Torque3D/Engine/source/materials/processedMaterial.cpp
Areloch 62fabf6894 From @rextimmy was missing the stateblock handling for the Transparency mode Sub
Added Open Recent functionality to File menubar item
Added new editor setting for Startup Mode to dictate if it'll open the most recent level edited or the blank level, instead of utilizing a game UI control for level selection.
Properly re-enabled the handling for the forceSidebarToSide setting to track to the setting value
2019-11-19 01:25:24 -06:00

522 lines
18 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "materials/processedMaterial.h"
#include "materials/sceneData.h"
#include "materials/materialParameters.h"
#include "materials/matTextureTarget.h"
#include "materials/materialFeatureTypes.h"
#include "materials/materialManager.h"
#include "scene/sceneRenderState.h"
#include "gfx/gfxPrimitiveBuffer.h"
#include "gfx/gfxTextureManager.h"
#include "gfx/sim/cubemapData.h"
RenderPassData::RenderPassData()
{
reset();
}
void RenderPassData::reset()
{
for( U32 i = 0; i < Material::MAX_TEX_PER_PASS; ++ i )
{
destructInPlace( &mTexSlot[ i ] );
mSamplerNames[ i ].clear();
}
dMemset( &mTexSlot, 0, sizeof(mTexSlot) );
dMemset( &mTexType, 0, sizeof(mTexType) );
mCubeMap = NULL;
mNumTex = mNumTexReg = mStageNum = 0;
mGlow = false;
mBlendOp = Material::None;
mFeatureData.clear();
for (U32 i = 0; i < STATE_MAX; i++)
mRenderStates[i] = NULL;
}
String RenderPassData::describeSelf() const
{
String desc;
// Now write all the textures.
String texName;
for ( U32 i=0; i < Material::MAX_TEX_PER_PASS; i++ )
{
if ( mTexType[i] == Material::TexTarget )
texName = ( mTexSlot[i].texTarget ) ? mTexSlot[i].texTarget->getName() : "null_texTarget";
else if ( mTexType[i] == Material::Cube && mCubeMap )
texName = mCubeMap->getPath();
else if ( mTexSlot[i].texObject )
texName = mTexSlot[i].texObject->getPath();
else
continue;
desc += String::ToString( "TexSlot %d: %d, %s\n", i, mTexType[i], texName.c_str() );
}
// Write out the first render state which is the
// basis for all the other states and shoud be
// enough to define the pass uniquely.
desc += mRenderStates[0]->getDesc().describeSelf();
return desc;
}
ProcessedMaterial::ProcessedMaterial()
: mMaterial( NULL ),
mCurrentParams( NULL ),
mHasSetStageData( false ),
mHasGlow( false ),
mHasAccumulation( false ),
mMaxStages( 0 ),
mVertexFormat( NULL ),
mUserObject( NULL )
{
VECTOR_SET_ASSOCIATION( mPasses );
}
ProcessedMaterial::~ProcessedMaterial()
{
T3D::for_each( mPasses.begin(), mPasses.end(), T3D::delete_pointer() );
}
void ProcessedMaterial::_setBlendState(Material::BlendOp blendOp, GFXStateBlockDesc& desc )
{
switch( blendOp )
{
case Material::Add:
{
desc.blendSrc = GFXBlendOne;
desc.blendDest = GFXBlendOne;
break;
}
case Material::AddAlpha:
{
desc.blendSrc = GFXBlendSrcAlpha;
desc.blendDest = GFXBlendOne;
break;
}
case Material::Mul:
{
desc.blendSrc = GFXBlendDestColor;
desc.blendDest = GFXBlendInvSrcAlpha;
break;
}
case Material::LerpAlpha:
{
desc.blendSrc = GFXBlendSrcAlpha;
desc.blendDest = GFXBlendInvSrcAlpha;
break;
}
case Material::Sub:
{
desc.blendOp = GFXBlendOpSubtract;
desc.blendSrc = GFXBlendOne;
desc.blendDest = GFXBlendOne;
break;
}
default:
{
// default to LerpAlpha
desc.blendSrc = GFXBlendSrcAlpha;
desc.blendDest = GFXBlendInvSrcAlpha;
break;
}
}
}
void ProcessedMaterial::setBuffers(GFXVertexBufferHandleBase* vertBuffer, GFXPrimitiveBufferHandle* primBuffer)
{
GFX->setVertexBuffer( *vertBuffer );
GFX->setPrimitiveBuffer( *primBuffer );
}
bool ProcessedMaterial::stepInstance()
{
AssertFatal( false, "ProcessedMaterial::stepInstance() - This type of material doesn't support instancing!" );
return false;
}
String ProcessedMaterial::_getTexturePath(const String& filename)
{
// if '/', then path is specified, use it.
