Torque3D/Engine/source/math/mMatrix.cpp
marauder2k7 888332a85c rest of the implementation
apparently templated classes need all functions to be inline, otherwise unresolved symbols
macro for switching between matrixf and templated
few functions that were missed
2024-07-28 14:35:34 +01:00

223 lines
8 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "core/strings/stringFunctions.h"
#include "core/frameAllocator.h"
#include "math/mMatrix.h"
#include "console/console.h"
#include "console/enginePrimitives.h"
#include "console/engineTypes.h"
#ifndef USE_TEMPLATE_MATRIX
const MatrixF MatrixF::Identity( true );
// idx(i,j) is index to element in column i, row j
void MatrixF::transposeTo(F32 *matrix) const
{
matrix[idx(0,0)] = m[idx(0,0)];
matrix[idx(0,1)] = m[idx(1,0)];
matrix[idx(0,2)] = m[idx(2,0)];
matrix[idx(0,3)] = m[idx(3,0)];
matrix[idx(1,0)] = m[idx(0,1)];
matrix[idx(1,1)] = m[idx(1,1)];
matrix[idx(1,2)] = m[idx(2,1)];
matrix[idx(1,3)] = m[idx(3,1)];
matrix[idx(2,0)] = m[idx(0,2)];
matrix[idx(2,1)] = m[idx(1,2)];
matrix[idx(2,2)] = m[idx(2,2)];
matrix[idx(2,3)] = m[idx(3,2)];
matrix[idx(3,0)] = m[idx(0,3)];
matrix[idx(3,1)] = m[idx(1,3)];
matrix[idx(3,2)] = m[idx(2,3)];
matrix[idx(3,3)] = m[idx(3,3)];
}
bool MatrixF::isAffine() const
{
// An affine transform is defined by the following structure
//
// [ X X X P ]
// [ X X X P ]
// [ X X X P ]
// [ 0 0 0 1 ]
//
// Where X is an orthonormal 3x3 submatrix and P is an arbitrary translation
// We'll check in the following order:
// 1: [3][3] must be 1
// 2: Shear portion must be zero
// 3: Dot products of rows and columns must be zero
// 4: Length of rows and columns must be 1
//
if (m[idx(3,3)] != 1.0f)
return false;
if (m[idx(0,3)] != 0.0f ||
m[idx(1,3)] != 0.0f ||
m[idx(2,3)] != 0.0f)
return false;
Point3F one, two, three;
getColumn(0, &one);
getColumn(1, &two);
getColumn(2, &three);
if (mDot(one, two) > 0.0001f ||
mDot(one, three) > 0.0001f ||
mDot(two, three) > 0.0001f)
return false;
if (mFabs(1.0f - one.lenSquared()) > 0.0001f ||
mFabs(1.0f - two.lenSquared()) > 0.0001f ||
mFabs(1.0f - three.lenSquared()) > 0.0001f)
return false;
getRow(0, &one);
getRow(1, &two);
getRow(2, &three);
if (mDot(one, two) > 0.0001f ||
mDot(one, three) > 0.0001f ||
mDot(two, three) > 0.0001f)
return false;
if (mFabs(1.0f - one.lenSquared()) > 0.0001f ||
mFabs(1.0f - two.lenSquared()) > 0.0001f ||
mFabs(1.0f - three.lenSquared()) > 0.0001f)
return false;
// We're ok.
return true;
}
// Perform inverse on full 4x4 matrix. Used in special cases only, so not at all optimized.
bool MatrixF::fullInverse()
{
Point4F a,b,c,d;
getRow(0,&a);
getRow(1,&b);
getRow(2,&c);
getRow(3,&d);
// det = a0*b1*c2*d3 - a0*b1*c3*d2 - a0*c1*b2*d3 + a0*c1*b3*d2 + a0*d1*b2*c3 - a0*d1*b3*c2 -
// b0*a1*c2*d3 + b0*a1*c3*d2 + b0*c1*a2*d3 - b0*c1*a3*d2 - b0*d1*a2*c3 + b0*d1*a3*c2 +
// c0*a1*b2*d3 - c0*a1*b3*d2 - c0*b1*a2*d3 + c0*b1*a3*d2 + c0*d1*a2*b3 - c0*d1*a3*b2 -
// d0*a1*b2*c3 + d0*a1*b3*c2 + d0*b1*a2*c3 - d0*b1*a3*c2 - d0*c1*a2*b3 + d0*c1*a3*b2
F32 det = a.x*b.y*c.z*d.w - a.x*b.y*c.w*d.z - a.x*c.y*b.z*d.w + a.x*c.y*b.w*d.z + a.x*d.y*b.z*c.w - a.x*d.y*b.w*c.z
- b.x*a.y*c.z*d.w + b.x*a.y*c.w*d.z + b.x*c.y*a.z*d.w - b.x*c.y*a.w*d.z - b.x*d.y*a.z*c.w + b.x*d.y*a.w*c.z
+ c.x*a.y*b.z*d.w - c.x*a.y*b.w*d.z - c.x*b.y*a.z*d.w + c.x*b.y*a.w*d.z + c.x*d.y*a.z*b.w - c.x*d.y*a.w*b.z
