Torque3D/Engine/lib/openal-soft/examples/alffplay.cpp

2359 lines
83 KiB
C++

/*
* An example showing how to play a stream sync'd to video, using ffmpeg.
*
* Requires C++14.
*/
#include <algorithm>
#include <array>
#include <atomic>
#include <cassert>
#include <cerrno>
#include <chrono>
#include <cmath>
#include <condition_variable>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <functional>
#include <future>
#include <memory>
#include <mutex>
#include <ratio>
#include <string>
#include <string_view>
#include <thread>
#include <utility>
#include <vector>
#ifdef __GNUC__
_Pragma("GCC diagnostic push")
_Pragma("GCC diagnostic ignored \"-Wconversion\"")
_Pragma("GCC diagnostic ignored \"-Wold-style-cast\"")
#endif
extern "C" {
#include "libavcodec/avcodec.h"
#include "libavformat/avformat.h"
#include "libavformat/avio.h"
#include "libavutil/avutil.h"
#include "libavutil/error.h"
#include "libavutil/frame.h"
#include "libavutil/mem.h"
#include "libavutil/pixfmt.h"
#include "libavutil/rational.h"
#include "libavutil/samplefmt.h"
#include "libavutil/time.h"
#include "libavutil/channel_layout.h"
#include "libswscale/swscale.h"
#include "libswresample/swresample.h"
struct SwsContext;
}
#define SDL_MAIN_HANDLED
#include "SDL3/SDL_events.h"
#include "SDL3/SDL_main.h"
#include "SDL3/SDL_render.h"
#include "SDL3/SDL_video.h"
namespace {
constexpr auto DefineSDLColorspace(SDL_ColorType type, SDL_ColorRange range,
SDL_ColorPrimaries primaries, SDL_TransferCharacteristics transfer,
SDL_MatrixCoefficients matrix, SDL_ChromaLocation chromaloc) noexcept
{
return SDL_DEFINE_COLORSPACE(type, range, primaries, transfer, matrix, chromaloc);
}
} // namespace
#ifdef __GNUC__
_Pragma("GCC diagnostic pop")
#endif
#include "AL/alc.h"
#include "AL/al.h"
#include "AL/alext.h"
#include "almalloc.h"
#include "alnumbers.h"
#include "alnumeric.h"
#include "alspan.h"
#include "common/alhelpers.h"
#include "fmt/core.h"
#include "fmt/format.h"
namespace {
using voidp = void*;
using fixed32 = std::chrono::duration<int64_t,std::ratio<1,(1_i64<<32)>>;
using nanoseconds = std::chrono::nanoseconds;
using microseconds = std::chrono::microseconds;
using milliseconds = std::chrono::milliseconds;
using seconds = std::chrono::seconds;
using seconds_d64 = std::chrono::duration<double>;
using std::chrono::duration_cast;
#ifdef __GNUC__
_Pragma("GCC diagnostic push")
_Pragma("GCC diagnostic ignored \"-Wold-style-cast\"")
#endif
constexpr auto AVNoPtsValue = AV_NOPTS_VALUE;
constexpr auto AVErrorEOF = AVERROR_EOF;
#ifdef __GNUC__
_Pragma("GCC diagnostic pop")
#endif
const std::string AppName{"alffplay"};
ALenum DirectOutMode{AL_FALSE};
bool EnableWideStereo{false};
bool EnableUhj{false};
bool EnableSuperStereo{false};
bool DisableVideo{false};
LPALGETSOURCEI64VSOFT alGetSourcei64vSOFT;
LPALCGETINTEGER64VSOFT alcGetInteger64vSOFT;
LPALEVENTCONTROLSOFT alEventControlSOFT;
LPALEVENTCALLBACKSOFT alEventCallbackSOFT;
LPALBUFFERCALLBACKSOFT alBufferCallbackSOFT;
const seconds AVNoSyncThreshold{10};
#define VIDEO_PICTURE_QUEUE_SIZE 24
const seconds_d64 AudioSyncThreshold{0.03};
const milliseconds AudioSampleCorrectionMax{50};
/* Averaging filter coefficient for audio sync. */
#define AUDIO_DIFF_AVG_NB 20
const double AudioAvgFilterCoeff{std::pow(0.01, 1.0/AUDIO_DIFF_AVG_NB)};
/* Per-buffer size, in time */
constexpr milliseconds AudioBufferTime{20};
/* Buffer total size, in time (should be divisible by the buffer time) */
constexpr milliseconds AudioBufferTotalTime{800};
constexpr auto AudioBufferCount = AudioBufferTotalTime / AudioBufferTime;
enum {
FF_MOVIE_DONE_EVENT = SDL_EVENT_USER
};
enum class SyncMaster {
Audio,
Video,
External,
Default = Audio
};
inline microseconds get_avtime()
{ return microseconds{av_gettime()}; }
/* Define unique_ptrs to auto-cleanup associated ffmpeg objects. */
struct AVIOContextDeleter {
void operator()(AVIOContext *ptr) { avio_closep(&ptr); }
};
using AVIOContextPtr = std::unique_ptr<AVIOContext,AVIOContextDeleter>;
struct AVFormatCtxDeleter {
void operator()(AVFormatContext *ptr) { avformat_close_input(&ptr); }
};
using AVFormatCtxPtr = std::unique_ptr<AVFormatContext,AVFormatCtxDeleter>;
struct AVCodecCtxDeleter {
void operator()(AVCodecContext *ptr) { avcodec_free_context(&ptr); }
};
using AVCodecCtxPtr = std::unique_ptr<AVCodecContext,AVCodecCtxDeleter>;
struct AVPacketDeleter {
void operator()(AVPacket *pkt) { av_packet_free(&pkt); }
};
using AVPacketPtr = std::unique_ptr<AVPacket,AVPacketDeleter>;
struct AVFrameDeleter {
void operator()(AVFrame *ptr) { av_frame_free(&ptr); }
};
using AVFramePtr = std::unique_ptr<AVFrame,AVFrameDeleter>;
struct SwrContextDeleter {
void operator()(SwrContext *ptr) { swr_free(&ptr); }
};
using SwrContextPtr = std::unique_ptr<SwrContext,SwrContextDeleter>;
struct SwsContextDeleter {
void operator()(SwsContext *ptr) { sws_freeContext(ptr); }
};
using SwsContextPtr = std::unique_ptr<SwsContext,SwsContextDeleter>;
struct SDLProps {
SDL_PropertiesID mProperties{};
SDLProps() : mProperties{SDL_CreateProperties()} { }
~SDLProps() { SDL_DestroyProperties(mProperties); }
SDLProps(const SDLProps&) = delete;
auto operator=(const SDLProps&) -> SDLProps& = delete;
[[nodiscard]]
auto getid() const noexcept -> SDL_PropertiesID { return mProperties; }
auto setPointer(const char *name, void *value) const
{ return SDL_SetPointerProperty(mProperties, name, value); }
auto setString(const char *name, const char *value) const
{ return SDL_SetStringProperty(mProperties, name, value); }
auto setInt(const char *name, Sint64 value) const
{ return SDL_SetNumberProperty(mProperties, name, value); }
};
struct TextureFormatEntry {
AVPixelFormat avformat;
SDL_PixelFormat sdlformat;
};
constexpr auto TextureFormatMap = std::array{
TextureFormatEntry{AV_PIX_FMT_RGB8, SDL_PIXELFORMAT_RGB332},
TextureFormatEntry{AV_PIX_FMT_RGB444, SDL_PIXELFORMAT_XRGB4444},
TextureFormatEntry{AV_PIX_FMT_RGB555, SDL_PIXELFORMAT_XRGB1555},
TextureFormatEntry{AV_PIX_FMT_BGR555, SDL_PIXELFORMAT_XBGR1555},
TextureFormatEntry{AV_PIX_FMT_RGB565, SDL_PIXELFORMAT_RGB565},
TextureFormatEntry{AV_PIX_FMT_BGR565, SDL_PIXELFORMAT_BGR565},
TextureFormatEntry{AV_PIX_FMT_RGB24, SDL_PIXELFORMAT_RGB24},
TextureFormatEntry{AV_PIX_FMT_BGR24, SDL_PIXELFORMAT_BGR24},
TextureFormatEntry{AV_PIX_FMT_0RGB32, SDL_PIXELFORMAT_XRGB8888},
TextureFormatEntry{AV_PIX_FMT_0BGR32, SDL_PIXELFORMAT_XBGR8888},
TextureFormatEntry{AV_PIX_FMT_NE(RGB0, 0BGR), SDL_PIXELFORMAT_RGBX8888},
TextureFormatEntry{AV_PIX_FMT_NE(BGR0, 0RGB), SDL_PIXELFORMAT_BGRX8888},
TextureFormatEntry{AV_PIX_FMT_RGB32, SDL_PIXELFORMAT_ARGB8888},
TextureFormatEntry{AV_PIX_FMT_RGB32_1, SDL_PIXELFORMAT_RGBA8888},
TextureFormatEntry{AV_PIX_FMT_BGR32, SDL_PIXELFORMAT_ABGR8888},
TextureFormatEntry{AV_PIX_FMT_BGR32_1, SDL_PIXELFORMAT_BGRA8888},
TextureFormatEntry{AV_PIX_FMT_YUV420P, SDL_PIXELFORMAT_IYUV},
TextureFormatEntry{AV_PIX_FMT_YUYV422, SDL_PIXELFORMAT_YUY2},
TextureFormatEntry{AV_PIX_FMT_UYVY422, SDL_PIXELFORMAT_UYVY},
TextureFormatEntry{AV_PIX_FMT_NV12, SDL_PIXELFORMAT_NV12},
TextureFormatEntry{AV_PIX_FMT_NV21, SDL_PIXELFORMAT_NV21},
};
struct ChannelLayout : public AVChannelLayout {
ChannelLayout() : AVChannelLayout{} { }
ChannelLayout(const ChannelLayout &rhs) : AVChannelLayout{}
{ av_channel_layout_copy(this, &rhs); }
~ChannelLayout() { av_channel_layout_uninit(this); }
auto operator=(const ChannelLayout &rhs) -> ChannelLayout&
{ av_channel_layout_copy(this, &rhs); return *this; }
};
class DataQueue {
const size_t mSizeLimit;
std::mutex mPacketMutex, mFrameMutex;
std::condition_variable mPacketCond;
std::condition_variable mInFrameCond, mOutFrameCond;
std::deque<AVPacketPtr> mPackets;
size_t mTotalSize{0};
bool mFinished{false};
auto getPacket() -> AVPacketPtr
{
auto plock = std::unique_lock{mPacketMutex};
mPacketCond.wait(plock, [this] { return !mPackets.empty() || mFinished; });
if(mPackets.empty())
return nullptr;
auto ret = std::move(mPackets.front());
mPackets.pop_front();
mTotalSize -= static_cast<unsigned int>(ret->size);
return ret;
}
public:
explicit DataQueue(size_t size_limit) : mSizeLimit{size_limit} { }
int sendPacket(AVCodecContext *codecctx)
{
auto packet = getPacket();
auto ret = int{};
{
auto flock = std::unique_lock{mFrameMutex};
mInFrameCond.wait(flock, [this,codecctx,pkt=packet.get(),&ret]
{
ret = avcodec_send_packet(codecctx, pkt);
if(ret != AVERROR(EAGAIN)) return true;
mOutFrameCond.notify_one();
return false;
});
}
mOutFrameCond.notify_one();
if(!packet)
{
if(!ret) return AVErrorEOF;
fmt::println(stderr, "Failed to send flush packet: {}", ret);
return ret;
}
if(ret < 0)
fmt::println(stderr, "Failed to send packet: {}", ret);
return ret;
}
