Torque3D/Engine/source/console/consoleDoc.cpp
2018-03-30 02:27:43 -04:00

559 lines
17 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "console/console.h"
#include "console/ast.h"
#include "core/tAlgorithm.h"
#include "core/strings/findMatch.h"
#include "console/consoleInternal.h"
#include "console/consoleObject.h"
#include "core/stream/fileStream.h"
#include "console/compiler.h"
#include "core/frameAllocator.h"
#include "console/engineAPI.h"
//--- Information pertaining to this page... ------------------
/// @file
///
/// For specifics on using the consoleDoc functionality, see @ref console_autodoc
ConsoleFunctionGroupBegin(ConsoleDoc, "Console self-documentation functions. These output psuedo C++ suitable for feeeding through Doxygen or another auto documentation tool.");
DefineConsoleFunction( dumpConsoleClasses, void, (bool dumpScript, bool dumpEngine), ( true, true ),
"@brief Dumps all declared console classes to the console.\n\n"
"@param dumpScript Optional parameter specifying whether or not classes defined in script should be dumped.\n"
"@param dumpEngine Optional parameter specifying whether or not classes defined in the engine should be dumped.\n"
"@ingroup Logging")
{
Namespace::dumpClasses( dumpScript, dumpEngine );
}
DefineConsoleFunction(dumpConsoleFunctions, void, ( bool dumpScript, bool dumpEngine ), ( true, true ),
"@brief Dumps all declared console functions to the console.\n"
"@param dumpScript Optional parameter specifying whether or not functions defined in script should be dumped.\n"
"@param dumpEngine Optional parameter specitying whether or not functions defined in the engine should be dumped.\n"
"@ingroup Logging")
{
Namespace::dumpFunctions( dumpScript, dumpEngine );
}
ConsoleFunctionGroupEnd(ConsoleDoc);
/// Helper table to convert type ids to human readable names.
const char *typeNames[] =
{
"Script",
"string",
"int",
"float",
"void",
"bool",
"",
"",
"unknown_overload"
};
void printClassHeader(const char* usage, const char * className, const char * superClassName, const bool stub)
{
if(stub)
{
Con::printf("/// Stub class");
Con::printf("/// ");
Con::printf("/// @note This is a stub class to ensure a proper class hierarchy. No ");
Con::printf("/// information was available for this class.");
}
if((usage != NULL) && strlen(usage))
{
// Copy Usage Document
S32 usageLen = dStrlen( usage ) + 1;
FrameTemp<char> usageStr( usageLen );
dStrcpy( usageStr, usage, usageLen );
// Print Header
Con::printf( "/*!" );
// Print line by line, skipping the @field lines.
//
// fetch first line end
char *newLine = dStrchr( usageStr, '\n' );
char *usagePtr = usageStr;
do
{
// Copy of one line
static char lineStr[2048] = {0};
// Keyword will hold the last keyword (word following '@' or '\') encountered.
static char keyword[8] = {0};
S32 lineLen = 0;
// If not the last line, increment pointer
if( newLine != NULL )
{
*newLine = '\0';
newLine ++;
}
// Copy line and update usagePtr
dStrcpy( lineStr, usagePtr, 2048 );
usagePtr = (newLine != NULL ) ? newLine : usagePtr;
lineLen = dStrlen( lineStr );
// Get the keyword. This is the first word after an '@' or '\'.
const char* tempkw = dStrchr( lineStr, '@' );
if( !tempkw )
tempkw = dStrchr( lineStr, '\\' );
// If we found a new keyword, set it, otherwise, keep using the
// most recently found.
if( tempkw )
{
dStrncpy( keyword, tempkw + 1, 5 );
keyword[5] = '\0';
}
// Print all fields that aren't associated with the 'field' keyword.
if( dStrcmp( keyword, "field" ) )
Con::printf( "%s", lineStr ); // print lineStr as an unformatted string (otherwise '%' characters in the string could cause problems)
// Fetch next line ending
newLine = dStrchr( usagePtr, '\n' );
} while( newLine != NULL );
// DocBlock Footer
Con::printf( " */" );
}
// Print out appropriate class header
if(superClassName)
Con::printf("class %s : public %s {", className, superClassName ? superClassName : "");
else if(!className)
Con::printf("namespace Global {");
else
Con::printf("class %s {", className);
if(className)
Con::printf(" public:");
}
void printClassMethod(const bool isVirtual, const char *retType, const char *methodName, const char* args, const char*usage)
{
if(usage && usage[0] != ';' && usage[0] != 0)
Con::printf(" /*! %s */", usage);
Con::printf(" %s%s %s(%s) {}", isVirtual ? "virtual " : "", retType, methodName, args);
}
void printGroupStart(const char * aName, const char * aDocs)
{
Con::printf("");
Con::printf(" /*! @name %s", aName);
if(aDocs)
{
Con::printf(" ");
Con::printf(" %s", aDocs);
}
Con::printf(" @{ */");
// Add a blank comment in order to make sure groups are parsed properly.
