mirror of
https://github.com/TorqueGameEngines/Torque3D.git
synced 2026-01-19 20:24:49 +00:00
This commit deals with the problem that the keyframe timestamps are not standardized. Seconds, milliseconds and ticks are used depending on the import format. There is no metadata or property that specifies the format used, so the option is exposed to the user as part of the import options gui.
328 lines
11 KiB
C++
328 lines
11 KiB
C++
//-----------------------------------------------------------------------------
|
|
// Copyright (c) 2012 GarageGames, LLC
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to
|
|
// deal in the Software without restriction, including without limitation the
|
|
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
// sell copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
// IN THE SOFTWARE.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "platform/platform.h"
|
|
#include "ts/loader/appSequence.h"
|
|
#include "ts/assimp/assimpAppNode.h"
|
|
#include "ts/assimp/assimpAppMesh.h"
|
|
|
|
// assimp include files.
|
|
#include <assimp/cimport.h>
|
|
#include <assimp/scene.h>
|
|
#include <assimp/postprocess.h>
|
|
#include <assimp/types.h>
|
|
|
|
aiAnimation* AssimpAppNode::sActiveSequence = NULL;
|
|
F32 AssimpAppNode::sTimeMultiplier = 1.0f;
|
|
|
|
AssimpAppNode::AssimpAppNode(const struct aiScene* scene, const struct aiNode* node, AssimpAppNode* parent)
|
|
: mInvertMeshes(false),
|
|
mLastTransformTime(TSShapeLoader::DefaultTime - 1),
|
|
mDefaultTransformValid(false)
|
|
{
|
|
mScene = scene;
|
|
mNode = node;
|
|
appParent = parent;
|
|
|
|
mName = dStrdup(mNode->mName.C_Str());
|
|
if ( dStrlen(mName) == 0 )
|
|
{
|
|
const char* defaultName = "null";
|
|
mName = dStrdup(defaultName);
|
|
}
|
|
|
|
mParentName = dStrdup(parent ? parent->getName() : "ROOT");
|
|
assimpToTorqueMat(node->mTransformation, mNodeTransform);
|
|
Con::printf("[ASSIMP] Node Created: %s, Parent: %s", mName, mParentName);
|
|
}
|
|
|
|
// Get all child nodes
|
|
void AssimpAppNode::buildChildList()
|
|
{
|
|
if (!mNode)
|
|
{
|
|
mNode = mScene->mRootNode;
|
|
}
|
|
|
|
for (U32 n = 0; n < mNode->mNumChildren; ++n) {
|
|
mChildNodes.push_back(new AssimpAppNode(mScene, mNode->mChildren[n], this));
|
|
}
|
|
}
|
|
|
|
// Get all geometry attached to this node
|
|
void AssimpAppNode::buildMeshList()
|
|
{
|
|
for (U32 n = 0; n < mNode->mNumMeshes; ++n)
|
|
{
|
|
const struct aiMesh* mesh = mScene->mMeshes[mNode->mMeshes[n]];
|
|
mMeshes.push_back(new AssimpAppMesh(mesh, this));
|
|
}
|
|
}
|
|
|
|
MatrixF AssimpAppNode::getTransform(F32 time)
|
|
{
|
|
// Check if we can use the last computed transform
|
|
if (time == mLastTransformTime)
|
|
return mLastTransform;
|
|
|
|
if (appParent) {
|
|
// Get parent node's transform
|
|
mLastTransform = appParent->getTransform(time);
|
|
}
|
|
else {
|
|
// no parent (ie. root level) => scale by global shape <unit>
|
|
mLastTransform.identity();
|
|
if (!isBounds())
|
|
convertMat(mLastTransform);
|
|
|
|
//mLastTransform.scale(ColladaUtils::getOptions().unit);
|
|
}
|
|
|
|
// If this node is animated in the active sequence, fetch the animated transform
|
|
if (sActiveSequence)
|
|
{
|
|
MatrixF mat(true);
|
|
getAnimatedTransform(mat, time, sActiveSequence);
|
|
mLastTransform.mul(mat);
|
|
}
|
|
else
|
|
mLastTransform.mul(mNodeTransform);
|
|
|
|
mLastTransformTime = time;
|
|
return mLastTransform;
|
|
}
|
|
|
|
void AssimpAppNode::getAnimatedTransform(MatrixF& mat, F32 t, aiAnimation* animSeq)
|
|
{
|
|
// Find the channel for this node
|
|
for (U32 i = 0; i < animSeq->mNumChannels; ++i)
|
|
{
|
|
if (strcmp(mName, animSeq->mChannels[i]->mNodeName.C_Str()) == 0)