int receiveFrame(AVCodecContext *codecctx, AVFrame *frame)
{
auto ret = int{};
{
auto flock = std::unique_lock{mFrameMutex};
mOutFrameCond.wait(flock, [this,codecctx,frame,&ret]
{
ret = avcodec_receive_frame(codecctx, frame);
if(ret != AVERROR(EAGAIN)) return true;
mInFrameCond.notify_one();
return false;
});
}
mInFrameCond.notify_one();
return ret;
}
void setFinished()
{
{
auto plock = std::lock_guard{mPacketMutex};
mFinished = true;
}
mPacketCond.notify_one();
}
void flush()
{
{
auto plock = std::lock_guard{mPacketMutex};
mFinished = true;
mPackets.clear();
mTotalSize = 0;
}
mPacketCond.notify_one();
}
auto put(const AVPacket *pkt) -> bool
{
{
auto plock = std::lock_guard{mPacketMutex};
if(mTotalSize >= mSizeLimit || mFinished)
return false;
auto *newpkt = mPackets.emplace_back(AVPacketPtr{av_packet_alloc()}).get();
if(av_packet_ref(newpkt, pkt) == 0)
mTotalSize += static_cast<unsigned int>(newpkt->size);
else
mPackets.pop_back();
}
mPacketCond.notify_one();
return true;
}
};
struct MovieState;
struct AudioState {
MovieState &mMovie;
AVStream *mStream{nullptr};
AVCodecCtxPtr mCodecCtx;
DataQueue mQueue{2_uz*1024_uz*1024_uz};
/* Used for clock difference average computation */
seconds_d64 mClockDiffAvg{0};
/* Time of the next sample to be buffered */
nanoseconds mCurrentPts{0};
/* Device clock time that the stream started at. */
nanoseconds mDeviceStartTime{nanoseconds::min()};
/* Decompressed sample frame, and swresample context for conversion */
AVFramePtr mDecodedFrame;
SwrContextPtr mSwresCtx;
/* Conversion format, for what gets fed to OpenAL */
uint64_t mDstChanLayout{0};
AVSampleFormat mDstSampleFmt{AV_SAMPLE_FMT_NONE};
/* Storage of converted samples */
std::array<uint8_t*,1> mSamples{};
al::span<uint8_t> mSamplesSpan;
int mSamplesLen{0}; /* In samples */
int mSamplesPos{0};
int mSamplesMax{0};
std::vector<uint8_t> mBufferData;
std::atomic<size_t> mReadPos{0};
std::atomic<size_t> mWritePos{0};
/* OpenAL format */
ALenum mFormat{AL_NONE};
ALuint mFrameSize{0};
std::mutex mSrcMutex;
std::condition_variable mSrcCond;
std::atomic_flag mConnected{};
ALuint mSource{0};
std::array<ALuint,AudioBufferCount> mBuffers{};
ALuint mBufferIdx{0};
explicit AudioState(MovieState &movie) : mMovie(movie)
{ mConnected.test_and_set(std::memory_order_relaxed); }
~AudioState()
{
if(mSource)
alDeleteSources(1, &mSource);
if(mBuffers[0])
alDeleteBuffers(static_cast<ALsizei>(mBuffers.size()), mBuffers.data());
av_freep(static_cast<void*>(mSamples.data()));
}
static void AL_APIENTRY eventCallbackC(ALenum eventType, ALuint object, ALuint param,
ALsizei length, const ALchar *message, void *userParam) noexcept
{ static_cast<AudioState*>(userParam)->eventCallback(eventType, object, param, length, message); }
void eventCallback(ALenum eventType, ALuint object, ALuint param, ALsizei length,
const ALchar *message) noexcept;
static ALsizei AL_APIENTRY bufferCallbackC(void *userptr, void *data, ALsizei size) noexcept
{ return static_cast<AudioState*>(userptr)->bufferCallback(data, size); }
ALsizei bufferCallback(void *data, ALsizei size) noexcept;
nanoseconds getClockNoLock();
nanoseconds getClock()
{
std::lock_guard<std::mutex> lock{mSrcMutex};
return getClockNoLock();
}
bool startPlayback();
int getSync();
int decodeFrame();
bool readAudio(al::span<uint8_t> samples, unsigned int length, int &sample_skip);
bool readAudio(int sample_skip);
int handler();
};
struct VideoState {
MovieState &mMovie;
AVStream *mStream{nullptr};
AVCodecCtxPtr mCodecCtx;
DataQueue mQueue{14_uz*1024_uz*1024_uz};
/* The pts of the currently displayed frame, and the time (av_gettime) it
* was last updated - used to have running video pts
*/
nanoseconds mDisplayPts{0};
microseconds mDisplayPtsTime{microseconds::min()};
std::mutex mDispPtsMutex;
/* Swscale context for format conversion */
SwsContextPtr mSwscaleCtx;
struct Picture {
AVFramePtr mFrame;
nanoseconds mPts{nanoseconds::min()};
};
std::array<Picture,VIDEO_PICTURE_QUEUE_SIZE> mPictQ;
std::atomic<size_t> mPictQRead{0u}, mPictQWrite{1u};
std::mutex mPictQMutex;
std::condition_variable mPictQCond;
SDL_Texture *mImage{nullptr};
int mWidth{0}, mHeight{0}; /* Full texture size */
unsigned int mSDLFormat{SDL_PIXELFORMAT_UNKNOWN};
int mAVFormat{AV_PIX_FMT_NONE};
bool mFirstUpdate{true};
std::atomic<bool> mEOS{false};
std::atomic<bool> mFinalUpdate{false};
explicit VideoState(MovieState &movie) : mMovie(movie) { }
~VideoState()
{
if(mImage)
SDL_DestroyTexture(mImage);
mImage = nullptr;
}
nanoseconds getClock();
void display(SDL_Renderer *renderer, AVFrame *frame) const;
void updateVideo(SDL_Window *screen, SDL_Renderer *renderer, bool redraw);
int handler();
};
struct MovieState {
AVIOContextPtr mIOContext;
AVFormatCtxPtr mFormatCtx;
SyncMaster mAVSyncType{SyncMaster::Default};
microseconds mClockBase{microseconds::min()};
std::atomic<bool> mQuit{false};
AudioState mAudio;
VideoState mVideo;
std::mutex mStartupMutex;
std::condition_variable mStartupCond;
bool mStartupDone{false};
std::thread mParseThread;
std::thread mAudioThread;
std::thread mVideoThread;
std::string mFilename;
explicit MovieState(std::string_view fname) : mAudio{*this}, mVideo{*this}, mFilename{fname}
{ }
~MovieState()
{
stop();
if(mParseThread.joinable())
mParseThread.join();
}
static int decode_interrupt_cb(void *ctx);
bool prepare();
void setTitle(SDL_Window *window) const;
void stop();
[[nodiscard]] nanoseconds getClock() const;
[[nodiscard]] nanoseconds getMasterClock();
[[nodiscard]] nanoseconds getDuration() const;
bool streamComponentOpen(AVStream *stream);
int parse_handler();
};
nanoseconds AudioState::getClockNoLock()
{
// The audio clock is the timestamp of the sample currently being heard.
if(alcGetInteger64vSOFT)
{
// If device start time = min, we aren't playing yet.
if(mDeviceStartTime == nanoseconds::min())
return nanoseconds::zero();
// Get the current device clock time and latency.
auto device = alcGetContextsDevice(alcGetCurrentContext());
std::array<ALCint64SOFT,2> devtimes{};
alcGetInteger64vSOFT(device, ALC_DEVICE_CLOCK_LATENCY_SOFT, 2, devtimes.data());
auto latency = nanoseconds{devtimes[1]};
auto device_time = nanoseconds{devtimes[0]};
// The clock is simply the current device time relative to the recorded
// start time. We can also subtract the latency to get more a accurate
// position of where the audio device actually is in the output stream.
return device_time - mDeviceStartTime - latency;
}
if(!mBufferData.empty())
{
if(mDeviceStartTime == nanoseconds::min())
return nanoseconds::zero();
/* With a callback buffer and no device clock, mDeviceStartTime is
* actually the timestamp of the first sample frame played. The audio
* clock, then, is that plus the current source offset.
*/
std::array<ALint64SOFT,2> offset{};
if(alGetSourcei64vSOFT)
alGetSourcei64vSOFT(mSource, AL_SAMPLE_OFFSET_LATENCY_SOFT, offset.data());
else
{
ALint ioffset;
alGetSourcei(mSource, AL_SAMPLE_OFFSET, &ioffset);
offset[0] = ALint64SOFT{ioffset} << 32;
}
/* NOTE: The source state must be checked last, in case an underrun
* occurs and the source stops between getting the state and retrieving
* the offset+latency.
*/
ALint status;
alGetSourcei(mSource, AL_SOURCE_STATE, &status);
nanoseconds pts{};
if(status == AL_PLAYING || status == AL_PAUSED)
pts = mDeviceStartTime - nanoseconds{offset[1]} +
duration_cast<nanoseconds>(fixed32{offset[0] / mCodecCtx->sample_rate});
else
{
/* If the source is stopped, the pts of the next sample to be heard
* is the pts of the next sample to be buffered, minus the amount
* already in the buffer ready to play.
*/
const size_t woffset{mWritePos.load(std::memory_order_acquire)};
const size_t roffset{mReadPos.load(std::memory_order_relaxed)};
const size_t readable{((woffset>=roffset) ? woffset : (mBufferData.size()+woffset)) -
roffset};
pts = mCurrentPts - nanoseconds{seconds{readable/mFrameSize}}/mCodecCtx->sample_rate;
}
return pts;
}
/* The source-based clock is based on 4 components:
* 1 - The timestamp of the next sample to buffer (mCurrentPts)
* 2 - The length of the source's buffer queue
* (AudioBufferTime*AL_BUFFERS_QUEUED)
* 3 - The offset OpenAL is currently at in the source (the first value
* from AL_SAMPLE_OFFSET_LATENCY_SOFT)
* 4 - The latency between OpenAL and the DAC (the second value from
* AL_SAMPLE_OFFSET_LATENCY_SOFT)
*
* Subtracting the length of the source queue from the next sample's
* timestamp gives the timestamp of the sample at the start of the source
* queue. Adding the source offset to that results in the timestamp for the
* sample at OpenAL's current position, and subtracting the source latency
* from that gives the timestamp of the sample currently at the DAC.