- d.x*a.y*b.z*c.w + d.x*a.y*b.w*c.z + d.x*b.y*a.z*c.w - d.x*b.y*a.w*c.z - d.x*c.y*a.z*b.w + d.x*c.y*a.w*b.z;
if (mFabs(det)<0.00001f)
return false;
Point4F aa,bb,cc,dd;
aa.x = b.y*c.z*d.w - b.y*c.w*d.z - c.y*b.z*d.w + c.y*b.w*d.z + d.y*b.z*c.w - d.y*b.w*c.z;
aa.y = -a.y*c.z*d.w + a.y*c.w*d.z + c.y*a.z*d.w - c.y*a.w*d.z - d.y*a.z*c.w + d.y*a.w*c.z;
aa.z = a.y*b.z*d.w - a.y*b.w*d.z - b.y*a.z*d.w + b.y*a.w*d.z + d.y*a.z*b.w - d.y*a.w*b.z;
aa.w = -a.y*b.z*c.w + a.y*b.w*c.z + b.y*a.z*c.w - b.y*a.w*c.z - c.y*a.z*b.w + c.y*a.w*b.z;
bb.x = -b.x*c.z*d.w + b.x*c.w*d.z + c.x*b.z*d.w - c.x*b.w*d.z - d.x*b.z*c.w + d.x*b.w*c.z;
bb.y = a.x*c.z*d.w - a.x*c.w*d.z - c.x*a.z*d.w + c.x*a.w*d.z + d.x*a.z*c.w - d.x*a.w*c.z;
bb.z = -a.x*b.z*d.w + a.x*b.w*d.z + b.x*a.z*d.w - b.x*a.w*d.z - d.x*a.z*b.w + d.x*a.w*b.z;
bb.w = a.x*b.z*c.w - a.x*b.w*c.z - b.x*a.z*c.w + b.x*a.w*c.z + c.x*a.z*b.w - c.x*a.w*b.z;
cc.x = b.x*c.y*d.w - b.x*c.w*d.y - c.x*b.y*d.w + c.x*b.w*d.y + d.x*b.y*c.w - d.x*b.w*c.y;
cc.y = -a.x*c.y*d.w + a.x*c.w*d.y + c.x*a.y*d.w - c.x*a.w*d.y - d.x*a.y*c.w + d.x*a.w*c.y;
cc.z = a.x*b.y*d.w - a.x*b.w*d.y - b.x*a.y*d.w + b.x*a.w*d.y + d.x*a.y*b.w - d.x*a.w*b.y;
cc.w = -a.x*b.y*c.w + a.x*b.w*c.y + b.x*a.y*c.w - b.x*a.w*c.y - c.x*a.y*b.w + c.x*a.w*b.y;
dd.x = -b.x*c.y*d.z + b.x*c.z*d.y + c.x*b.y*d.z - c.x*b.z*d.y - d.x*b.y*c.z + d.x*b.z*c.y;
dd.y = a.x*c.y*d.z - a.x*c.z*d.y - c.x*a.y*d.z + c.x*a.z*d.y + d.x*a.y*c.z - d.x*a.z*c.y;
dd.z = -a.x*b.y*d.z + a.x*b.z*d.y + b.x*a.y*d.z - b.x*a.z*d.y - d.x*a.y*b.z + d.x*a.z*b.y;
dd.w = a.x*b.y*c.z - a.x*b.z*c.y - b.x*a.y*c.z + b.x*a.z*c.y + c.x*a.y*b.z - c.x*a.z*b.y;
setRow(0,aa);
setRow(1,bb);
setRow(2,cc);
setRow(3,dd);
mul(1.0f/det);
return true;
}
void MatrixF::reverseProjection()
{
m[idx(0, 2)] = m[idx(0, 3)] - m[idx(0, 2)];
m[idx(1, 2)] = m[idx(1, 3)] - m[idx(1, 2)];
m[idx(2, 2)] = m[idx(2, 3)] - m[idx(2, 2)];
m[idx(3, 2)] = m[idx(3, 3)] - m[idx(3, 2)];
}
EulerF MatrixF::toEuler() const
{
const F32 * mat = m;
EulerF r;
r.x = mAsin(mClampF(mat[MatrixF::idx(2,1)], -1.0, 1.0));
if(mCos(r.x) != 0.f)
{
r.y = mAtan2(-mat[MatrixF::idx(2,0)], mat[MatrixF::idx(2,2)]);
r.z = mAtan2(-mat[MatrixF::idx(0,1)], mat[MatrixF::idx(1,1)]);
}
else
{
r.y = 0.f;
r.z = mAtan2(mat[MatrixF::idx(1,0)], mat[MatrixF::idx(0,0)]);
}
return r;
}
void MatrixF::dumpMatrix(const char *caption /* =NULL */) const
{
U32 size = (caption == NULL)? 0 : dStrlen(caption);
FrameTemp<char> spacer(size+1);
char *spacerRef = spacer;
dMemset(spacerRef, ' ', size);
spacerRef[size] = 0;
Con::printf("%s = | %-8.4f %-8.4f %-8.4f %-8.4f |", caption, m[idx(0,0)], m[idx(0, 1)], m[idx(0, 2)], m[idx(0, 3)]);
Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(1,0)], m[idx(1, 1)], m[idx(1, 2)], m[idx(1, 3)]);
Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(2,0)], m[idx(2, 1)], m[idx(2, 2)], m[idx(2, 3)]);
Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(3,0)], m[idx(3, 1)], m[idx(3, 2)], m[idx(3, 3)]);
}
EngineFieldTable::Field MatrixFEngineExport::getMatrixField()
{
typedef MatrixF ThisType;
return _FIELD_AS(F32, m, m, 16, "");
}
#else // !USE_TEMPLATE_MATRIX
//------------------------------------
// Templatized matrix class to replace MATRIXF above
// due to templated class, all functions need to be inline
//------------------------------------
#endif // !USE_TEMPLATE_MATRIX