b;
F32 diff = p1->theta - p0->theta;
if ( diff > 0.0f )
return 1;
else if ( diff < 0.0f )
return -1;
else
return 0;
}
void sortQuadWindingOrder( const MatrixF &quadMat, bool clockwise, const Point3F *verts, U32 *vertMap, U32 count )
{
PROFILE_SCOPE( MathUtils_sortQuadWindingOrder );
if ( count == 0 )
return;
Point3F *quadPoints = new Point3F[count];
for ( S32 i = 0; i < count; i++ )
{
quadMat.mulP( verts[i], &quadPoints[i] );
quadPoints[i].normalizeSafe();
}
sortQuadWindingOrder( clockwise, quadPoints, vertMap, count );
delete [] quadPoints;
}
void sortQuadWindingOrder( bool clockwise, const Point3F *verts, U32 *vertMap, U32 count )
{
QuadSortPoint *sortPoints = new QuadSortPoint[count];
for ( S32 i = 0; i < count; i++ )
{
QuadSortPoint &sortPnt = sortPoints[i];
const Point3F &vec = verts[i];
sortPnt.id = i;
F32 theta = mAtan2( vec.y, vec.x );
if ( vec.y < 0.0f )
theta = M_2PI_F + theta;
sortPnt.theta = theta;
}
dQsort( sortPoints, count, sizeof( QuadSortPoint ), clockwise ? cmpAngleDescending : cmpAngleAscending );
for ( S32 i = 0; i < count; i++ )
vertMap[i] = sortPoints[i].id;
delete [] sortPoints;
}
//-----------------------------------------------------------------------------
void buildMatrix( const VectorF *rvec, const VectorF *fvec, const VectorF *uvec, const VectorF *pos, MatrixF *outMat )
{
/// Work in Progress
/*
AssertFatal( !rvec || rvec->isUnitLength(), "MathUtils::buildMatrix() - Right vector was not normalized!" );
AssertFatal( !fvec || fvec->isUnitLength(), "MathUtils::buildMatrix() - Forward vector was not normalized!" );
AssertFatal( !uvec || uvec->isUnitLength(), "MathUtils::buildMatrix() - Up vector was not normalized!" );
// Note this relationship:
//
// Column0 Column1 Column2
// Axis X Axis Y Axis Z
// Rvec Fvec Uvec
//
enum
{
RVEC = 1,
FVEC = 1 << 1,
UVEC = 1 << 2,
ALL = RVEC | FVEC | UVEC
};
U8 mask = 0;
U8 count = 0;
U8 axis0, axis1;
if ( rvec )
{
mask |= RVEC;
axis0 == 0;
count++;
}
if ( fvec )
{
mask |= FVEC;
if ( count == 0 )
axis0 = 1;
else
axis1 = 1;
count++;
}
if ( uvec )
{
mask |= UVEC;
count++;
}
U8 bR = 1;
U8 bF = 1 << 1;
U8 bU = 1 << 2;
U8 bRF = bR | bF;
U8 bRU = bR | bU;
U8 bFU = bF | bU;
U8 bRFU = bR | bF | bU;
// Cross product map.