*/
nanoseconds pts{mCurrentPts};
if(mSource)
{
std::array<ALint64SOFT,2> offset{};
if(alGetSourcei64vSOFT)
alGetSourcei64vSOFT(mSource, AL_SAMPLE_OFFSET_LATENCY_SOFT, offset.data());
else
{
ALint ioffset;
alGetSourcei(mSource, AL_SAMPLE_OFFSET, &ioffset);
offset[0] = ALint64SOFT{ioffset} << 32;
}
ALint queued, status;
alGetSourcei(mSource, AL_BUFFERS_QUEUED, &queued);
alGetSourcei(mSource, AL_SOURCE_STATE, &status);
/* If the source is AL_STOPPED, then there was an underrun and all
* buffers are processed, so ignore the source queue. The audio thread
* will put the source into an AL_INITIAL state and clear the queue
* when it starts recovery.
*/
if(status != AL_STOPPED)
{
pts -= AudioBufferTime*queued;
pts += duration_cast<nanoseconds>(fixed32{offset[0] / mCodecCtx->sample_rate});
}
/* Don't offset by the latency if the source isn't playing. */
if(status == AL_PLAYING)
pts -= nanoseconds{offset[1]};
}
return std::max(pts, nanoseconds::zero());
}
bool AudioState::startPlayback()
{
const size_t woffset{mWritePos.load(std::memory_order_acquire)};
const size_t roffset{mReadPos.load(std::memory_order_relaxed)};
const size_t readable{((woffset >= roffset) ? woffset : (mBufferData.size()+woffset)) -
roffset};
if(!mBufferData.empty())
{
if(readable == 0)
return false;
if(!alcGetInteger64vSOFT)
mDeviceStartTime = mCurrentPts -
nanoseconds{seconds{readable/mFrameSize}}/mCodecCtx->sample_rate;
}
else
{
ALint queued{};
alGetSourcei(mSource, AL_BUFFERS_QUEUED, &queued);
if(queued == 0) return false;
}
alSourcePlay(mSource);
if(alcGetInteger64vSOFT)
{
/* Subtract the total buffer queue time from the current pts to get the
* pts of the start of the queue.
*/
std::array<int64_t,2> srctimes{};
alGetSourcei64vSOFT(mSource, AL_SAMPLE_OFFSET_CLOCK_SOFT, srctimes.data());
auto device_time = nanoseconds{srctimes[1]};
auto src_offset = duration_cast<nanoseconds>(fixed32{srctimes[0]}) /
mCodecCtx->sample_rate;
/* The mixer may have ticked and incremented the device time and sample
* offset, so subtract the source offset from the device time to get
* the device time the source started at. Also subtract startpts to get
* the device time the stream would have started at to reach where it
* is now.
*/
if(!mBufferData.empty())
{
nanoseconds startpts{mCurrentPts -
nanoseconds{seconds{readable/mFrameSize}}/mCodecCtx->sample_rate};
mDeviceStartTime = device_time - src_offset - startpts;
}
else
{
nanoseconds startpts{mCurrentPts - AudioBufferTotalTime};
mDeviceStartTime = device_time - src_offset - startpts;
}
}
return true;
}
int AudioState::getSync()
{
if(mMovie.mAVSyncType == SyncMaster::Audio)
return 0;
auto ref_clock = mMovie.getMasterClock();
auto diff = ref_clock - getClockNoLock();
if(!(diff < AVNoSyncThreshold && diff > -AVNoSyncThreshold))
{
/* Difference is TOO big; reset accumulated average */
mClockDiffAvg = seconds_d64::zero();
return 0;
}
/* Accumulate the diffs */
mClockDiffAvg = mClockDiffAvg*AudioAvgFilterCoeff + diff;
auto avg_diff = mClockDiffAvg*(1.0 - AudioAvgFilterCoeff);
if(avg_diff < AudioSyncThreshold/2.0 && avg_diff > -AudioSyncThreshold)
return 0;
/* Constrain the per-update difference to avoid exceedingly large skips */
diff = std::min<nanoseconds>(diff, AudioSampleCorrectionMax);
return static_cast<int>(duration_cast<seconds>(diff*mCodecCtx->sample_rate).count());
}
int AudioState::decodeFrame()
{
do {
while(int ret{mQueue.receiveFrame(mCodecCtx.get(), mDecodedFrame.get())})
{
if(ret == AVErrorEOF) return 0;
fmt::println(stderr, "Failed to receive frame: {}", ret);
}
} while(mDecodedFrame->nb_samples <= 0);
/* If provided, update w/ pts */
if(mDecodedFrame->best_effort_timestamp != AVNoPtsValue)
mCurrentPts = duration_cast<nanoseconds>(seconds_d64{av_q2d(mStream->time_base) *
static_cast<double>(mDecodedFrame->best_effort_timestamp)});
if(mDecodedFrame->nb_samples > mSamplesMax)
{
av_freep(static_cast<void*>(mSamples.data()));
av_samples_alloc(mSamples.data(), nullptr, mCodecCtx->ch_layout.nb_channels,
mDecodedFrame->nb_samples, mDstSampleFmt, 0);
mSamplesMax = mDecodedFrame->nb_samples;
mSamplesSpan = {mSamples[0], static_cast<size_t>(mSamplesMax)*mFrameSize};
}
/* Return the amount of sample frames converted */
const int data_size{swr_convert(mSwresCtx.get(), mSamples.data(), mDecodedFrame->nb_samples,
mDecodedFrame->extended_data, mDecodedFrame->nb_samples)};
av_frame_unref(mDecodedFrame.get());
return data_size;
}
/* Duplicates the sample at in to out, count times. The frame size is a
* multiple of the template type size.
*/
template<typename T>
void sample_dup(al::span<uint8_t> out, al::span<const uint8_t> in, size_t count, size_t frame_size)
{
auto sample = al::span{reinterpret_cast<const T*>(in.data()), in.size()/sizeof(T)};
auto dst = al::span{reinterpret_cast<T*>(out.data()), out.size()/sizeof(T)};
/* NOTE: frame_size is a multiple of sizeof(T). */
const size_t type_mult{frame_size / sizeof(T)};
if(type_mult == 1)
std::fill_n(dst.begin(), count, sample.front());
else for(size_t i{0};i < count;++i)
{
for(size_t j{0};j < type_mult;++j)
dst[i*type_mult + j] = sample[j];
}
}
void sample_dup(al::span<uint8_t> out, al::span<const uint8_t> in, size_t count, size_t frame_size)
{
if((frame_size&7) == 0)
sample_dup<uint64_t>(out, in, count, frame_size);
else if((frame_size&3) == 0)
sample_dup<uint32_t>(out, in, count, frame_size);
else if((frame_size&1) == 0)
sample_dup<uint16_t>(out, in, count, frame_size);
else
sample_dup<uint8_t>(out, in, count, frame_size);
}
bool AudioState::readAudio(al::span<uint8_t> samples, unsigned int length, int &sample_skip)
{
unsigned int audio_size{0};
/* Read the next chunk of data, refill the buffer, and queue it
* on the source */
length /= mFrameSize;
while(mSamplesLen > 0 && audio_size < length)
{
unsigned int rem{length - audio_size};
if(mSamplesPos >= 0)
{
rem = std::min(rem, static_cast<unsigned int>(mSamplesLen - mSamplesPos));
const size_t boffset{static_cast<ALuint>(mSamplesPos) * size_t{mFrameSize}};
std::copy_n(mSamplesSpan.cbegin()+ptrdiff_t(boffset), rem*size_t{mFrameSize},
samples.begin());
}
else
{
rem = std::min(rem, static_cast<unsigned int>(-mSamplesPos));
/* Add samples by copying the first sample */
sample_dup(samples, mSamplesSpan, rem, mFrameSize);
}
mSamplesPos += static_cast<int>(rem);
mCurrentPts += nanoseconds{seconds{rem}} / mCodecCtx->sample_rate;
samples = samples.subspan(rem*size_t{mFrameSize});
audio_size += rem;
while(mSamplesPos >= mSamplesLen)
{
mSamplesLen = decodeFrame();
mSamplesPos = std::min(mSamplesLen, sample_skip);
if(mSamplesLen <= 0) break;
sample_skip -= mSamplesPos;
// Adjust the device start time and current pts by the amount we're
// skipping/duplicating, so that the clock remains correct for the
// current stream position.
auto skip = nanoseconds{seconds{mSamplesPos}} / mCodecCtx->sample_rate;
mDeviceStartTime -= skip;
mCurrentPts += skip;
}
}
if(audio_size <= 0)
return false;
if(audio_size < length)
{
const unsigned int rem{length - audio_size};
std::fill_n(samples.begin(), rem*mFrameSize,
(mDstSampleFmt == AV_SAMPLE_FMT_U8) ? 0x80 : 0x00);
mCurrentPts += nanoseconds{seconds{rem}} / mCodecCtx->sample_rate;
}
return true;
}
bool AudioState::readAudio(int sample_skip)
{
size_t woffset{mWritePos.load(std::memory_order_acquire)};
const size_t roffset{mReadPos.load(std::memory_order_relaxed)};
while(mSamplesLen > 0)
{
const size_t nsamples{((roffset > woffset) ? roffset-woffset-1
: (roffset == 0) ? (mBufferData.size()-woffset-1)
: (mBufferData.size()-woffset)) / mFrameSize};
if(!nsamples) break;
if(mSamplesPos < 0)
{
const size_t rem{std::min<size_t>(nsamples, static_cast<ALuint>(-mSamplesPos))};
sample_dup(al::span{mBufferData}.subspan(woffset), mSamplesSpan, rem, mFrameSize);
woffset += rem * mFrameSize;
if(woffset == mBufferData.size()) woffset = 0;
mWritePos.store(woffset, std::memory_order_release);
mCurrentPts += nanoseconds{seconds{rem}} / mCodecCtx->sample_rate;
mSamplesPos += static_cast<int>(rem);
continue;
}
const size_t rem{std::min<size_t>(nsamples, static_cast<ALuint>(mSamplesLen-mSamplesPos))};
const size_t boffset{static_cast<ALuint>(mSamplesPos) * size_t{mFrameSize}};
const size_t nbytes{rem * mFrameSize};
std::copy_n(mSamplesSpan.cbegin()+ptrdiff_t(boffset), nbytes,
mBufferData.begin()+ptrdiff_t(woffset));
woffset += nbytes;
if(woffset == mBufferData.size()) woffset = 0;
mWritePos.store(woffset, std::memory_order_release);
mCurrentPts += nanoseconds{seconds{rem}} / mCodecCtx->sample_rate;
mSamplesPos += static_cast<int>(rem);
while(mSamplesPos >= mSamplesLen)
{
mSamplesLen = decodeFrame();
mSamplesPos = std::min(mSamplesLen, sample_skip);
if(mSamplesLen <= 0) return false;
sample_skip -= mSamplesPos;
auto skip = nanoseconds{seconds{mSamplesPos}} / mCodecCtx->sample_rate;
mDeviceStartTime -= skip;
mCurrentPts += skip;
}
}
return true;
}
void AL_APIENTRY AudioState::eventCallback(ALenum eventType, ALuint object, ALuint param,
ALsizei length, const ALchar *message) noexcept
{
if(eventType == AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT)
{
/* Temporarily lock the source mutex to ensure it's not between
* checking the processed count and going to sleep.
