Torque3D/Engine/lib/assimp/code/PostProcessing/ProcessHelper.cpp
Areloch 6ade6f08ce Updated Assimp
Added initial behavior for ImageAssets to hold a list of GFX resources of different texture profiles to avoid mem leaks with incorrect-typed usages
Added function to ImageAsset to get best-fit asset, allowing for fallbacks if the requested assetID is not found
Added function to ShapeAsset to get best-fit asset, allowing for fallbacks if the requested assetID is not found
Disabled fields for dynamic and static shadowmap refresh rates
Moved noShape model to core/rendering/shapes to place it in a more logical module position
Added an include to avoid undefined type compile error and removed unneeded semicolon from zone code
Added call to reload probe textures when a reloadTextures call is made
Adjusted default directional light shadowmap settings to not be as extreme
Added utility function to probe manager to allow any class to request a 'best fit' list of probes that would affect a given location, allowing other classes such as fog or particles to utilize IBL. Also updated probeManager's forward rendering to utilize same function to reduce code duplication.
Shifted shape loader code to utilize assimp for loader consistency and testing
Changed render bin used for SSAO postfx so it runs at the right time
Made Core_Rendering module scan for assets
Updated loose file references to a number of assets to follow proper formatting
Refactored asset import code to follow a more consistent object heirarchy structure on importing assets, allowing more reliable cross-referencing between inbound items
Updated asset import logic for materials/images so that they properly utilize ImageType. Images correctly save out the assigned image type, materials reference the images' type to know what map slot they should be used in. Importer logic also updated to better find-and-add associated images based on type.
Cleaned up a bunch of old, outdated code in the asset importer
Added initial handling for in-place importing of files without needing to process them through the UI.
Added ability to edit module script from RMB context menu if torsion path is set
Updated list field code for variable inspector to utilize correct ownerObject field
2020-03-19 09:47:38 -05:00

404 lines
13 KiB
C++

/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
/// @file ProcessHelper.cpp
/** Implement shared utility functions for postprocessing steps */
#include "ProcessHelper.h"
#include <limits>
namespace Assimp {
// -------------------------------------------------------------------------------
void ConvertListToStrings(const std::string& in, std::list<std::string>& out)
{
const char* s = in.c_str();
while (*s) {
SkipSpacesAndLineEnd(&s);
if (*s == '\'') {
const char* base = ++s;
while (*s != '\'') {
++s;
if (*s == '\0') {
ASSIMP_LOG_ERROR("ConvertListToString: String list is ill-formatted");
return;
}
}
out.push_back(std::string(base,(size_t)(s-base)));
++s;
}
else {
out.push_back(GetNextToken(s));
}
}
}
// -------------------------------------------------------------------------------
void FindAABBTransformed (const aiMesh* mesh, aiVector3D& min, aiVector3D& max,
const aiMatrix4x4& m)
{
min = aiVector3D ( ai_real( 10e10 ), ai_real( 10e10 ), ai_real( 10e10 ) );
max = aiVector3D ( ai_real( -10e10 ), ai_real( -10e10 ), ai_real( -10e10 ) );
for (unsigned int i = 0;i < mesh->mNumVertices;++i)
{
const aiVector3D v = m * mesh->mVertices[i];
min = std::min(v,min);
max = std::max(v,max);
}
}
// -------------------------------------------------------------------------------
void FindMeshCenter (aiMesh* mesh, aiVector3D& out, aiVector3D& min, aiVector3D& max)
{
ArrayBounds(mesh->mVertices,mesh->mNumVertices, min,max);
out = min + (max-min)*(ai_real)0.5;
}
// -------------------------------------------------------------------------------
void FindSceneCenter (aiScene* scene, aiVector3D& out, aiVector3D& min, aiVector3D& max) {
if ( NULL == scene ) {
return;
}
if ( 0 == scene->mNumMeshes ) {
return;
}
FindMeshCenter(scene->mMeshes[0], out, min, max);