U8 cpdMap[3][2] =
{
{ 1, 2 },
{ 2, 0 },
{ 0, 1 },
}
if ( count == 1 )
{
if ( mask == bR )
{
}
else if ( mask == bF )
{
}
else if ( mask == bU )
{
}
}
else if ( count == 2 )
{
if ( mask == bRF )
{
}
else if ( mask == bRU )
{
}
else if ( mask == bFU )
{
}
}
else // bRFU
{
}
if ( rvec )
{
outMat->setColumn( 0, *rvec );
if ( fvec )
{
outMat->setColumn( 1, *fvec );
if ( uvec )
outMat->setColumn( 2, *uvec );
else
{
// Set uvec from rvec/fvec
tmp = mCross( rvec, fvec );
tmp.normalizeSafe();
outMat->setColumn( 2, tmp );
}
}
else if ( uvec )
{
// Set fvec from uvec/rvec
tmp = mCross( uvec, rvec );
tmp.normalizeSafe();
outMat->setColumn( 1, tmp );
}
else
{
// Set fvec and uvec from rvec
Point3F tempFvec = mPerp( rvec );
Point3F tempUvec = mCross( )
}
}
AssertFatal( rvec->isUnitLength(), "MathUtils::buildMatrix() - Right vector was not normalized!" );
AssertFatal( fvec->isUnitLength(), "MathUtils::buildMatrix() - Forward vector was not normalized!" );
AssertFatal( uvec->isUnitLength(), "MathUtils::buildMatrix() - UpVector vector was not normalized!" );
AssertFatal( outMat, "MathUtils::buildMatrix() - Got null output matrix!" );
AssertFatal( outMat->isAffine(), "MathUtils::buildMatrix() - Got uninitialized matrix!" );
*/
}
//-----------------------------------------------------------------------------
bool reduceFrustum( const Frustum& frustum, const RectI& viewport, const RectF& area, Frustum& outFrustum )
{
// Just to be safe, clamp the area to the viewport.
Point2F clampedMin;
Point2F clampedMax;
clampedMin.x = mClampF( area.extent.x, ( F32 ) viewport.point.x, ( F32 ) viewport.point.x + viewport.extent.x );
clampedMin.y = mClampF( area.extent.y, ( F32 ) viewport.point.y, ( F32 ) viewport.point.y + viewport.extent.y );
clampedMax.x = mClampF( area.extent.x, ( F32 ) viewport.point.x, ( F32 ) viewport.point.x + viewport.extent.x );
clampedMax.y = mClampF( area.extent.y, ( F32 ) viewport.point.y, ( F32 ) viewport.point.y + viewport.extent.y );
// If we have ended up without a visible region on the screen,
// terminate now.
if( mFloor( clampedMin.x ) == mFloor( clampedMax.x ) ||
mFloor( clampedMin.y ) == mFloor( clampedMax.y ) )
return false;
// Get the extents of the frustum.
const F32 frustumXExtent = mFabs( frustum.getNearRight() - frustum.getNearLeft() );
const F32 frustumYExtent = mFabs( frustum.getNearTop() - frustum.getNearBottom() );
// Now, normalize the screen-space pixel coordinates to lie within the screen-centered
// -1 to 1 coordinate space that is used for the frustum planes.
Point2F normalizedMin;
Point2F normalizedMax;
normalizedMin.x = ( ( clampedMin.x / viewport.extent.x ) * frustumXExtent ) - ( frustumXExtent / 2.f );
normalizedMin.y = ( ( clampedMin.y / viewport.extent.y ) * frustumYExtent ) - ( frustumYExtent / 2.f );
normalizedMax.x = ( ( clampedMax.x / viewport.extent.x ) * frustumXExtent ) - ( frustumXExtent / 2.f );
normalizedMax.y = ( ( clampedMax.y / viewport.extent.y ) * frustumYExtent ) - ( frustumYExtent / 2.f );
// Make sure the generated frustum metrics are somewhat sane.
if( normalizedMax.x - normalizedMin.x < 0.001f ||
normalizedMax.y - normalizedMin.y < 0.001f )
return false;
// Finally, create the new frustum using the original's frustum
// information except its left/right/top/bottom planes.
//
// Note that screen-space coordinates go upside down on Y whereas
// camera-space frustum coordinates go downside up on Y which is
// why we are inverting Y here.