*/
std::unique_lock<std::mutex>{mSrcMutex}.unlock();
mSrcCond.notify_one();
return;
}
fmt::print("\n---- AL Event on AudioState {:p} ----\nEvent: ", voidp{this});
switch(eventType)
{
case AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT: fmt::print("Buffer completed"); break;
case AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT: fmt::print("Source state changed"); break;
case AL_EVENT_TYPE_DISCONNECTED_SOFT: fmt::print("Disconnected"); break;
default: fmt::print("{:#x}", as_unsigned(eventType)); break;
}
fmt::println("\n"
"Object ID: {}\n"
"Parameter: {}\n"
"Message: {}\n----",
object, param, std::string_view{message, static_cast<ALuint>(length)});
if(eventType == AL_EVENT_TYPE_DISCONNECTED_SOFT)
{
{
std::lock_guard<std::mutex> lock{mSrcMutex};
mConnected.clear(std::memory_order_release);
}
mSrcCond.notify_one();
}
}
ALsizei AudioState::bufferCallback(void *data, ALsizei size) noexcept
{
auto dst = al::span{static_cast<ALbyte*>(data), static_cast<ALuint>(size)};
ALsizei got{0};
size_t roffset{mReadPos.load(std::memory_order_acquire)};
while(!dst.empty())
{
const size_t woffset{mWritePos.load(std::memory_order_relaxed)};
if(woffset == roffset) break;
size_t todo{((woffset < roffset) ? mBufferData.size() : woffset) - roffset};
todo = std::min(todo, dst.size());
std::copy_n(mBufferData.cbegin()+ptrdiff_t(roffset), todo, dst.begin());
dst = dst.subspan(todo);
got += static_cast<ALsizei>(todo);
roffset += todo;
if(roffset == mBufferData.size())
roffset = 0;
}
mReadPos.store(roffset, std::memory_order_release);
return got;
}
int AudioState::handler()
{
std::unique_lock<std::mutex> srclock{mSrcMutex, std::defer_lock};
milliseconds sleep_time{AudioBufferTime / 3};
struct EventControlManager {
const std::array<ALenum,3> evt_types{{
AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT, AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT,
AL_EVENT_TYPE_DISCONNECTED_SOFT}};
explicit EventControlManager(milliseconds &sleep_time)
{
if(alEventControlSOFT)
{
alEventControlSOFT(static_cast<ALsizei>(evt_types.size()), evt_types.data(),
AL_TRUE);
alEventCallbackSOFT(&AudioState::eventCallbackC, this);
sleep_time = AudioBufferTotalTime;
}
}
~EventControlManager()
{
if(alEventControlSOFT)
{
alEventControlSOFT(static_cast<ALsizei>(evt_types.size()), evt_types.data(),
AL_FALSE);
alEventCallbackSOFT(nullptr, nullptr);
}
}
};
EventControlManager event_controller{sleep_time};
std::vector<uint8_t> samples;
ALsizei buffer_len{0};
/* Note that ffmpeg assumes AmbiX (ACN layout, SN3D normalization). Only
* support HOA when OpenAL can take AmbiX natively (if AmbiX -> FuMa
* conversion is needed, we don't bother with higher order channels).
*/
const auto has_bfmt = bool{alIsExtensionPresent("AL_EXT_BFORMAT") != AL_FALSE};
const auto has_bfmt_ex = bool{alIsExtensionPresent("AL_SOFT_bformat_ex") != AL_FALSE};
const auto has_bfmt_hoa = bool{has_bfmt_ex
&& alIsExtensionPresent("AL_SOFT_bformat_hoa") != AL_FALSE};
/* AL_SOFT_bformat_hoa supports up to 14th order (225 channels). */
const auto max_ambi_order = has_bfmt_hoa ? 14 : 1;
auto ambi_order = 0;
/* Find a suitable format for OpenAL. */
const auto layoutmask = mCodecCtx->ch_layout.u.mask; /* NOLINT(*-union-access) */
mDstChanLayout = 0;
mFormat = AL_NONE;
if((mCodecCtx->sample_fmt == AV_SAMPLE_FMT_FLT || mCodecCtx->sample_fmt == AV_SAMPLE_FMT_FLTP
|| mCodecCtx->sample_fmt == AV_SAMPLE_FMT_DBL
|| mCodecCtx->sample_fmt == AV_SAMPLE_FMT_DBLP
|| mCodecCtx->sample_fmt == AV_SAMPLE_FMT_S32
|| mCodecCtx->sample_fmt == AV_SAMPLE_FMT_S32P
|| mCodecCtx->sample_fmt == AV_SAMPLE_FMT_S64
|| mCodecCtx->sample_fmt == AV_SAMPLE_FMT_S64P)
&& alIsExtensionPresent("AL_EXT_FLOAT32"))
{
mDstSampleFmt = AV_SAMPLE_FMT_FLT;
mFrameSize = 4;
if(mCodecCtx->ch_layout.order == AV_CHANNEL_ORDER_NATIVE)
{
if(alIsExtensionPresent("AL_EXT_MCFORMATS"))
{
if(layoutmask == AV_CH_LAYOUT_7POINT1)
{
mDstChanLayout = layoutmask;
mFrameSize *= 8;
mFormat = alGetEnumValue("AL_FORMAT_71CHN32");
}
if(layoutmask == AV_CH_LAYOUT_5POINT1 || layoutmask == AV_CH_LAYOUT_5POINT1_BACK)
{
mDstChanLayout = layoutmask;
mFrameSize *= 6;
mFormat = alGetEnumValue("AL_FORMAT_51CHN32");
}
if(layoutmask == AV_CH_LAYOUT_QUAD)
{
mDstChanLayout = layoutmask;
mFrameSize *= 4;
mFormat = EnableUhj ? AL_FORMAT_UHJ4CHN_FLOAT32_SOFT
: alGetEnumValue("AL_FORMAT_QUAD32");
}
}
if(layoutmask == AV_CH_LAYOUT_MONO)
{
mDstChanLayout = layoutmask;
mFrameSize *= 1;
mFormat = AL_FORMAT_MONO_FLOAT32;
}
}
else if(mCodecCtx->ch_layout.order == AV_CHANNEL_ORDER_AMBISONIC && has_bfmt)
{
/* Calculate what should be the ambisonic order from the number of
* channels, and confirm that's the number of channels. Opus allows
* an optional non-diegetic stereo stream with the B-Format stream,
* which we can ignore, so check for that too.
*/
auto order = static_cast<int>(std::sqrt(mCodecCtx->ch_layout.nb_channels)) - 1;
auto channels = ALuint(order+1) * ALuint(order+1);
if(channels == ALuint(mCodecCtx->ch_layout.nb_channels)
|| channels+2 == ALuint(mCodecCtx->ch_layout.nb_channels))
{
/* OpenAL only supports first-order with AL_EXT_BFORMAT, which
* is 4 channels for 3D buffers, unless AL_SOFT_bformat_hoa is
* also supported.
*/
ambi_order = std::min(order, max_ambi_order);
mFrameSize *= ALuint(ambi_order+1) * ALuint(ambi_order+1);
mFormat = alGetEnumValue("AL_FORMAT_BFORMAT3D_FLOAT32");
}
}
if(!mFormat || mFormat == -1)
{
mDstChanLayout = AV_CH_LAYOUT_STEREO;
mFrameSize *= 2;
mFormat = EnableUhj ? AL_FORMAT_UHJ2CHN_FLOAT32_SOFT : AL_FORMAT_STEREO_FLOAT32;
}
}
if(mCodecCtx->sample_fmt == AV_SAMPLE_FMT_U8 || mCodecCtx->sample_fmt == AV_SAMPLE_FMT_U8P)
{
mDstSampleFmt = AV_SAMPLE_FMT_U8;
mFrameSize = 1;
if(mCodecCtx->ch_layout.order == AV_CHANNEL_ORDER_NATIVE)
{
if(alIsExtensionPresent("AL_EXT_MCFORMATS"))
{
if(layoutmask == AV_CH_LAYOUT_7POINT1)
{
mDstChanLayout = layoutmask;
mFrameSize *= 8;
mFormat = alGetEnumValue("AL_FORMAT_71CHN8");
}
if(layoutmask == AV_CH_LAYOUT_5POINT1 || layoutmask == AV_CH_LAYOUT_5POINT1_BACK)
{
mDstChanLayout = layoutmask;
mFrameSize *= 6;
mFormat = alGetEnumValue("AL_FORMAT_51CHN8");
}
if(layoutmask == AV_CH_LAYOUT_QUAD)
{
mDstChanLayout = layoutmask;
mFrameSize *= 4;
mFormat = EnableUhj ? AL_FORMAT_UHJ4CHN8_SOFT
: alGetEnumValue("AL_FORMAT_QUAD8");
}
}
if(layoutmask == AV_CH_LAYOUT_MONO)
{
mDstChanLayout = layoutmask;
mFrameSize *= 1;
mFormat = AL_FORMAT_MONO8;
}
}
else if(mCodecCtx->ch_layout.order == AV_CHANNEL_ORDER_AMBISONIC && has_bfmt)
{
auto order = static_cast<int>(std::sqrt(mCodecCtx->ch_layout.nb_channels)) - 1;
auto channels = (order+1) * (order+1);
if(channels == mCodecCtx->ch_layout.nb_channels
|| channels+2 == mCodecCtx->ch_layout.nb_channels)
{
ambi_order = std::min(order, max_ambi_order);
mFrameSize *= ALuint(ambi_order+1) * ALuint(ambi_order+1);
mFormat = alGetEnumValue("AL_FORMAT_BFORMAT3D_8");
}
}
if(!mFormat || mFormat == -1)
{
mDstChanLayout = AV_CH_LAYOUT_STEREO;
mFrameSize *= 2;
mFormat = EnableUhj ? AL_FORMAT_UHJ2CHN8_SOFT : AL_FORMAT_STEREO8;
}
}
if(!mFormat || mFormat == -1)
{
mDstSampleFmt = AV_SAMPLE_FMT_S16;
mFrameSize = 2;
if(mCodecCtx->ch_layout.order == AV_CHANNEL_ORDER_NATIVE)
{
if(alIsExtensionPresent("AL_EXT_MCFORMATS"))
{
if(layoutmask == AV_CH_LAYOUT_7POINT1)
{
mDstChanLayout = layoutmask;
mFrameSize *= 8;
mFormat = alGetEnumValue("AL_FORMAT_71CHN16");
}
if(layoutmask == AV_CH_LAYOUT_5POINT1 || layoutmask == AV_CH_LAYOUT_5POINT1_BACK)
{
mDstChanLayout = layoutmask;
mFrameSize *= 6;
mFormat = alGetEnumValue("AL_FORMAT_51CHN16");
}
if(layoutmask == AV_CH_LAYOUT_QUAD)
{
mDstChanLayout = layoutmask;
mFrameSize *= 4;
mFormat = EnableUhj ? AL_FORMAT_UHJ4CHN16_SOFT
: alGetEnumValue("AL_FORMAT_QUAD16");
}
}
if(layoutmask == AV_CH_LAYOUT_MONO)
{
mDstChanLayout = layoutmask;
mFrameSize *= 1;
mFormat = AL_FORMAT_MONO16;
}
}
else if(mCodecCtx->ch_layout.order == AV_CHANNEL_ORDER_AMBISONIC && has_bfmt)
{
auto order = static_cast<int>(std::sqrt(mCodecCtx->ch_layout.nb_channels)) - 1;
auto channels = (order+1) * (order+1);
if(channels == mCodecCtx->ch_layout.nb_channels
|| channels+2 == mCodecCtx->ch_layout.nb_channels)
{
ambi_order = std::min(order, max_ambi_order);
mFrameSize *= ALuint(ambi_order+1) * ALuint(ambi_order+1);
mFormat = alGetEnumValue("AL_FORMAT_BFORMAT3D_16");
}
}
if(!mFormat || mFormat == -1)
{
mDstChanLayout = AV_CH_LAYOUT_STEREO;
mFrameSize *= 2;
mFormat = EnableUhj ? AL_FORMAT_UHJ2CHN16_SOFT : AL_FORMAT_STEREO16;
}
}
mSamples.fill(nullptr);
mSamplesSpan = {};
mSamplesMax = 0;
mSamplesPos = 0;
mSamplesLen = 0;
mDecodedFrame.reset(av_frame_alloc());
if(!mDecodedFrame)
{
fmt::println(stderr, "Failed to allocate audio frame");
return 0;
}
if(!mDstChanLayout)
{
auto layout = ChannelLayout{};
av_channel_layout_from_string(&layout, fmt::format("ambisonic {}", ambi_order).c_str());
const auto err = swr_alloc_set_opts2(al::out_ptr(mSwresCtx), &layout, mDstSampleFmt,
mCodecCtx->sample_rate, &mCodecCtx->ch_layout, mCodecCtx->sample_fmt,
mCodecCtx->sample_rate, 0, nullptr);
if(err != 0)
{
std::array<char,AV_ERROR_MAX_STRING_SIZE> errstr{};
fmt::println(stderr, "Failed to allocate SwrContext: {}",
av_make_error_string(errstr.data(), AV_ERROR_MAX_STRING_SIZE, err));
return 0;
}
if(has_bfmt_hoa && ambi_order > 1)
fmt::println("Found AL_SOFT_bformat_hoa (order {})", ambi_order);
else if(has_bfmt_ex)
fmt::println("Found AL_SOFT_bformat_ex");
else
{
fmt::println("Found AL_EXT_BFORMAT");
/* Without AL_SOFT_bformat_ex, OpenAL only supports FuMa channel
* ordering and normalization, so a custom matrix is needed to
* scale and reorder the source from AmbiX.