for (unsigned int i = 1; i < scene->mNumMeshes; ++i) {
aiVector3D tout, tmin, tmax;
FindMeshCenter(scene->mMeshes[i], tout, tmin, tmax);
if (min[0] > tmin[0]) min[0] = tmin[0];
if (min[1] > tmin[1]) min[1] = tmin[1];
if (min[2] > tmin[2]) min[2] = tmin[2];
if (max[0] < tmax[0]) max[0] = tmax[0];
if (max[1] < tmax[1]) max[1] = tmax[1];
if (max[2] < tmax[2]) max[2] = tmax[2];
}
out = min + (max-min)*(ai_real)0.5;
}
// -------------------------------------------------------------------------------
void FindMeshCenterTransformed (aiMesh* mesh, aiVector3D& out, aiVector3D& min,
aiVector3D& max, const aiMatrix4x4& m)
{
FindAABBTransformed(mesh,min,max,m);
out = min + (max-min)*(ai_real)0.5;
}
// -------------------------------------------------------------------------------
void FindMeshCenter (aiMesh* mesh, aiVector3D& out)
{
aiVector3D min,max;
FindMeshCenter(mesh,out,min,max);
}
// -------------------------------------------------------------------------------
void FindMeshCenterTransformed (aiMesh* mesh, aiVector3D& out,
const aiMatrix4x4& m)
{
aiVector3D min,max;
FindMeshCenterTransformed(mesh,out,min,max,m);
}
// -------------------------------------------------------------------------------
ai_real ComputePositionEpsilon(const aiMesh* pMesh)
{
const ai_real epsilon = ai_real( 1e-4 );
// calculate the position bounds so we have a reliable epsilon to check position differences against
aiVector3D minVec, maxVec;
ArrayBounds(pMesh->mVertices,pMesh->mNumVertices,minVec,maxVec);
return (maxVec - minVec).Length() * epsilon;
}
// -------------------------------------------------------------------------------
ai_real ComputePositionEpsilon(const aiMesh* const* pMeshes, size_t num)
{
ai_assert( NULL != pMeshes );
const ai_real epsilon = ai_real( 1e-4 );
// calculate the position bounds so we have a reliable epsilon to check position differences against
aiVector3D minVec, maxVec, mi, ma;
MinMaxChooser<aiVector3D>()(minVec,maxVec);
for (size_t a = 0; a < num; ++a) {
const aiMesh* pMesh = pMeshes[a];
ArrayBounds(pMesh->mVertices,pMesh->mNumVertices,mi,ma);
minVec = std::min(minVec,mi);
maxVec = std::max(maxVec,ma);
}
return (maxVec - minVec).Length() * epsilon;
}
// -------------------------------------------------------------------------------
unsigned int GetMeshVFormatUnique(const aiMesh* pcMesh)
{
ai_assert(NULL != pcMesh);
// FIX: the hash may never be 0. Otherwise a comparison against
// nullptr could be successful
unsigned int iRet = 1;
// normals
if (pcMesh->HasNormals())iRet |= 0x2;
// tangents and bitangents
if (pcMesh->HasTangentsAndBitangents())iRet |= 0x4;
#ifdef BOOST_STATIC_ASSERT
BOOST_STATIC_ASSERT(8 >= AI_MAX_NUMBER_OF_COLOR_SETS);
BOOST_STATIC_ASSERT(8 >= AI_MAX_NUMBER_OF_TEXTURECOORDS);
#endif
// texture coordinates
unsigned int p = 0;
while (pcMesh->HasTextureCoords(p))
{
iRet |= (0x100 << p);
if (3 == pcMesh->mNumUVComponents[p])
iRet |= (0x10000 << p);
++p;
}
// vertex colors
p = 0;
while (pcMesh->HasVertexColors(p))iRet |= (0x1000000 << p++);
return iRet;
}
// -------------------------------------------------------------------------------
VertexWeightTable* ComputeVertexBoneWeightTable(const aiMesh* pMesh)
{
if (!pMesh || !pMesh->mNumVertices || !pMesh->mNumBones) {
return NULL;
}
VertexWeightTable* avPerVertexWeights = new VertexWeightTable[pMesh->mNumVertices];
for (unsigned int i = 0; i < pMesh->mNumBones;++i) {
aiBone* bone = pMesh->mBones[i];
for (unsigned int a = 0; a < bone->mNumWeights;++a) {
const aiVertexWeight& weight = bone->mWeights[a];
avPerVertexWeights[weight.mVertexId].push_back( std::pair<unsigned int,float>(i,weight.mWeight) );
}
}
return avPerVertexWeights;
}
// -------------------------------------------------------------------------------
const char* MappingTypeToString(aiTextureMapping in)
{
switch (in)
{
case aiTextureMapping_UV:
return "UV";
case aiTextureMapping_BOX:
return "Box";
case aiTextureMapping_SPHERE:
return "Sphere";
case aiTextureMapping_CYLINDER:
return "Cylinder";
case aiTextureMapping_PLANE:
return "Plane";
case aiTextureMapping_OTHER:
return "Other";
default:
break;
}
ai_assert(false);
return "BUG";
}
// -------------------------------------------------------------------------------
aiMesh* MakeSubmesh(const aiMesh *pMesh, const std::vector<unsigned int> &subMeshFaces, unsigned int subFlags)
{
aiMesh *oMesh = new aiMesh();
std::vector<unsigned int> vMap(pMesh->mNumVertices,UINT_MAX);
size_t numSubVerts = 0;
size_t numSubFaces = subMeshFaces.size();
for(unsigned int i=0;i<numSubFaces;i++) {
const aiFace &f = pMesh->mFaces[subMeshFaces[i]];
for(unsigned int j=0;j<f.mNumIndices;j++) {
if(vMap[f.mIndices[j]]==UINT_MAX) {
vMap[f.mIndices[j]] = static_cast<unsigned int>(numSubVerts++);
}
}
}
oMesh->mName = pMesh->mName;
oMesh->mMaterialIndex = pMesh->mMaterialIndex;
oMesh->mPrimitiveTypes = pMesh->mPrimitiveTypes;
// create all the arrays for this mesh if the old mesh contained them
oMesh->mNumFaces = static_cast<unsigned int>(subMeshFaces.size());
oMesh->mNumVertices = static_cast<unsigned int>(numSubVerts);
oMesh->mVertices = new aiVector3D[numSubVerts];
if( pMesh->HasNormals() ) {
oMesh->mNormals = new aiVector3D[numSubVerts];
}
if( pMesh->HasTangentsAndBitangents() ) {
oMesh->mTangents = new aiVector3D[numSubVerts];
oMesh->mBitangents = new aiVector3D[numSubVerts];
}
for( size_t a = 0; pMesh->HasTextureCoords(static_cast<unsigned int>(a)) ; ++a ) {
oMesh->mTextureCoords[a] = new aiVector3D[numSubVerts];
oMesh->mNumUVComponents[a] = pMesh->mNumUVComponents[a];
}
for( size_t a = 0; pMesh->HasVertexColors( static_cast<unsigned int>(a)); ++a ) {
oMesh->mColors[a] = new aiColor4D[numSubVerts];
}
// and copy over the data, generating faces with linear indices along the way
oMesh->mFaces = new aiFace[numSubFaces];
for(unsigned int a = 0; a < numSubFaces; ++a ) {
const aiFace& srcFace = pMesh->mFaces[subMeshFaces[a]];
aiFace& dstFace = oMesh->mFaces[a];
dstFace.mNumIndices = srcFace.mNumIndices;
dstFace.mIndices = new unsigned int[dstFace.mNumIndices];
// accumulate linearly all the vertices of the source face
for( size_t b = 0; b < dstFace.mNumIndices; ++b ) {
dstFace.mIndices[b] = vMap[srcFace.mIndices[b]];
}
}
for(unsigned int srcIndex = 0; srcIndex < pMesh->mNumVertices; ++srcIndex ) {
unsigned int nvi = vMap[srcIndex];
if(nvi==UINT_MAX) {
continue;
}
oMesh->mVertices[nvi] = pMesh->mVertices[srcIndex];
if( pMesh->HasNormals() ) {
oMesh->mNormals[nvi] = pMesh->mNormals[srcIndex];
}
if( pMesh->HasTangentsAndBitangents() ) {
oMesh->mTangents[nvi] = pMesh->mTangents[srcIndex];
oMesh->mBitangents[nvi] = pMesh->mBitangents[srcIndex];
}
for( size_t c = 0, cc = pMesh->GetNumUVChannels(); c < cc; ++c ) {
oMesh->mTextureCoords[c][nvi] = pMesh->mTextureCoords[c][srcIndex];
}
for( size_t c = 0, cc = pMesh->GetNumColorChannels(); c < cc; ++c ) {
oMesh->mColors[c][nvi] = pMesh->mColors[c][srcIndex];
}
}
if(~subFlags&AI_SUBMESH_FLAGS_SANS_BONES) {
std::vector<unsigned int> subBones(pMesh->mNumBones,0);
for(unsigned int a=0;a<pMesh->mNumBones;++a) {
const aiBone* bone = pMesh->mBones[a];
for(unsigned int b=0;b<bone->mNumWeights;b++) {
unsigned int v = vMap[bone->mWeights[b].mVertexId];
if(v!=UINT_MAX) {
subBones[a]++;
}
}
}
for(unsigned int a=0;a<pMesh->mNumBones;++a) {
if(subBones[a]>0) {
oMesh->mNumBones++;
}
}
if(oMesh->mNumBones) {
oMesh->mBones = new aiBone*[oMesh->mNumBones]();
unsigned int nbParanoia = oMesh->mNumBones;
oMesh->mNumBones = 0; //rewind
for(unsigned int a=0;a<pMesh->mNumBones;++a) {
if(subBones[a]==0) {
continue;
}
aiBone *newBone = new aiBone;
oMesh->mBones[oMesh->mNumBones++] = newBone;
const aiBone* bone = pMesh->mBones[a];
newBone->mName = bone->mName;
newBone->mOffsetMatrix = bone->mOffsetMatrix;
newBone->mWeights = new aiVertexWeight[subBones[a]];
for(unsigned int b=0;b<bone->mNumWeights;b++) {
const unsigned int v = vMap[bone->mWeights[b].mVertexId];
if(v!=UINT_MAX) {
aiVertexWeight w(v,bone->mWeights[b].mWeight);
newBone->mWeights[newBone->mNumWeights++] = w;
}
}
}
ai_assert(nbParanoia==oMesh->mNumBones);
(void)nbParanoia; // remove compiler warning on release build
}
}
return oMesh;
}
} // namespace Assimp