outFrustum.set(
frustum.isOrtho(),
normalizedMin.x,
normalizedMax.x,
- normalizedMin.y,
- normalizedMax.y,
frustum.getNearDist(),
frustum.getFarDist(),
frustum.getTransform()
);
return true;
}
//-----------------------------------------------------------------------------
void makeFrustum( F32 *outLeft,
F32 *outRight,
F32 *outTop,
F32 *outBottom,
F32 fovYInRadians,
F32 aspectRatio,
F32 nearPlane )
{
F32 top = nearPlane * mTan( fovYInRadians / 2.0 );
if ( outTop ) *outTop = top;
if ( outBottom ) *outBottom = -top;
F32 left = top * aspectRatio;
if ( outLeft ) *outLeft = -left;
if ( outRight ) *outRight = left;
}
//-----------------------------------------------------------------------------
void makeProjection( MatrixF *outMatrix,
F32 fovYInRadians,
F32 aspectRatio,
F32 nearPlane,
F32 farPlane,
bool gfxRotate )
{
F32 left, right, top, bottom;
makeFrustum( &left, &right, &top, &bottom, fovYInRadians, aspectRatio, nearPlane );
makeProjection( outMatrix, left, right, top, bottom, nearPlane, farPlane, gfxRotate );
}
//-----------------------------------------------------------------------------
void makeFovPortFrustum(
Frustum *outFrustum,
bool isOrtho,
F32 nearDist,
F32 farDist,
const FovPort &inPort,
const MatrixF &transform)
{
F32 leftSize = nearDist * inPort.leftTan;
F32 rightSize = nearDist * inPort.rightTan;
F32 upSize = nearDist * inPort.upTan;
F32 downSize = nearDist * inPort.downTan;
F32 left = -leftSize;
F32 right = rightSize;
F32 top = upSize;
F32 bottom = -downSize;
outFrustum->set(isOrtho, left, right, top, bottom, nearDist, farDist, transform);
}
//-----------------------------------------------------------------------------
/// This is the special rotation matrix applied to
/// projection matricies for GFX.
///
/// It is a wart of the OGL to DX change over.
///
static const MatrixF sGFXProjRotMatrix( EulerF( (M_PI_F / 2.0f), 0.0f, 0.0f ) );
void makeProjection( MatrixF *outMatrix,
F32 left,
F32 right,
F32 top,
F32 bottom,
F32 nearPlane,
F32 farPlane,
bool gfxRotate)
{
const bool isGL = GFX->getAdapterType() == OpenGL;
Point4F row;
row.x = 2.0f * nearPlane / (right - left);
row.y = 0.0f;
row.z = 0.0f;
row.w = 0.0f;
outMatrix->setRow(0, row);
row.x = 0.0f;
row.y = 2.0f * nearPlane / (top - bottom);
row.z = 0.0f;
row.w = 0.0f;
outMatrix->setRow(1, row);
row.x = (left + right) / (right - left);
row.y = (top + bottom) / (top - bottom);
row.z = isGL ? (nearPlane + farPlane) / (nearPlane - farPlane) : farPlane / (nearPlane - farPlane);
row.w = -1.0f;
outMatrix->setRow(2, row);
row.x = 0.0f;
row.y = 0.0f;
row.z = isGL ? 2.0f * nearPlane * farPlane / (nearPlane - farPlane) : farPlane * nearPlane / (nearPlane - farPlane);
row.w = 0.0f;
outMatrix->setRow(3, row);
outMatrix->transpose();
if (gfxRotate)
outMatrix->mul(sGFXProjRotMatrix);
}
//-----------------------------------------------------------------------------
void makeOrthoProjection( MatrixF *outMatrix,
F32 left,
F32 right,
F32 top,
F32 bottom,
F32 nearPlane,
F32 farPlane,
bool gfxRotate )
{
Point4F row;
row.x = 2.0f / (right - left);
row.y = 0.0f;
row.z = 0.0f;
row.w = 0.0f;
outMatrix->setRow( 0, row );
row.x = 0.0f;
row.y = 2.0f / (top - bottom);
row.z = 0.0f;
row.w = 0.0f;
outMatrix->setRow( 1, row );
row.x = 0.0f;
row.y = 0.0f;
row.z = 1.0f / (nearPlane - farPlane);
row.w = 0.0f;
outMatrix->setRow( 2, row );
row.x = (left + right) / (left - right);
row.y = (top + bottom) / (bottom - top);
row.z = nearPlane / (nearPlane - farPlane);
row.w = 1.0f;
outMatrix->setRow( 3, row );
outMatrix->transpose();
if ( gfxRotate )
outMatrix->mul( sGFXProjRotMatrix );
}