*/
std::vector<double> mtx(64_uz*64_uz, 0.0);
mtx[0 + 0*64] = std::sqrt(0.5);
mtx[3 + 1*64] = 1.0;
mtx[1 + 2*64] = 1.0;
mtx[2 + 3*64] = 1.0;
swr_set_matrix(mSwresCtx.get(), mtx.data(), 64);
}
}
else
{
ChannelLayout layout{};
av_channel_layout_from_mask(&layout, mDstChanLayout);
int err{swr_alloc_set_opts2(al::out_ptr(mSwresCtx), &layout, mDstSampleFmt,
mCodecCtx->sample_rate, &mCodecCtx->ch_layout, mCodecCtx->sample_fmt,
mCodecCtx->sample_rate, 0, nullptr)};
if(err != 0)
{
std::array<char,AV_ERROR_MAX_STRING_SIZE> errstr{};
fmt::println(stderr, "Failed to allocate SwrContext: {}",
av_make_error_string(errstr.data(), AV_ERROR_MAX_STRING_SIZE, err));
return 0;
}
}
if(int err{swr_init(mSwresCtx.get())})
{
std::array<char,AV_ERROR_MAX_STRING_SIZE> errstr{};
fmt::println(stderr, "Failed to initialize audio converter: {}",
av_make_error_string(errstr.data(), AV_ERROR_MAX_STRING_SIZE, err));
return 0;
}
alGenBuffers(static_cast<ALsizei>(mBuffers.size()), mBuffers.data());
alGenSources(1, &mSource);
if(DirectOutMode)
alSourcei(mSource, AL_DIRECT_CHANNELS_SOFT, DirectOutMode);
if(EnableWideStereo)
{
static constexpr std::array angles{static_cast<float>(al::numbers::pi / 3.0),
static_cast<float>(-al::numbers::pi / 3.0)};
alSourcefv(mSource, AL_STEREO_ANGLES, angles.data());
}
if(has_bfmt_ex)
{
for(ALuint bufid : mBuffers)
{
alBufferi(bufid, AL_AMBISONIC_LAYOUT_SOFT, AL_ACN_SOFT);
alBufferi(bufid, AL_AMBISONIC_SCALING_SOFT, AL_SN3D_SOFT);
}
}
if(ambi_order > 1)
{
for(ALuint bufid : mBuffers)
alBufferi(bufid, AL_UNPACK_AMBISONIC_ORDER_SOFT, ambi_order);
}
#ifdef AL_SOFT_UHJ
if(EnableSuperStereo)
alSourcei(mSource, AL_STEREO_MODE_SOFT, AL_SUPER_STEREO_SOFT);
#endif
if(alGetError() != AL_NO_ERROR)
return 0;
bool callback_ok{false};
if(alBufferCallbackSOFT)
{
alBufferCallbackSOFT(mBuffers[0], mFormat, mCodecCtx->sample_rate, bufferCallbackC, this);
alSourcei(mSource, AL_BUFFER, static_cast<ALint>(mBuffers[0]));
if(alGetError() != AL_NO_ERROR)
{
fmt::println(stderr, "Failed to set buffer callback");
alSourcei(mSource, AL_BUFFER, 0);
}
else
{
mBufferData.resize(static_cast<size_t>(duration_cast<seconds>(mCodecCtx->sample_rate *
AudioBufferTotalTime).count()) * mFrameSize);
std::fill(mBufferData.begin(), mBufferData.end(), uint8_t{});
mReadPos.store(0, std::memory_order_relaxed);
mWritePos.store(mBufferData.size()/mFrameSize/2*mFrameSize, std::memory_order_relaxed);
ALCint refresh{};
alcGetIntegerv(alcGetContextsDevice(alcGetCurrentContext()), ALC_REFRESH, 1, &refresh);
sleep_time = milliseconds{seconds{1}} / refresh;
callback_ok = true;
}
}
if(!callback_ok)
buffer_len = static_cast<int>(duration_cast<seconds>(mCodecCtx->sample_rate *
AudioBufferTime).count() * mFrameSize);
if(buffer_len > 0)
samples.resize(static_cast<ALuint>(buffer_len));
/* Prefill the codec buffer. */
auto packet_sender = [this]()
{
while(true)
{
const int ret{mQueue.sendPacket(mCodecCtx.get())};
if(ret == AVErrorEOF) break;
}
};
auto sender [[maybe_unused]] = std::async(std::launch::async, packet_sender);
srclock.lock();
if(alcGetInteger64vSOFT)
{
int64_t devtime{};
alcGetInteger64vSOFT(alcGetContextsDevice(alcGetCurrentContext()), ALC_DEVICE_CLOCK_SOFT,
1, &devtime);
mDeviceStartTime = nanoseconds{devtime} - mCurrentPts;
}
mSamplesLen = decodeFrame();
if(mSamplesLen > 0)
{
mSamplesPos = std::min(mSamplesLen, getSync());
auto skip = nanoseconds{seconds{mSamplesPos}} / mCodecCtx->sample_rate;
mDeviceStartTime -= skip;
mCurrentPts += skip;
}
while(true)
{
if(mMovie.mQuit.load(std::memory_order_relaxed))
{
/* If mQuit is set, drain frames until we can't get more audio,
* indicating we've reached the flush packet and the packet sender
* will also quit.
*/
do {
mSamplesLen = decodeFrame();
mSamplesPos = mSamplesLen;
} while(mSamplesLen > 0);
break;
}
ALenum state;
if(!mBufferData.empty())
{
alGetSourcei(mSource, AL_SOURCE_STATE, &state);
/* If mQuit is not set, don't quit even if there's no more audio,
* so what's buffered has a chance to play to the real end.
*/
readAudio(getSync());
}
else
{
ALint processed, queued;
/* First remove any processed buffers. */
alGetSourcei(mSource, AL_BUFFERS_PROCESSED, &processed);
while(processed > 0)
{
ALuint bid;
alSourceUnqueueBuffers(mSource, 1, &bid);
--processed;
}
/* Refill the buffer queue. */
int sync_skip{getSync()};
alGetSourcei(mSource, AL_BUFFERS_QUEUED, &queued);
while(static_cast<ALuint>(queued) < mBuffers.size())
{
/* Read the next chunk of data, filling the buffer, and queue
* it on the source.
*/
if(!readAudio(samples, static_cast<ALuint>(buffer_len), sync_skip))
break;
const ALuint bufid{mBuffers[mBufferIdx]};
mBufferIdx = static_cast<ALuint>((mBufferIdx+1) % mBuffers.size());
alBufferData(bufid, mFormat, samples.data(), buffer_len, mCodecCtx->sample_rate);
alSourceQueueBuffers(mSource, 1, &bufid);
++queued;
}
/* Check that the source is playing. */
alGetSourcei(mSource, AL_SOURCE_STATE, &state);
if(state == AL_STOPPED)
{
/* AL_STOPPED means there was an underrun. Clear the buffer
* queue since this likely means we're late, and rewind the
* source to get it back into an AL_INITIAL state.
*/
alSourceRewind(mSource);
alSourcei(mSource, AL_BUFFER, 0);
if(alcGetInteger64vSOFT)
{
/* Also update the device start time with the current
* device clock, so the decoder knows we're running behind.
*/
int64_t devtime{};
alcGetInteger64vSOFT(alcGetContextsDevice(alcGetCurrentContext()),
ALC_DEVICE_CLOCK_SOFT, 1, &devtime);
mDeviceStartTime = nanoseconds{devtime} - mCurrentPts;
}
continue;
}
}
/* (re)start the source if needed, and wait for a buffer to finish */
if(state != AL_PLAYING && state != AL_PAUSED)
{
if(!startPlayback())
break;
}
if(ALenum err{alGetError()})
fmt::println(stderr, "Got AL error: {:#x} ({})", as_unsigned(err), alGetString(err));
mSrcCond.wait_for(srclock, sleep_time);
}
alSourceRewind(mSource);
alSourcei(mSource, AL_BUFFER, 0);
srclock.unlock();
return 0;
}
nanoseconds VideoState::getClock()
{
/* NOTE: This returns incorrect times while not playing. */
std::lock_guard<std::mutex> displock{mDispPtsMutex};
if(mDisplayPtsTime == microseconds::min())
return nanoseconds::zero();
auto delta = get_avtime() - mDisplayPtsTime;
return mDisplayPts + delta;
}
/* Called by VideoState::updateVideo to display the next video frame. */
void VideoState::display(SDL_Renderer *renderer, AVFrame *frame) const
{
if(!mImage)
return;
auto frame_width = frame->width - static_cast<int>(frame->crop_left + frame->crop_right);
auto frame_height = frame->height - static_cast<int>(frame->crop_top + frame->crop_bottom);
const auto src_rect = SDL_FRect{ static_cast<float>(frame->crop_left),
static_cast<float>(frame->crop_top), static_cast<float>(frame_width),
static_cast<float>(frame_height) };
SDL_RenderTexture(renderer, mImage, &src_rect, nullptr);
SDL_RenderPresent(renderer);
}
/* Called regularly on the main thread where the SDL_Renderer was created. It
* handles updating the textures of decoded frames and displaying the latest
* frame.