if( filename.find('/') != String::NPos )
{
return filename;
}
// otherwise, construct path
return mMaterial->getPath() + filename;
}
GFXTexHandle ProcessedMaterial::_createTexture( const char* filename, GFXTextureProfile *profile)
{
return GFXTexHandle( _getTexturePath(filename), profile, avar("%s() - NA (line %d)", __FUNCTION__, __LINE__) );
}
GFXTexHandle ProcessedMaterial::_createCompositeTexture(const char *filenameR, const char *filenameG, const char *filenameB, const char *filenameA, U32 inputKey[4], GFXTextureProfile *profile)
{
return GFXTexHandle(_getTexturePath(filenameR), _getTexturePath(filenameG), _getTexturePath(filenameB), _getTexturePath(filenameA), inputKey, profile, avar("%s() - NA (line %d)", __FUNCTION__, __LINE__));
}
void ProcessedMaterial::addStateBlockDesc(const GFXStateBlockDesc& sb)
{
mUserDefined = sb;
}
void ProcessedMaterial::_initStateBlockTemplates(GFXStateBlockDesc& stateTranslucent, GFXStateBlockDesc& stateGlow, GFXStateBlockDesc& stateReflect)
{
// Translucency
stateTranslucent.blendDefined = true;
stateTranslucent.blendEnable = mMaterial->mTranslucentBlendOp != Material::None;
_setBlendState(mMaterial->mTranslucentBlendOp, stateTranslucent);
stateTranslucent.zDefined = true;
stateTranslucent.zWriteEnable = mMaterial->mTranslucentZWrite;
stateTranslucent.alphaDefined = true;
stateTranslucent.alphaTestEnable = mMaterial->mAlphaTest;
stateTranslucent.alphaTestRef = mMaterial->mAlphaRef;
stateTranslucent.alphaTestFunc = GFXCmpGreaterEqual;
stateTranslucent.samplersDefined = true;
stateTranslucent.samplers[0].textureColorOp = GFXTOPModulate;
stateTranslucent.samplers[0].alphaOp = GFXTOPModulate;
stateTranslucent.samplers[0].alphaArg1 = GFXTATexture;
stateTranslucent.samplers[0].alphaArg2 = GFXTADiffuse;
// Glow
stateGlow.zDefined = true;
stateGlow.zWriteEnable = false;
// Reflect
stateReflect.cullDefined = true;
stateReflect.cullMode = mMaterial->mDoubleSided ? GFXCullNone : GFXCullCW;
}
void ProcessedMaterial::_initRenderPassDataStateBlocks()
{
for (U32 pass = 0; pass < mPasses.size(); pass++)
_initRenderStateStateBlocks( mPasses[pass] );
}
void ProcessedMaterial::_initPassStateBlock( RenderPassData *rpd, GFXStateBlockDesc &result )
{
if ( rpd->mBlendOp != Material::None )
{
result.blendDefined = true;
result.blendEnable = true;
_setBlendState( rpd->mBlendOp, result );
}
if (mMaterial && mMaterial->isDoubleSided())
{
result.cullDefined = true;
result.cullMode = GFXCullNone;
}
if(mMaterial && mMaterial->mAlphaTest)
{
result.alphaDefined = true;
result.alphaTestEnable = mMaterial->mAlphaTest;
result.alphaTestRef = mMaterial->mAlphaRef;
result.alphaTestFunc = GFXCmpGreaterEqual;
}
result.samplersDefined = true;
NamedTexTarget *texTarget;
U32 maxAnisotropy = 1;
if (mMaterial && mMaterial->mUseAnisotropic[ rpd->mStageNum ] )
maxAnisotropy = MATMGR->getDefaultAnisotropy();
for( U32 i=0; i < rpd->mNumTex; i++ )
{
U32 currTexFlag = rpd->mTexType[i];
switch( currTexFlag )
{
default:
{
result.samplers[i].textureColorOp = GFXTOPModulate;
result.samplers[i].addressModeU = GFXAddressWrap;
result.samplers[i].addressModeV = GFXAddressWrap;
if ( maxAnisotropy > 1 )
{
result.samplers[i].minFilter = GFXTextureFilterAnisotropic;
result.samplers[i].magFilter = GFXTextureFilterAnisotropic;
result.samplers[i].maxAnisotropy = maxAnisotropy;
}
else
{
result.samplers[i].minFilter = GFXTextureFilterLinear;
result.samplers[i].magFilter = GFXTextureFilterLinear;
}
break;
}
case Material::Cube:
case Material::SGCube:
case Material::NormalizeCube:
{
result.samplers[i].addressModeU = GFXAddressClamp;
result.samplers[i].addressModeV = GFXAddressClamp;
result.samplers[i].addressModeW = GFXAddressClamp;
result.samplers[i].minFilter = GFXTextureFilterLinear;
result.samplers[i].magFilter = GFXTextureFilterLinear;
break;
}
case Material::TexTarget:
{
texTarget = mPasses[0]->mTexSlot[i].texTarget;
if ( texTarget )
texTarget->setupSamplerState( &result.samplers[i] );
break;
}
}
}
// The deferred will take care of writing to the
// zbuffer, so we don't have to by default.