//-----------------------------------------------------------------------------
bool edgeFaceIntersect( const Point3F &edgeA, const Point3F &edgeB,
const Point3F &faceA, const Point3F &faceB, const Point3F &faceC, const Point3F &faceD, Point3F *intersection )
{
VectorF edgeAB = edgeB - edgeA;
VectorF edgeAFaceA = faceA - edgeA;
VectorF edgeAFaceB = faceB - edgeA;
VectorF edgeAFaceC = faceC - edgeA;
VectorF m = mCross( edgeAFaceC, edgeAB );
F32 v = mDot( edgeAFaceA, m );
if ( v >= 0.0f )
{
F32 u = -mDot( edgeAFaceB, m );
if ( u < 0.0f )
return false;
VectorF tmp = mCross( edgeAFaceB, edgeAB );
F32 w = mDot( edgeAFaceA, tmp );
if ( w < 0.0f )
return false;
F32 denom = 1.0f / (u + v + w );
u *= denom;
v *= denom;
w *= denom;
(*intersection) = u * faceA + v * faceB + w * faceC;
}
else
{
VectorF edgeAFaceD = faceD - edgeA;
F32 u = mDot( edgeAFaceD, m );
if ( u < 0.0f )
return false;
VectorF tmp = mCross( edgeAFaceA, edgeAB );
F32 w = mDot( edgeAFaceD, tmp );
if ( w < 0.0f )
return false;
v = -v;
F32 denom = 1.0f / ( u + v + w );
u *= denom;
v *= denom;
w *= denom;
(*intersection) = u * faceA + v * faceD + w * faceC;
}
return true;
}
//-----------------------------------------------------------------------------
bool isPlanarPolygon( const Point3F* vertices, U32 numVertices )
{
AssertFatal( vertices != NULL, "MathUtils::isPlanarPolygon - Received NULL pointer" );
AssertFatal( numVertices >= 3, "MathUtils::isPlanarPolygon - Must have at least three vertices" );
// Triangles are always planar. Letting smaller numVertices
// slip through provides robustness for errors in release builds.
if( numVertices <= 3 )
return true;
// Compute the normal of the first triangle in the polygon.
Point3F triangle1Normal = mTriangleNormal( vertices[ 0 ], vertices[ 1 ], vertices[ 2 ] );
// Now go through all the remaining vertices and build triangles
// with the first two vertices. Then the normals of all these triangles
// must be the same (minus some variance due to floating-point inaccuracies)
// as the normal of the first triangle.
for( U32 i = 3; i < numVertices; ++ i )
{
Point3F triangle2Normal = mTriangleNormal( vertices[ 0 ], vertices[ 1 ], vertices[ i ] );
if( !triangle1Normal.equal( triangle2Normal ) )
return false;
}
return true;
}
//-----------------------------------------------------------------------------
bool isConvexPolygon( const Point3F* vertices, U32 numVertices )
{
AssertFatal( vertices != NULL, "MathUtils::isConvexPolygon - Received NULL pointer" );
AssertFatal( numVertices >= 3, "MathUtils::isConvexPolygon - Must have at least three vertices" );
// Triangles are always convex. Letting smaller numVertices
// slip through provides robustness for errors in release builds.
if( numVertices <= 3 )
return true;
U32 numPositive = 0;
U32 numNegative = 0;
for( U32 i = 0; i < numVertices; ++ i )
{
const Point3F& a = vertices[ i ];
const Point3F& b = vertices[ ( i + 1 ) % numVertices ];
const Point3F& c = vertices[ ( i + 2 ) % numVertices ];
const F32 crossProductLength = mCross( b - a, c - b ).len();
if( crossProductLength < 0.f )
numNegative ++;
else if( crossProductLength > 0.f )
numPositive ++;
if( numNegative && numPositive )
return false;
}
return true;
}
//-----------------------------------------------------------------------------
bool clipFrustumByPolygon( const Point3F* points, U32 numPoints, const RectI& viewport, const MatrixF& world,
const MatrixF& projection, const Frustum& inFrustum, const Frustum& rootFrustum, Frustum& outFrustum )
{
enum
{
MAX_RESULT_VERTICES = 64,
MAX_INPUT_VERTICES = MAX_RESULT_VERTICES - Frustum::PlaneCount // Clipping against each plane may add a vertex.