*/
void VideoState::updateVideo(SDL_Window *screen, SDL_Renderer *renderer, bool redraw)
{
size_t read_idx{mPictQRead.load(std::memory_order_relaxed)};
Picture *vp{&mPictQ[read_idx]};
auto clocktime = mMovie.getMasterClock();
bool updated{false};
while(true)
{
size_t next_idx{(read_idx+1)%mPictQ.size()};
if(next_idx == mPictQWrite.load(std::memory_order_acquire))
break;
Picture *nextvp{&mPictQ[next_idx]};
if(clocktime < nextvp->mPts && !mMovie.mQuit.load(std::memory_order_relaxed))
{
/* For the first update, ensure the first frame gets shown. */
if(!mFirstUpdate || updated)
break;
}
vp = nextvp;
updated = true;
read_idx = next_idx;
}
if(mMovie.mQuit.load(std::memory_order_relaxed))
{
if(mEOS)
mFinalUpdate = true;
mPictQRead.store(read_idx, std::memory_order_release);
std::unique_lock<std::mutex>{mPictQMutex}.unlock();
mPictQCond.notify_one();
return;
}
AVFrame *frame{vp->mFrame.get()};
if(updated)
{
mPictQRead.store(read_idx, std::memory_order_release);
std::unique_lock<std::mutex>{mPictQMutex}.unlock();
mPictQCond.notify_one();
/* allocate or resize the buffer! */
if(!mImage || mWidth != frame->width || mHeight != frame->height
|| frame->format != mAVFormat)
{
if(mImage)
SDL_DestroyTexture(mImage);
mImage = nullptr;
mSwscaleCtx = nullptr;
auto fmtiter = std::find_if(TextureFormatMap.begin(), TextureFormatMap.end(),
[frame](const TextureFormatEntry &entry) noexcept
{ return frame->format == entry.avformat; });
if(fmtiter != TextureFormatMap.end())
{
auto props = SDLProps{};
props.setInt(SDL_PROP_TEXTURE_CREATE_FORMAT_NUMBER, fmtiter->sdlformat);
props.setInt(SDL_PROP_TEXTURE_CREATE_ACCESS_NUMBER, SDL_TEXTUREACCESS_STREAMING);
props.setInt(SDL_PROP_TEXTURE_CREATE_WIDTH_NUMBER, frame->width);
props.setInt(SDL_PROP_TEXTURE_CREATE_HEIGHT_NUMBER, frame->height);
/* Should be a better way to check YCbCr vs RGB. */
const auto ctype = (frame->format == AV_PIX_FMT_YUV420P
|| frame->format == AV_PIX_FMT_YUYV422
|| frame->format == AV_PIX_FMT_UYVY422 || frame->format == AV_PIX_FMT_NV12
|| frame->format == AV_PIX_FMT_NV21) ? SDL_COLOR_TYPE_YCBCR
: SDL_COLOR_TYPE_RGB;
const auto crange = std::invoke([frame]
{
switch(frame->color_range)
{
case AVCOL_RANGE_UNSPECIFIED: return SDL_COLOR_RANGE_UNKNOWN;
case AVCOL_RANGE_MPEG: return SDL_COLOR_RANGE_LIMITED;
case AVCOL_RANGE_JPEG: return SDL_COLOR_RANGE_FULL;
case AVCOL_RANGE_NB: break;
}
return SDL_COLOR_RANGE_UNKNOWN;
});
const auto cprims = std::invoke([frame]
{
switch(frame->color_primaries)
{
case AVCOL_PRI_RESERVED0: break;
case AVCOL_PRI_BT709: return SDL_COLOR_PRIMARIES_BT709;
case AVCOL_PRI_UNSPECIFIED: return SDL_COLOR_PRIMARIES_UNSPECIFIED;
case AVCOL_PRI_RESERVED: break;
case AVCOL_PRI_BT470M: return SDL_COLOR_PRIMARIES_BT470M;
case AVCOL_PRI_BT470BG: return SDL_COLOR_PRIMARIES_BT470BG;
case AVCOL_PRI_SMPTE170M: return SDL_COLOR_PRIMARIES_BT601;
case AVCOL_PRI_SMPTE240M: return SDL_COLOR_PRIMARIES_SMPTE240;
case AVCOL_PRI_FILM: return SDL_COLOR_PRIMARIES_GENERIC_FILM;
case AVCOL_PRI_BT2020: return SDL_COLOR_PRIMARIES_BT2020;
case AVCOL_PRI_SMPTE428: return SDL_COLOR_PRIMARIES_XYZ;
case AVCOL_PRI_SMPTE431: return SDL_COLOR_PRIMARIES_SMPTE431;
case AVCOL_PRI_SMPTE432: return SDL_COLOR_PRIMARIES_SMPTE432;
case AVCOL_PRI_EBU3213: return SDL_COLOR_PRIMARIES_EBU3213;
case AVCOL_PRI_NB: break;
}
return SDL_COLOR_PRIMARIES_UNKNOWN;
});
const auto ctransfer = std::invoke([frame]
{
switch(frame->color_trc)
{
case AVCOL_TRC_RESERVED0: break;
case AVCOL_TRC_BT709: return SDL_TRANSFER_CHARACTERISTICS_BT709;
case AVCOL_TRC_UNSPECIFIED: return SDL_TRANSFER_CHARACTERISTICS_UNSPECIFIED;
case AVCOL_TRC_RESERVED: break;
case AVCOL_TRC_GAMMA22: return SDL_TRANSFER_CHARACTERISTICS_GAMMA22;
case AVCOL_TRC_GAMMA28: return SDL_TRANSFER_CHARACTERISTICS_GAMMA28;
case AVCOL_TRC_SMPTE170M: return SDL_TRANSFER_CHARACTERISTICS_BT601;
case AVCOL_TRC_SMPTE240M: return SDL_TRANSFER_CHARACTERISTICS_SMPTE240;
case AVCOL_TRC_LINEAR: return SDL_TRANSFER_CHARACTERISTICS_LINEAR;
case AVCOL_TRC_LOG: return SDL_TRANSFER_CHARACTERISTICS_LOG100;
case AVCOL_TRC_LOG_SQRT: return SDL_TRANSFER_CHARACTERISTICS_LOG100_SQRT10;
case AVCOL_TRC_IEC61966_2_4: return SDL_TRANSFER_CHARACTERISTICS_IEC61966;
case AVCOL_TRC_BT1361_ECG: return SDL_TRANSFER_CHARACTERISTICS_BT1361;
case AVCOL_TRC_IEC61966_2_1: return SDL_TRANSFER_CHARACTERISTICS_SRGB;
case AVCOL_TRC_BT2020_10: return SDL_TRANSFER_CHARACTERISTICS_BT2020_10BIT;
case AVCOL_TRC_BT2020_12: return SDL_TRANSFER_CHARACTERISTICS_BT2020_12BIT;
case AVCOL_TRC_SMPTE2084: return SDL_TRANSFER_CHARACTERISTICS_PQ;
case AVCOL_TRC_SMPTE428: return SDL_TRANSFER_CHARACTERISTICS_SMPTE428;
case AVCOL_TRC_ARIB_STD_B67: return SDL_TRANSFER_CHARACTERISTICS_HLG;
case AVCOL_TRC_NB: break;
}
return SDL_TRANSFER_CHARACTERISTICS_UNKNOWN;
});
const auto cmatrix = std::invoke([frame]
{
switch(frame->colorspace)
{
case AVCOL_SPC_RGB: return SDL_MATRIX_COEFFICIENTS_IDENTITY;
case AVCOL_SPC_BT709: return SDL_MATRIX_COEFFICIENTS_BT709;
case AVCOL_SPC_UNSPECIFIED: return SDL_MATRIX_COEFFICIENTS_UNSPECIFIED;
case AVCOL_SPC_RESERVED: break;
case AVCOL_SPC_FCC: return SDL_MATRIX_COEFFICIENTS_FCC;
case AVCOL_SPC_BT470BG: return SDL_MATRIX_COEFFICIENTS_BT470BG;
case AVCOL_SPC_SMPTE170M: return SDL_MATRIX_COEFFICIENTS_BT601;
case AVCOL_SPC_SMPTE240M: return SDL_MATRIX_COEFFICIENTS_SMPTE240;
case AVCOL_SPC_YCGCO: return SDL_MATRIX_COEFFICIENTS_YCGCO;
case AVCOL_SPC_BT2020_NCL: return SDL_MATRIX_COEFFICIENTS_BT2020_NCL;
case AVCOL_SPC_BT2020_CL: return SDL_MATRIX_COEFFICIENTS_BT2020_CL;
case AVCOL_SPC_SMPTE2085: return SDL_MATRIX_COEFFICIENTS_SMPTE2085;
case AVCOL_SPC_CHROMA_DERIVED_NCL: return SDL_MATRIX_COEFFICIENTS_CHROMA_DERIVED_NCL;
case AVCOL_SPC_CHROMA_DERIVED_CL: return SDL_MATRIX_COEFFICIENTS_CHROMA_DERIVED_CL;
case AVCOL_SPC_ICTCP: return SDL_MATRIX_COEFFICIENTS_ICTCP;
case AVCOL_SPC_IPT_C2: break; // ???
case AVCOL_SPC_YCGCO_RE: return SDL_MATRIX_COEFFICIENTS_YCGCO; // ???
case AVCOL_SPC_YCGCO_RO: return SDL_MATRIX_COEFFICIENTS_YCGCO; // ???
case AVCOL_SPC_NB: break;
}
return SDL_MATRIX_COEFFICIENTS_UNSPECIFIED;
});
const auto cchromaloc = std::invoke([frame]
{
switch(frame->chroma_location)
{
case AVCHROMA_LOC_UNSPECIFIED: return SDL_CHROMA_LOCATION_NONE;
case AVCHROMA_LOC_LEFT: return SDL_CHROMA_LOCATION_LEFT;
case AVCHROMA_LOC_CENTER: return SDL_CHROMA_LOCATION_CENTER;
case AVCHROMA_LOC_TOPLEFT: return SDL_CHROMA_LOCATION_TOPLEFT;
case AVCHROMA_LOC_TOP: return SDL_CHROMA_LOCATION_TOPLEFT; // ???
case AVCHROMA_LOC_BOTTOMLEFT: return SDL_CHROMA_LOCATION_LEFT; // ???
case AVCHROMA_LOC_BOTTOM: return SDL_CHROMA_LOCATION_CENTER; // ???