Con::printf(" /*! */");
}
void printClassMember(const bool isDeprec, const char * aType, const char * aName, const char * aDocs, S32 aElementCount)
{
Con::printf(" /*!");
if(aDocs)
{
Con::printf(" %s", aDocs);
Con::printf(" ");
}
if(isDeprec)
Con::printf(" @deprecated This member is deprecated, which means that its value is always undefined.");
Con::printf(" */");
if (aElementCount == 1)
{
Con::printf(" %s %s;", isDeprec ? "deprecated" : aType, aName);
}
else
{
Con::printf(" %s %s[%i];", isDeprec ? "deprecated" : aType, aName, aElementCount);
}
}
void printGroupEnd()
{
Con::printf(" /// @}");
Con::printf("");
}
void printClassFooter()
{
Con::printf("};");
Con::printf("");
}
void Namespace::printNamespaceEntries(Namespace * g, bool dumpScript, bool dumpEngine )
{
static bool inGroup = false;
// Go through all the entries.
// Iterate through the methods of the namespace...
for(Entry *ewalk = g->mEntryList; ewalk; ewalk = ewalk->mNext)
{
S32 eType = ewalk->mType;
const char * funcName = ewalk->mFunctionName;
if( ( eType == Entry::ConsoleFunctionType ) && !dumpScript )
continue;
if( ( eType != Entry::ConsoleFunctionType ) && !dumpEngine )
continue;
// If it's a function
if( eType >= Entry::ConsoleFunctionType )
{
if (ewalk->mHeader != NULL)
{
// The function was defined with types, so we can print out the actual return type
printClassMethod(true, ewalk->mHeader->mReturnString, funcName, ewalk->getArgumentsString().c_str(),
ewalk->getDocString().c_str());
}
else
{
printClassMethod(true, typeNames[eType], funcName, (ewalk->getArgumentsString() + "...").c_str(),
ewalk->getDocString().c_str());
}
}
else if(ewalk->mType == Entry::GroupMarker)
{
if(!inGroup)
printGroupStart(ewalk->cb.mGroupName, ewalk->mUsage);
else
printGroupEnd();
inGroup = !inGroup;
}
else if(ewalk->mType == Entry::ScriptCallbackType)
{
// It's a script callback - emit some sort of appropriate info.
Con::printf(" /*! %s */", ewalk->getDocString().c_str());
Con::printf(" %s;", ewalk->getPrototypeString().c_str());
Con::printf("");
}
else if(ewalk->mFunctionOffset) // If it's a builtin function...
{
String args = ewalk->mCode->getFunctionArgs(ewalk->mFunctionOffset);
printClassMethod(false, typeNames[ewalk->mType], ewalk->mFunctionName, args, "");
}
else
{
Con::printf(" // got an unknown thing?? %d", ewalk->mType );
}
}
}
void Namespace::dumpClasses( bool dumpScript, bool dumpEngine )
{
VectorPtr<Namespace*> vec;
trashCache();
vec.reserve( 1024 );
// We use mHashSequence to mark if we have traversed...
// so mark all as zero to start.
for(Namespace *walk = mNamespaceList; walk; walk = walk->mNext)
walk->mHashSequence = 0;
for(Namespace *walk = mNamespaceList; walk; walk = walk->mNext)
{
VectorPtr<Namespace*> stack;
stack.reserve( 1024 );
// Get all the parents of this namespace... (and mark them as we go)
Namespace *parentWalk = walk;
while(parentWalk)
{
if(parentWalk->mHashSequence != 0)
break;
if(parentWalk->mPackage == 0)
{
parentWalk->mHashSequence = 1; // Mark as traversed.
stack.push_back(parentWalk);
}
parentWalk = parentWalk->mParent;
}
// Load stack into our results vector.
while(stack.size())
{
vec.push_back(stack[stack.size() - 1]);
stack.pop_back();
}
}
// Go through previously discovered classes
U32 i;
for(i = 0; i < vec.size(); i++)
{
const char *className = vec[i]->mName;
const char *superClassName = vec[i]->mParent ? vec[i]->mParent->mName : NULL;
// Skip the global namespace, that gets dealt with in dumpFunctions
if(!className) continue;
// If we're just dumping script functions, then we don't want to dump
// a class that only contains script functions. So, we iterate over all
// the functions.
if( !dumpScript )
{
bool found = false;
for(Entry *ewalk = vec[i]->mEntryList; ewalk; ewalk = ewalk->mNext)
{
if( ewalk->mType != Entry::ConsoleFunctionType )
{
found = true;
break;
}
}
// If we don't have engine functions and the namespace name
// doesn't match the class name... then its a script class.
if ( !found && !vec[i]->isClass() )
continue;
}
// And we do the same for engine functions.