|
|
{
|
|
aiNodeAnim *nodeAnim = animSeq->mChannels[i];
|
|
Point3F trans(Point3F::Zero);
|
|
Point3F scale(Point3F::One);
|
|
QuatF rot;
|
|
rot.identity();
|
|
|
|
// Transform
|
|
if (nodeAnim->mNumPositionKeys == 1)
|
|
trans.set(nodeAnim->mPositionKeys[0].mValue.x, nodeAnim->mPositionKeys[0].mValue.y, nodeAnim->mPositionKeys[0].mValue.z);
|
|
else
|
|
{
|
|
Point3F curPos, lastPos;
|
|
F32 lastT = 0.0;
|
|
for (U32 key = 0; key < nodeAnim->mNumPositionKeys; ++key)
|
|
{
|
|
F32 curT = sTimeMultiplier * (F32)nodeAnim->mPositionKeys[key].mTime;
|
|
curPos.set(nodeAnim->mPositionKeys[key].mValue.x, nodeAnim->mPositionKeys[key].mValue.y, nodeAnim->mPositionKeys[key].mValue.z);
|
|
if (curT > t)
|
|
{
|
|
F32 factor = (t - lastT) / (curT - lastT);
|
|
trans.interpolate(lastPos, curPos, factor);
|
|
break;
|
|
}
|
|
else if ((curT == t) || (key == nodeAnim->mNumPositionKeys - 1))
|
|
{
|
|
trans = curPos;
|
|
break;
|
|
}
|
|
|
|
lastT = curT;
|
|
lastPos = curPos;
|
|
}
|
|
}
|
|
|
|
// Rotation
|
|
if (nodeAnim->mNumRotationKeys == 1)
|
|
rot.set(nodeAnim->mRotationKeys[0].mValue.x, nodeAnim->mRotationKeys[0].mValue.y,
|
|
nodeAnim->mRotationKeys[0].mValue.z, nodeAnim->mRotationKeys[0].mValue.w);
|
|
else
|
|
{
|
|
QuatF curRot, lastRot;
|
|
F32 lastT = 0.0;
|
|
for (U32 key = 0; key < nodeAnim->mNumRotationKeys; ++key)
|
|
{
|
|
F32 curT = sTimeMultiplier * (F32)nodeAnim->mRotationKeys[key].mTime;
|
|
curRot.set(nodeAnim->mRotationKeys[key].mValue.x, nodeAnim->mRotationKeys[key].mValue.y,
|
|
nodeAnim->mRotationKeys[key].mValue.z, nodeAnim->mRotationKeys[key].mValue.w);
|
|
if (curT > t)
|
|
{
|
|
F32 factor = (t - lastT) / (curT - lastT);
|
|
rot.interpolate(lastRot, curRot, factor);
|
|
break;
|
|
}
|
|
else if ((curT == t) || (key == nodeAnim->mNumRotationKeys - 1))
|
|
{
|
|
rot = curRot;
|
|
break;
|
|
}
|
|
|
|
lastT = curT;
|
|
lastRot = curRot;
|
|
}
|
|
}
|
|
|
|
// Scale
|
|
if (nodeAnim->mNumScalingKeys == 1)
|
|
scale.set(nodeAnim->mScalingKeys[0].mValue.x, nodeAnim->mScalingKeys[0].mValue.y, nodeAnim->mScalingKeys[0].mValue.z);
|
|
else
|
|
{
|
|
Point3F curScale, lastScale;
|
|
F32 lastT = 0.0;
|
|
for (U32 key = 0; key < nodeAnim->mNumScalingKeys; ++key)
|
|
{
|
|
F32 curT = sTimeMultiplier * (F32)nodeAnim->mScalingKeys[key].mTime;
|
|
curScale.set(nodeAnim->mScalingKeys[key].mValue.x, nodeAnim->mScalingKeys[key].mValue.y, nodeAnim->mScalingKeys[key].mValue.z);
|
|
if (curT > t)
|
|
{
|
|
F32 factor = (t - lastT) / (curT - lastT);
|
|
scale.interpolate(lastScale, curScale, factor);
|
|
break;
|
|
}
|
|
else if ((curT == t) || (key == nodeAnim->mNumScalingKeys - 1))
|
|
{
|
|
scale = curScale;
|
|
break;
|
|
}
|
|
|
|
lastT = curT;
|
|
lastScale = curScale;
|
|
}
|
|
}
|
|
|
|
rot.setMatrix(&mat);
|
|
mat.inverse();
|
|
mat.setPosition(trans);
|
|
mat.scale(scale);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Node not found in the animation channels
|
|
mat = mNodeTransform;
|
|
}
|
|
|
|
bool AssimpAppNode::animatesTransform(const AppSequence* appSeq)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/// Get the world transform of the node at the specified time
|
|
MatrixF AssimpAppNode::getNodeTransform(F32 time)
|
|
{
|
|
// Avoid re-computing the default transform if possible
|
|
if (mDefaultTransformValid && time == TSShapeLoader::DefaultTime)
|
|
{
|
|
return mDefaultNodeTransform;
|
|
}
|
|
else
|
|
{
|
|
MatrixF nodeTransform = getTransform(time);
|
|
|
|
// Check for inverted node coordinate spaces => can happen when modelers
|
|
// use the 'mirror' tool in their 3d app. Shows up as negative <scale>
|
|
// transforms in the collada model.