};
AssertFatal( numPoints <= MAX_INPUT_VERTICES, "MathUtils::clipFrustumByPolygon - Too many vertices!" );
if( numPoints > MAX_INPUT_VERTICES )
return false;
// First, we need to clip the polygon against inFrustum.
//
// Use two buffers here in interchanging roles as sources and targets
// in clipping against the frustum planes.
Point3F polygonBuffer1[ MAX_RESULT_VERTICES ];
Point3F polygonBuffer2[ MAX_RESULT_VERTICES ];
Point3F* tempPolygon = polygonBuffer1;
Point3F* clippedPolygon = polygonBuffer2;
dMemcpy( clippedPolygon, points, numPoints * sizeof( points[ 0 ] ) );
U32 numClippedPolygonVertices = numPoints;
U32 numTempPolygonVertices = 0;
for( U32 nplane = 0; nplane < Frustum::PlaneCount; ++ nplane )
{
// Make the output of the last iteration the
// input of this iteration.
swap( tempPolygon, clippedPolygon );
numTempPolygonVertices = numClippedPolygonVertices;
// Clip our current remainder of the original polygon
// against the current plane.
const PlaneF& plane = inFrustum.getPlanes()[ nplane ];
numClippedPolygonVertices = plane.clipPolygon( tempPolygon, numTempPolygonVertices, clippedPolygon );
// If the polygon was completely on the backside of the plane,
// then polygon is outside the frustum. In this case, return false
// to indicate we haven't clipped anything.
if( !numClippedPolygonVertices )
return false;
}
// Project the clipped polygon into screen space.
MatrixF worldProjection = projection;
worldProjection.mul( world ); // Premultiply world*projection so we don't have to do this over and over for each point.
Point3F projectedPolygon[ 10 ];
for( U32 i = 0; i < numClippedPolygonVertices; ++ i )
mProjectWorldToScreen(
clippedPolygon[ i ],
&projectedPolygon[ i ],
viewport,
worldProjection
);
// Put an axis-aligned rectangle around our polygon.
Point2F minPoint( projectedPolygon[ 0 ].x, projectedPolygon[ 0 ].y );
Point2F maxPoint( projectedPolygon[ 0 ].x, projectedPolygon[ 0 ].y );
for( U32 i = 1; i < numClippedPolygonVertices; ++ i )
{
minPoint.setMin( Point2F( projectedPolygon[ i ].x, projectedPolygon[ i ].y ) );
maxPoint.setMax( Point2F( projectedPolygon[ i ].x, projectedPolygon[ i ].y ) );
}
RectF area( minPoint, maxPoint - minPoint );
// Finally, reduce the input frustum to the given area. Note that we
// use rootFrustum here instead of inFrustum as the latter does not necessarily
// represent the full viewport we are using here which thus would skew the mapping.
return reduceFrustum( rootFrustum, viewport, area, outFrustum );
}
//-----------------------------------------------------------------------------
U32 extrudePolygonEdges( const Point3F* vertices, U32 numVertices, const Point3F& direction, PlaneF* outPlanes )
{
U32 numPlanes = 0;
U32 lastVertex = numVertices - 1;
bool invert = false;
for( U32 i = 0; i < numVertices; lastVertex = i, ++ i )
{
const Point3F& v1 = vertices[ i ];
const Point3F& v2 = vertices[ lastVertex ];
// Skip the edge if it's length is really short.
const Point3F edgeVector = v2 - v1;
if( edgeVector.len() < 0.05 )
continue;
// Compute the plane normal. The direction and the edge vector
// basically define the orientation of the plane so their cross
// product is the plane normal.