if ( MATMGR->getDeferredEnabled() &&
!mFeatures.hasFeature(MFT_ForwardShading))
result.setZReadWrite( result.zEnable, false );
result.addDesc(mUserDefined);
}
/// Creates the default state blocks for a list of render states
void ProcessedMaterial::_initRenderStateStateBlocks( RenderPassData *rpd )
{
GFXStateBlockDesc stateTranslucent;
GFXStateBlockDesc stateGlow;
GFXStateBlockDesc stateReflect;
GFXStateBlockDesc statePass;
_initStateBlockTemplates( stateTranslucent, stateGlow, stateReflect );
_initPassStateBlock( rpd, statePass );
// Ok, we've got our templates set up, let's combine them together based on state and
// create our state blocks.
for (U32 i = 0; i < RenderPassData::STATE_MAX; i++)
{
GFXStateBlockDesc stateFinal;
if (i & RenderPassData::STATE_REFLECT)
stateFinal.addDesc(stateReflect);
if (i & RenderPassData::STATE_TRANSLUCENT)
stateFinal.addDesc(stateTranslucent);
if (i & RenderPassData::STATE_GLOW)
stateFinal.addDesc(stateGlow);
stateFinal.addDesc(statePass);
if (i & RenderPassData::STATE_WIREFRAME)
stateFinal.fillMode = GFXFillWireframe;
GFXStateBlockRef sb = GFX->createStateBlock(stateFinal);
rpd->mRenderStates[i] = sb;
}
}
U32 ProcessedMaterial::_getRenderStateIndex( const SceneRenderState *sceneState,
const SceneData &sgData )
{
// Based on what the state of the world is, get our render state block
U32 currState = 0;
// NOTE: We should only use per-material or per-pass hints to
// change the render state. This is importaint because we
// only change the state blocks between material passes.
//
// For example sgData.visibility would be bad to use
// in here without changing how RenderMeshMgr works.
if ( sgData.binType == SceneData::GlowBin )
currState |= RenderPassData::STATE_GLOW;
if ( sceneState && sceneState->isReflectPass() )
currState |= RenderPassData::STATE_REFLECT;
if ( sgData.binType != SceneData::DeferredBin &&
mMaterial->isTranslucent() )
currState |= RenderPassData::STATE_TRANSLUCENT;
if ( sgData.wireframe )
currState |= RenderPassData::STATE_WIREFRAME;
return currState;
}
void ProcessedMaterial::_setRenderState( const SceneRenderState *state,
const SceneData& sgData,
U32 pass )
{
// Make sure we have the pass
if ( pass >= mPasses.size() )
return;
U32 currState = _getRenderStateIndex( state, sgData );
GFX->setStateBlock(mPasses[pass]->mRenderStates[currState]);
}
void ProcessedMaterial::_setStageData()
{
// Only do this once
if (mHasSetStageData)
return;
mHasSetStageData = true;
U32 i;
// Load up all the textures for every possible stage
for (i = 0; i < Material::MAX_STAGES; i++)
{
// DiffuseMap
if (mMaterial->mDiffuseMapFilename[i].isNotEmpty())
{
mStages[i].setTex(MFT_DiffuseMap, _createTexture(mMaterial->mDiffuseMapFilename[i], &GFXStaticTextureSRGBProfile));
if (!mStages[i].getTex(MFT_DiffuseMap))
{
//If we start with a #, we're probably actually attempting to hit a named target and it may not get a hit on the first pass. So we'll
//pass on the error rather than spamming the console
if (!mMaterial->mDiffuseMapFilename[i].startsWith("#"))
mMaterial->logError("Failed to load diffuse map %s for stage %i", _getTexturePath(mMaterial->mDiffuseMapFilename[i]).c_str(), i);
// Load a debug texture to make it clear to the user
// that the texture for this stage was missing.