|
|
if (m_matF_determinant(nodeTransform) < 0.0f)
|
|
{
|
|
// Mark this node as inverted so we can mirror mesh geometry, then
|
|
// de-invert the transform matrix
|
|
mInvertMeshes = true;
|
|
nodeTransform.scale(Point3F(1, 1, -1));
|
|
}
|
|
|
|
// Cache the default transform
|
|
if (time == TSShapeLoader::DefaultTime)
|
|
{
|
|
mDefaultTransformValid = true;
|
|
mDefaultNodeTransform = nodeTransform;
|
|
}
|
|
|
|
return nodeTransform;
|
|
}
|
|
}
|
|
|
|
void AssimpAppNode::assimpToTorqueMat(const aiMatrix4x4& inAssimpMat, MatrixF& outMat)
|
|
{
|
|
outMat.setRow(0, Point4F((F32)inAssimpMat.a1, (F32)inAssimpMat.a2,
|
|
(F32)inAssimpMat.a3, (F32)inAssimpMat.a4));
|
|
|
|
outMat.setRow(1, Point4F((F32)inAssimpMat.b1, (F32)inAssimpMat.b2,
|
|
(F32)inAssimpMat.b3, (F32)inAssimpMat.b4));
|
|
|
|
outMat.setRow(2, Point4F((F32)inAssimpMat.c1, (F32)inAssimpMat.c2,
|
|
(F32)inAssimpMat.c3, (F32)inAssimpMat.c4));
|
|
|
|
outMat.setRow(3, Point4F((F32)inAssimpMat.d1, (F32)inAssimpMat.d2,
|
|
(F32)inAssimpMat.d3, (F32)inAssimpMat.d4));
|
|
}
|
|
|
|
void AssimpAppNode::convertMat(MatrixF& outMat)
|
|
{
|
|
MatrixF rot(true);
|
|
|
|
// This is copied directly from ColladaUtils::convertTransform()
|
|
// ColladaUtils::getOptions().upAxis has been temporarily replaced with $Assimp::OverrideUpAxis for testing
|
|
// We need a plan for how the full set of assimp import options and settings is going to be managed.
|
|
switch (Con::getIntVariable("$Assimp::OverrideUpAxis", 2))
|
|
{
|
|
case 0: //UPAXISTYPE_X_UP:
|
|
// rotate 90 around Y-axis, then 90 around Z-axis
|
|
rot(0, 0) = 0.0f; rot(1, 0) = 1.0f;
|
|
rot(1, 1) = 0.0f; rot(2, 1) = 1.0f;
|
|
rot(0, 2) = 1.0f; rot(2, 2) = 0.0f;
|
|
|
|
// pre-multiply the transform by the rotation matrix
|
|
outMat.mulL(rot);
|
|
break;
|
|
|
|
case 1: //UPAXISTYPE_Y_UP:
|
|
// rotate 180 around Y-axis, then 90 around X-axis
|
|
rot(0, 0) = -1.0f;
|
|
rot(1, 1) = 0.0f; rot(2, 1) = 1.0f;
|
|
rot(1, 2) = 1.0f; rot(2, 2) = 0.0f;
|
|
|
|
// pre-multiply the transform by the rotation matrix
|
|
outMat.mulL(rot);
|
|
break;
|
|
|
|
case 2: //UPAXISTYPE_Z_UP:
|
|
default:
|
|
// nothing to do
|
|
break;
|
|
}
|
|
}
|
|
|
|
aiNode* AssimpAppNode::findChildNodeByName(const char* nodeName, aiNode* rootNode)
|
|
{
|
|
aiNode* retNode = NULL;
|
|
if (strcmp(nodeName, rootNode->mName.C_Str()) == 0)
|
|
return rootNode;
|
|
|
|
for (U32 i = 0; i < rootNode->mNumChildren; ++i)
|
|
{
|
|
retNode = findChildNodeByName(nodeName, rootNode->mChildren[i]);
|
|
if (retNode)
|
|
return retNode;
|
|
}
|
|
return nullptr;
|
|
} |