case AVCHROMA_LOC_NB: break;
}
return SDL_CHROMA_LOCATION_NONE;
});
const auto colorspace = DefineSDLColorspace(ctype, crange, cprims, ctransfer,
cmatrix, cchromaloc);
props.setInt(SDL_PROP_TEXTURE_CREATE_COLORSPACE_NUMBER, colorspace);
mImage = SDL_CreateTextureWithProperties(renderer, props.getid());
if(!mImage)
fmt::println(stderr, "Failed to create texture!");
mWidth = frame->width;
mHeight = frame->height;
mSDLFormat = fmtiter->sdlformat;
mAVFormat = fmtiter->avformat;
}
else
{
/* If there's no matching format, convert to RGB24. */
fmt::println(stderr, "Could not find SDL texture format for pix_fmt {0:#x} ({0})",
as_unsigned(frame->format));
auto props = SDLProps{};
props.setInt(SDL_PROP_TEXTURE_CREATE_FORMAT_NUMBER, SDL_PIXELFORMAT_RGB24);
props.setInt(SDL_PROP_TEXTURE_CREATE_ACCESS_NUMBER, SDL_TEXTUREACCESS_STREAMING);
props.setInt(SDL_PROP_TEXTURE_CREATE_WIDTH_NUMBER, frame->width);
props.setInt(SDL_PROP_TEXTURE_CREATE_HEIGHT_NUMBER, frame->height);
mImage = SDL_CreateTextureWithProperties(renderer, props.getid());
if(!mImage)
fmt::println(stderr, "Failed to create texture!");
mWidth = frame->width;
mHeight = frame->height;
mSDLFormat = SDL_PIXELFORMAT_RGB24;
mAVFormat = frame->format;
mSwscaleCtx = SwsContextPtr{sws_getContext(
frame->width, frame->height, static_cast<AVPixelFormat>(frame->format),
frame->width, frame->height, AV_PIX_FMT_RGB24, 0,
nullptr, nullptr, nullptr)};
sws_setColorspaceDetails(mSwscaleCtx.get(), sws_getCoefficients(frame->colorspace),
(frame->color_range==AVCOL_RANGE_JPEG), sws_getCoefficients(SWS_CS_DEFAULT), 1,
0<<16, 1<<16, 1<<16);
}
}
int frame_width{frame->width - static_cast<int>(frame->crop_left + frame->crop_right)};
int frame_height{frame->height - static_cast<int>(frame->crop_top + frame->crop_bottom)};
if(mFirstUpdate && frame_width > 0 && frame_height > 0)
{
/* For the first update, set the window size to the video size. */
mFirstUpdate = false;
if(frame->sample_aspect_ratio.den != 0)
{
double aspect_ratio = av_q2d(frame->sample_aspect_ratio);
if(aspect_ratio >= 1.0)
frame_width = static_cast<int>(std::lround(frame_width * aspect_ratio));
else if(aspect_ratio > 0.0)
frame_height = static_cast<int>(std::lround(frame_height / aspect_ratio));
}
if(SDL_SetWindowSize(screen, frame_width, frame_height))
SDL_SyncWindow(screen);
SDL_SetRenderLogicalPresentation(renderer, frame_width, frame_height,
SDL_LOGICAL_PRESENTATION_LETTERBOX);
}
if(mImage)
{
if(mSDLFormat == SDL_PIXELFORMAT_IYUV || mSDLFormat == SDL_PIXELFORMAT_YV12)
SDL_UpdateYUVTexture(mImage, nullptr,
frame->data[0], frame->linesize[0],
frame->data[1], frame->linesize[1],
frame->data[2], frame->linesize[2]);
else if(mSDLFormat == SDL_PIXELFORMAT_NV12 || mSDLFormat == SDL_PIXELFORMAT_NV21)
SDL_UpdateNVTexture(mImage, nullptr,
frame->data[0], frame->linesize[0],
frame->data[1], frame->linesize[1]);
else if(mSwscaleCtx)
{
auto pixels = voidp{};
auto pitch = int{};
if(!SDL_LockTexture(mImage, nullptr, &pixels, &pitch))
fmt::println(stderr, "Failed to lock texture: {}", SDL_GetError());
else
{
/* Formats passing through mSwscaleCtx are converted to
* 24-bit RGB, which is interleaved/non-planar.
*/
const auto pict_data = std::array{static_cast<uint8_t*>(pixels)};
const auto pict_linesize = std::array{pitch};
sws_scale(mSwscaleCtx.get(), std::data(frame->data),
std::data(frame->linesize), 0, frame->height, pict_data.data(),
pict_linesize.data());
SDL_UnlockTexture(mImage);
}
}
else
SDL_UpdateTexture(mImage, nullptr, frame->data[0], frame->linesize[0]);
redraw = true;
}
}
if(redraw)
{
/* Show the picture! */
display(renderer, frame);
}
if(updated)
{
auto disp_time = get_avtime();
std::lock_guard<std::mutex> displock{mDispPtsMutex};
mDisplayPts = vp->mPts;
mDisplayPtsTime = disp_time;
}
if(mEOS.load(std::memory_order_acquire))
{
if((read_idx+1)%mPictQ.size() == mPictQWrite.load(std::memory_order_acquire))
{
mFinalUpdate = true;
std::unique_lock<std::mutex>{mPictQMutex}.unlock();
mPictQCond.notify_one();
}
}
}
int VideoState::handler()
{
std::for_each(mPictQ.begin(), mPictQ.end(),
[](Picture &pict) -> void
{ pict.mFrame = AVFramePtr{av_frame_alloc()}; });
/* Prefill the codec buffer. */
auto sender [[maybe_unused]] = std::async(std::launch::async, [this]()
{
while(true)
{
const int ret{mQueue.sendPacket(mCodecCtx.get())};
if(ret == AVErrorEOF) break;
}
});
{
std::lock_guard<std::mutex> displock{mDispPtsMutex};
mDisplayPtsTime = get_avtime();
}
auto current_pts = nanoseconds::zero();
while(true)
{
size_t write_idx{mPictQWrite.load(std::memory_order_relaxed)};
Picture *vp{&mPictQ[write_idx]};
/* Retrieve video frame. */
auto get_frame = [this](AVFrame *frame) -> AVFrame*
{
while(int ret{mQueue.receiveFrame(mCodecCtx.get(), frame)})
{
if(ret == AVErrorEOF) return nullptr;
fmt::println(stderr, "Failed to receive frame: {}", ret);
}
return frame;
};
auto *decoded_frame = get_frame(vp->mFrame.get());
if(!decoded_frame) break;
/* Get the PTS for this frame. */
if(decoded_frame->best_effort_timestamp != AVNoPtsValue)
current_pts = duration_cast<nanoseconds>(seconds_d64{av_q2d(mStream->time_base) *
static_cast<double>(decoded_frame->best_effort_timestamp)});
vp->mPts = current_pts;
/* Update the video clock to the next expected PTS. */
auto frame_delay = av_q2d(mCodecCtx->time_base);
frame_delay += decoded_frame->repeat_pict * (frame_delay * 0.5);
current_pts += duration_cast<nanoseconds>(seconds_d64{frame_delay});
/* Put the frame in the queue to be loaded into a texture and displayed
* by the rendering thread.
*/
write_idx = (write_idx+1)%mPictQ.size();
mPictQWrite.store(write_idx, std::memory_order_release);
if(write_idx == mPictQRead.load(std::memory_order_acquire))
{
/* Wait until we have space for a new pic */
auto lock = std::unique_lock{mPictQMutex};
mPictQCond.wait(lock, [write_idx,this]() noexcept
{ return write_idx != mPictQRead.load(std::memory_order_acquire); });
}
}
mEOS = true;
auto lock = std::unique_lock{mPictQMutex};
mPictQCond.wait(lock, [this]() noexcept { return mFinalUpdate.load(); });
return 0;
}
int MovieState::decode_interrupt_cb(void *ctx)
{
return static_cast<MovieState*>(ctx)->mQuit.load(std::memory_order_relaxed);
}
bool MovieState::prepare()
{
auto intcb = AVIOInterruptCB{decode_interrupt_cb, this};
if(avio_open2(al::out_ptr(mIOContext), mFilename.c_str(), AVIO_FLAG_READ, &intcb, nullptr) < 0)
{
fmt::println(stderr, "Failed to open {}", mFilename);
return false;
}
/* Open movie file. If avformat_open_input fails it will automatically free
* this context.
*/
mFormatCtx.reset(avformat_alloc_context());
mFormatCtx->pb = mIOContext.get();
mFormatCtx->interrupt_callback = intcb;
if(avformat_open_input(al::inout_ptr(mFormatCtx), mFilename.c_str(), nullptr, nullptr) < 0)
{
fmt::println(stderr, "Failed to open {}", mFilename);
return false;
}
/* Retrieve stream information */
if(avformat_find_stream_info(mFormatCtx.get(), nullptr) < 0)
{
fmt::println(stderr, "{}: failed to find stream info", mFilename);
return false;
}
/* Dump information about file onto standard error */
av_dump_format(mFormatCtx.get(), 0, mFilename.c_str(), 0);
mParseThread = std::thread{&MovieState::parse_handler, this};
std::unique_lock<std::mutex> slock{mStartupMutex};
while(!mStartupDone) mStartupCond.wait(slock);
return true;
}
void MovieState::setTitle(SDL_Window *window) const
{
/* rfind returns npos if the char isn't found, and npos+1==0, which will
* give the desired result for finding the filename portion.
*/
const auto fpos = std::max(mFilename.rfind('/')+1, mFilename.rfind('\\')+1);
const auto title = fmt::format("{} - {}", std::string_view{mFilename}.substr(fpos), AppName);
SDL_SetWindowTitle(window, title.c_str());
}
nanoseconds MovieState::getClock() const
{
if(mClockBase == microseconds::min())
return nanoseconds::zero();
return get_avtime() - mClockBase;
}
nanoseconds MovieState::getMasterClock()
{
if(mAVSyncType == SyncMaster::Video && mVideo.mStream)
return mVideo.getClock();
if(mAVSyncType == SyncMaster::Audio && mAudio.mStream)
return mAudio.getClock();
return getClock();
}
nanoseconds MovieState::getDuration() const
{ return std::chrono::duration<int64_t,std::ratio<1,AV_TIME_BASE>>(mFormatCtx->duration); }
bool MovieState::streamComponentOpen(AVStream *stream)
{
/* Get a pointer to the codec context for the stream, and open the
* associated codec.