if( !dumpEngine )
{
bool found = false;
for(Entry *ewalk = vec[i]->mEntryList; ewalk; ewalk = ewalk->mNext)
{
if( ewalk->mType == Entry::ConsoleFunctionType )
{
found = true;
break;
}
}
if( !found )
continue;
}
// If we hit a class with no members and no classRep, do clever filtering.
if(vec[i]->mEntryList == NULL && vec[i]->mClassRep == NULL)
{
// Print out a short stub so we get a proper class hierarchy.
if(superClassName) { // Filter hack; we don't want non-inheriting classes...
printClassHeader( NULL, className,superClassName, true);
printClassFooter();
}
continue;
}
// Print the header for the class..
printClassHeader(vec[i]->mUsage, className, superClassName, false);
// Deal with entries.
printNamespaceEntries(vec[i], dumpScript, dumpEngine);
// Deal with the classRep (to get members)...
AbstractClassRep *rep = vec[i]->mClassRep;
AbstractClassRep::FieldList emptyList;
AbstractClassRep::FieldList *parentList = &emptyList;
AbstractClassRep::FieldList *fieldList = &emptyList;
// Since all fields are defined in the engine, if we're not dumping
// engine stuff, than we shouldn't dump the fields.
if(dumpEngine && rep)
{
// Get information about the parent's fields...
AbstractClassRep *parentRep = vec[i]->mParent ? vec[i]->mParent->mClassRep : NULL;
if(parentRep)
parentList = &(parentRep->mFieldList);
// Get information about our fields
fieldList = &(rep->mFieldList);
// Go through all our fields...
for(U32 j = 0; j < fieldList->size(); j++)
{
switch((*fieldList)[j].type)
{
case AbstractClassRep::StartArrayFieldType:
case AbstractClassRep::EndArrayFieldType:
break;
case AbstractClassRep::StartGroupFieldType:
printGroupStart((*fieldList)[j].pGroupname, (*fieldList)[j].pFieldDocs);
break;
case AbstractClassRep::EndGroupFieldType:
printGroupEnd();
break;
default:
case AbstractClassRep::DeprecatedFieldType:
{
// Skip over fields that are already defined in
// our parent class.
if ( parentRep && parentRep->findField( (*fieldList)[j].pFieldname ) )
continue;
bool isDeprecated = ((*fieldList)[j].type == AbstractClassRep::DeprecatedFieldType);
if(isDeprecated)
{
printClassMember(
true,
"<deprecated>",
(*fieldList)[j].pFieldname,
(*fieldList)[j].pFieldDocs,
(*fieldList)[j].elementCount
);
}
else
{
ConsoleBaseType *cbt = ConsoleBaseType::getType((*fieldList)[j].type);
printClassMember(
false,
cbt ? cbt->getTypeClassName() : "<unknown>",
(*fieldList)[j].pFieldname,
(*fieldList)[j].pFieldDocs,
(*fieldList)[j].elementCount
);
}
}
}
}
}
if( dumpScript )
{
// Print out fields defined in script docs for this namespace.
// These fields are specified by the 'field' keyword in the usage
// string.
// The field type and name.
char fieldName[256];
char fieldDoc[1024];
// Usage string iterator.
const char* field = vec[i]->mUsage;
while( field )
{
// Find the first field keyword.
const char* tempField = dStrstr( field, "@field" );
if( !tempField )
tempField = dStrstr( field, "\\field" );
field = tempField;
if( !field )
break;
// Move to the field name.
field += 7;
// Copy the field type and name. These should both be followed by a
// space so only in this case will we actually store it.
S32 spaceCount = 0;
S32 index = 0;
bool valid = false;
while( field && ( *field != '\n' ) )
{
if( index >= 255 )
break;
if( *field == ' ' )
spaceCount++;
if( spaceCount == 2 )
{
valid = true;
break;
}
fieldName[index++] = *field;
field++;
}
if( !valid )
continue;
fieldName[index] = '\0';
// Now copy from field to the next keyword.
const char* nextKeyword = dStrchr( field, '@' );
if( !nextKeyword )
nextKeyword = dStrchr( field, '\\' );
// Grab the length of the doc string.
S32 docLen = dStrlen( field );
if( nextKeyword )
docLen = nextKeyword - field;
// Make sure it will fit in the buffer.
if( docLen > 1023 )
docLen = 1023;
// Copy.
dStrncpy( fieldDoc, field, docLen );
fieldDoc[docLen] = '\0';
field += docLen;
// Print
Con::printf( " /*!" );
Con::printf( " %s", fieldDoc );
Con::printf( " */" );
Con::printf( " %s;", fieldName );
}
}
// Close the class/namespace.
printClassFooter();
}
}
void Namespace::dumpFunctions( bool dumpScript, bool dumpEngine )
{
// Get the global namespace.
Namespace* g = find(NULL); //->mParent;
printClassHeader(NULL, NULL,NULL, false);
while(g)
{
printNamespaceEntries(g, dumpScript, dumpEngine );
g = g->mParent;
}
printClassFooter();
}