Point3F normal;
if( !invert )
normal = mCross( edgeVector, direction );
else
normal = mCross( direction, edgeVector );
// Create a plane for the edge.
outPlanes[ numPlanes ] = PlaneF( v1, normal );
numPlanes ++;
// If this is the first plane that we have created, find out whether
// the vertex ordering is giving us the plane orientations that we want
// (facing inside). If not, invert vertex order from now on.
if( i == 0 )
{
const PlaneF& plane = outPlanes[ numPlanes - 1 ];
for( U32 n = i + 1; n < numVertices; ++ n )
{
const PlaneF::Side side = plane.whichSide( vertices[ n ] );
if( side == PlaneF::On )
continue;
if( side != PlaneF::Front )
invert = true;
break;
}
}
}
return numPlanes;
}
//-----------------------------------------------------------------------------
U32 extrudePolygonEdgesFromPoint( const Point3F* vertices, U32 numVertices, const Point3F& fromPoint, PlaneF* outPlanes )
{
U32 numPlanes = 0;
U32 lastVertex = numVertices - 1;
bool invert = false;
for( U32 i = 0; i < numVertices; lastVertex = i, ++ i )
{
const Point3F& v1 = vertices[ i ];
const Point3F& v2 = vertices[ lastVertex ];
// Skip the edge if it's length is really short.
const Point3F edgeVector = v2 - v1;
if( edgeVector.len() < 0.05 )
continue;
// Create a plane for the edge.
if( !invert )
outPlanes[ numPlanes ] = PlaneF( v1, fromPoint, v2 );
else
outPlanes[ numPlanes ] = PlaneF( v2, fromPoint, v1 );
numPlanes ++;
// If this is the first plane that we have created, find out whether
// the vertex ordering is giving us the plane orientations that we want
// (facing inside). If not, invert vertex order from now on.
if( i == 0 )
{
const PlaneF& plane = outPlanes[ numPlanes - 1 ];
for( U32 n = i + 1; n < numVertices; ++ n )
{
const PlaneF::Side side = plane.whichSide( vertices[ n ] );
if( side == PlaneF::On )
continue;
if( side != PlaneF::Front )
invert = true;
break;
}
}
}
return numPlanes;
}
//-----------------------------------------------------------------------------
void mBuildHull2D(const Vector<Point2F> _inPoints, Vector<Point2F> &hullPoints)
{
/// Andrew's monotone chain convex hull algorithm implementation
struct Util
{
//compare by x and then by y
static int CompareLexicographic( const Point2F *a, const Point2F *b)
{
return a->x < b->x || (a->x == b->x && a->y < b->y);
}
};
hullPoints.clear();
hullPoints.setSize( _inPoints.size()*2 );
// sort in points by x and then by y
Vector<Point2F> inSortedPoints = _inPoints;
inSortedPoints.sort( &Util::CompareLexicographic );
Point2F* lowerHullPtr = hullPoints.address();
U32 lowerHullIdx = 0;
//lower part of hull
for( int i = 0; i < inSortedPoints.size(); ++i )
{
while( lowerHullIdx >= 2 && mCross( lowerHullPtr[ lowerHullIdx - 2], lowerHullPtr[lowerHullIdx - 1], inSortedPoints[i] ) <= 0 )
--lowerHullIdx;
lowerHullPtr[lowerHullIdx++] = inSortedPoints[i];
}
--lowerHullIdx; // last point are the same as first in upperHullPtr
Point2F* upperHullPtr = hullPoints.address() + lowerHullIdx;
U32 upperHullIdx = 0;
//upper part of hull
for( int i = inSortedPoints.size()-1; i >= 0; --i )
{
while( upperHullIdx >= 2 && mCross( upperHullPtr[ upperHullIdx - 2], upperHullPtr[upperHullIdx - 1], inSortedPoints[i] ) <= 0 )
--upperHullIdx;
upperHullPtr[upperHullIdx++] = inSortedPoints[i];
}
hullPoints.setSize( lowerHullIdx + upperHullIdx );
}
} // namespace MathUtils