*/
AVCodecCtxPtr avctx{avcodec_alloc_context3(nullptr)};
if(!avctx) return false;
if(avcodec_parameters_to_context(avctx.get(), stream->codecpar))
return false;
const AVCodec *codec{avcodec_find_decoder(avctx->codec_id)};
if(!codec || avcodec_open2(avctx.get(), codec, nullptr) < 0)
{
fmt::println(stderr, "Unsupported codec: {} ({:#x})", avcodec_get_name(avctx->codec_id),
al::to_underlying(avctx->codec_id));
return false;
}
/* Initialize and start the media type handler */
switch(avctx->codec_type)
{
case AVMEDIA_TYPE_AUDIO:
mAudio.mStream = stream;
mAudio.mCodecCtx = std::move(avctx);
return true;
case AVMEDIA_TYPE_VIDEO:
mVideo.mStream = stream;
mVideo.mCodecCtx = std::move(avctx);
return true;
default:
break;
}
return false;
}
int MovieState::parse_handler()
{
auto &audio_queue = mAudio.mQueue;
auto &video_queue = mVideo.mQueue;
int video_index{-1};
int audio_index{-1};
/* Find the first video and audio streams */
const auto ctxstreams = al::span{mFormatCtx->streams, mFormatCtx->nb_streams};
for(size_t i{0};i < ctxstreams.size();++i)
{
auto codecpar = ctxstreams[i]->codecpar;
if(codecpar->codec_type == AVMEDIA_TYPE_VIDEO && !DisableVideo && video_index < 0
&& streamComponentOpen(ctxstreams[i]))
video_index = static_cast<int>(i);
else if(codecpar->codec_type == AVMEDIA_TYPE_AUDIO && audio_index < 0
&& streamComponentOpen(ctxstreams[i]))
audio_index = static_cast<int>(i);
}
{
std::unique_lock<std::mutex> slock{mStartupMutex};
mStartupDone = true;
}
mStartupCond.notify_all();
if(video_index < 0 && audio_index < 0)
{
fmt::println(stderr, "{}: could not open codecs", mFilename);
mQuit = true;
}
/* Set the base time 750ms ahead of the current av time. */
mClockBase = get_avtime() + milliseconds{750};
if(audio_index >= 0)
mAudioThread = std::thread{&AudioState::handler, &mAudio};
if(video_index >= 0)
mVideoThread = std::thread{&VideoState::handler, &mVideo};
/* Main packet reading/dispatching loop */
AVPacketPtr packet{av_packet_alloc()};
while(!mQuit.load(std::memory_order_relaxed))
{
if(av_read_frame(mFormatCtx.get(), packet.get()) < 0)
break;
/* Copy the packet into the queue it's meant for. */
if(packet->stream_index == video_index)
{
while(!mQuit.load(std::memory_order_acquire) && !video_queue.put(packet.get()))
std::this_thread::sleep_for(milliseconds{100});
}
else if(packet->stream_index == audio_index)
{
while(!mQuit.load(std::memory_order_acquire) && !audio_queue.put(packet.get()))
std::this_thread::sleep_for(milliseconds{100});
}
av_packet_unref(packet.get());
}
/* Finish the queues so the receivers know nothing more is coming. */
video_queue.setFinished();
audio_queue.setFinished();
/* all done - wait for it */
if(mVideoThread.joinable())
mVideoThread.join();
if(mAudioThread.joinable())
mAudioThread.join();
mVideo.mEOS = true;
std::unique_lock<std::mutex> lock{mVideo.mPictQMutex};
while(!mVideo.mFinalUpdate)
mVideo.mPictQCond.wait(lock);
lock.unlock();
SDL_Event evt{};
evt.user.type = FF_MOVIE_DONE_EVENT;
SDL_PushEvent(&evt);
return 0;
}
void MovieState::stop()
{
mQuit = true;
mAudio.mQueue.flush();
mVideo.mQueue.flush();
}
// Helper method to print the time with human-readable formatting.
auto PrettyTime(seconds t) -> std::string
{
using minutes = std::chrono::minutes;
using hours = std::chrono::hours;
if(t.count() < 0)
return "0s";
// Only handle up to hour formatting
if(t >= hours{1})
return fmt::format("{}h{:02}m{:02}s", duration_cast<hours>(t).count(),
duration_cast<minutes>(t).count()%60, t.count()%60);
return fmt::format("{}m{:02}s", duration_cast<minutes>(t).count(), t.count()%60);
}
int main(al::span<std::string_view> args)
{
SDL_SetMainReady();
if(args.size() < 2)
{
fmt::println(stderr, "Usage: {} [-device <device name>] [-direct] <files...>", args[0]);
return 1;
}
/* Initialize networking protocols */
avformat_network_init();
if(!SDL_Init(SDL_INIT_VIDEO | SDL_INIT_EVENTS))
{
fmt::println(stderr, "Could not initialize SDL - {}", SDL_GetError());
return 1;
}
/* Make a window to put our video */
auto *screen = SDL_CreateWindow(AppName.c_str(), 640, 480, SDL_WINDOW_RESIZABLE);
if(!screen)
{
fmt::println(stderr, "SDL: could not set video mode - exiting");
return 1;
}
SDL_SetWindowSurfaceVSync(screen, 1);
/* Make a renderer to handle the texture image surface and rendering. */
auto *renderer = SDL_CreateRenderer(screen, nullptr);
if(!renderer)
{
fmt::println(stderr, "SDL: could not create renderer - exiting");
return 1;
}
SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
SDL_RenderFillRect(renderer, nullptr);
SDL_RenderPresent(renderer);
/* Open an audio device */
args = args.subspan(1);
if(InitAL(args) != 0)
return 1;
{
ALCdevice *device{alcGetContextsDevice(alcGetCurrentContext())};
if(alcIsExtensionPresent(device,"ALC_SOFT_device_clock"))
{
fmt::println("Found ALC_SOFT_device_clock");
alcGetInteger64vSOFT = reinterpret_cast<LPALCGETINTEGER64VSOFT>(
alcGetProcAddress(device, "alcGetInteger64vSOFT"));
}
}
if(alIsExtensionPresent("AL_SOFT_source_latency"))
{
fmt::println("Found AL_SOFT_source_latency");
alGetSourcei64vSOFT = reinterpret_cast<LPALGETSOURCEI64VSOFT>(
alGetProcAddress("alGetSourcei64vSOFT"));
}
if(alIsExtensionPresent("AL_SOFT_events"))
{
fmt::println("Found AL_SOFT_events");
alEventControlSOFT = reinterpret_cast<LPALEVENTCONTROLSOFT>(
alGetProcAddress("alEventControlSOFT"));
alEventCallbackSOFT = reinterpret_cast<LPALEVENTCALLBACKSOFT>(
alGetProcAddress("alEventCallbackSOFT"));
}
if(alIsExtensionPresent("AL_SOFT_callback_buffer"))
{
fmt::println("Found AL_SOFT_callback_buffer");
alBufferCallbackSOFT = reinterpret_cast<LPALBUFFERCALLBACKSOFT>(
alGetProcAddress("alBufferCallbackSOFT"));
}
size_t fileidx{0};
for(;fileidx < args.size();++fileidx)
{
if(args[fileidx] == "-direct")
{
if(alIsExtensionPresent("AL_SOFT_direct_channels_remix"))
{
fmt::println("Found AL_SOFT_direct_channels_remix");
DirectOutMode = AL_REMIX_UNMATCHED_SOFT;
}
else if(alIsExtensionPresent("AL_SOFT_direct_channels"))
{
fmt::println("Found AL_SOFT_direct_channels");
DirectOutMode = AL_DROP_UNMATCHED_SOFT;
}
else
fmt::println(stderr, "AL_SOFT_direct_channels not supported for direct output");
}
else if(args[fileidx] == "-wide")
{
if(!alIsExtensionPresent("AL_EXT_STEREO_ANGLES"))
fmt::println(stderr, "AL_EXT_STEREO_ANGLES not supported for wide stereo");
else
{
fmt::println("Found AL_EXT_STEREO_ANGLES");
EnableWideStereo = true;
}
}
else if(args[fileidx] == "-uhj")
{
if(!alIsExtensionPresent("AL_SOFT_UHJ"))
fmt::println(stderr, "AL_SOFT_UHJ not supported for UHJ decoding");
else
{
fmt::println("Found AL_SOFT_UHJ");
EnableUhj = true;
}
}
else if(args[fileidx] == "-superstereo")
{
if(!alIsExtensionPresent("AL_SOFT_UHJ"))
fmt::println(stderr, "AL_SOFT_UHJ not supported for Super Stereo decoding");
else
{
fmt::println("Found AL_SOFT_UHJ (Super Stereo)");
EnableSuperStereo = true;
}
}
else if(args[fileidx] == "-novideo")
DisableVideo = true;
else
break;
}
auto movState = std::unique_ptr<MovieState>{};
while(fileidx < args.size() && !movState)
{
movState = std::make_unique<MovieState>(args[fileidx++]);
if(!movState->prepare()) movState = nullptr;
}
if(!movState)
{
fmt::println(stderr, "Could not start a video");
return 1;
}
movState->setTitle(screen);
/* Default to going to the next movie at the end of one. */
enum class EomAction {
Next, Quit
} eom_action{EomAction::Next};
seconds last_time{seconds::min()};
while(true)
{
auto event = SDL_Event{};
auto have_event = SDL_WaitEventTimeout(&event, 10);
const auto cur_time = duration_cast<seconds>(movState->getMasterClock());
if(cur_time != last_time)
{
const auto end_time = duration_cast<seconds>(movState->getDuration());
fmt::print(" \r {} / {}", PrettyTime(cur_time), PrettyTime(end_time));
fflush(stdout);
last_time = cur_time;
}
auto force_redraw = false;
while(have_event)
{
switch(event.type)
{
case SDL_EVENT_KEY_DOWN:
switch(event.key.key)
{
case SDLK_ESCAPE:
movState->stop();
eom_action = EomAction::Quit;
break;
case SDLK_N:
movState->stop();
eom_action = EomAction::Next;
break;
default:
break;
}
break;
case SDL_EVENT_WINDOW_SHOWN:
case SDL_EVENT_WINDOW_EXPOSED:
case SDL_EVENT_WINDOW_RESIZED:
case SDL_EVENT_WINDOW_PIXEL_SIZE_CHANGED:
case SDL_EVENT_WINDOW_SAFE_AREA_CHANGED:
case SDL_EVENT_RENDER_TARGETS_RESET:
SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
SDL_RenderFillRect(renderer, nullptr);
force_redraw = true;
break;
case SDL_EVENT_QUIT:
movState->stop();
eom_action = EomAction::Quit;
break;
case FF_MOVIE_DONE_EVENT:
fmt::println("");
last_time = seconds::min();
if(eom_action != EomAction::Quit)
{
movState = nullptr;
while(fileidx < args.size() && !movState)
{
movState = std::make_unique<MovieState>(args[fileidx++]);
if(!movState->prepare()) movState = nullptr;
}
if(movState)
{
movState->setTitle(screen);
break;
}
}
/* Nothing more to play. Shut everything down and quit. */
movState = nullptr;
CloseAL();
SDL_DestroyRenderer(renderer);
renderer = nullptr;
SDL_DestroyWindow(screen);
screen = nullptr;
SDL_QuitSubSystem(SDL_INIT_VIDEO | SDL_INIT_EVENTS);
exit(0);
default:
break;
}
have_event = SDL_PollEvent(&event);
}
movState->mVideo.updateVideo(screen, renderer, force_redraw);
}
fmt::println(stderr, "SDL_WaitEvent error - {}", SDL_GetError());
return 1;
}
} // namespace
int main(int argc, char *argv[])
{
assert(argc >= 0);
auto args = std::vector<std::string_view>(static_cast<unsigned int>(argc));
std::copy_n(argv, args.size(), args.begin());
return main(al::span{args});
}