mStages[i].setTex(MFT_DiffuseMap, _createTexture(GFXTextureManager::getMissingTexturePath().c_str(), &GFXStaticTextureSRGBProfile));
}
}
else if (mMaterial->mDiffuseMapAsset[i] && !mMaterial->mDiffuseMapAsset[i].isNull())
{
mStages[i].setTex(MFT_DiffuseMap, mMaterial->mDiffuseMapAsset[i]->getImage());
if (!mStages[i].getTex(MFT_DiffuseMap))
{
// Load a debug texture to make it clear to the user
// that the texture for this stage was missing.
mStages[i].setTex(MFT_DiffuseMap, _createTexture(GFXTextureManager::getMissingTexturePath().c_str(), &GFXStaticTextureSRGBProfile));
}
}
// OverlayMap
if (mMaterial->mOverlayMapFilename[i].isNotEmpty())
{
mStages[i].setTex(MFT_OverlayMap, _createTexture(mMaterial->mOverlayMapFilename[i], &GFXStaticTextureSRGBProfile));
if (!mStages[i].getTex(MFT_OverlayMap))
mMaterial->logError("Failed to load overlay map %s for stage %i", _getTexturePath(mMaterial->mOverlayMapFilename[i]).c_str(), i);
}
// LightMap
if (mMaterial->mLightMapFilename[i].isNotEmpty())
{
mStages[i].setTex(MFT_LightMap, _createTexture(mMaterial->mLightMapFilename[i], &GFXStaticTextureSRGBProfile));
if (!mStages[i].getTex(MFT_LightMap))
mMaterial->logError("Failed to load light map %s for stage %i", _getTexturePath(mMaterial->mLightMapFilename[i]).c_str(), i);
}
// ToneMap
if (mMaterial->mToneMapFilename[i].isNotEmpty())
{
mStages[i].setTex(MFT_ToneMap, _createTexture(mMaterial->mToneMapFilename[i], &GFXStaticTextureProfile));
if (!mStages[i].getTex(MFT_ToneMap))
mMaterial->logError("Failed to load tone map %s for stage %i", _getTexturePath(mMaterial->mToneMapFilename[i]).c_str(), i);
}
// DetailMap
if (mMaterial->mDetailMapFilename[i].isNotEmpty())
{
mStages[i].setTex(MFT_DetailMap, _createTexture(mMaterial->mDetailMapFilename[i], &GFXStaticTextureProfile));
if (!mStages[i].getTex(MFT_DetailMap))
mMaterial->logError("Failed to load detail map %s for stage %i", _getTexturePath(mMaterial->mDetailMapFilename[i]).c_str(), i);
}
// NormalMap
if (mMaterial->mNormalMapFilename[i].isNotEmpty())
{
mStages[i].setTex(MFT_NormalMap, _createTexture(mMaterial->mNormalMapFilename[i], &GFXNormalMapProfile));
if (!mStages[i].getTex(MFT_NormalMap))
mMaterial->logError("Failed to load normal map %s for stage %i", _getTexturePath(mMaterial->mNormalMapFilename[i]).c_str(), i);
}
// Detail Normal Map
if (mMaterial->mDetailNormalMapFilename[i].isNotEmpty())
{
mStages[i].setTex(MFT_DetailNormalMap, _createTexture(mMaterial->mDetailNormalMapFilename[i], &GFXNormalMapProfile));
if (!mStages[i].getTex(MFT_DetailNormalMap))
mMaterial->logError("Failed to load normal map %s for stage %i", _getTexturePath(mMaterial->mDetailNormalMapFilename[i]).c_str(), i);
}
GFXTextureProfile* profile = &GFXStaticTextureProfile;
if (mMaterial->mIsSRGb[i])
profile = &GFXStaticTextureSRGBProfile;
// SpecularMap
if (mMaterial->mSpecularMapFilename[i].isNotEmpty())
{
mStages[i].setTex(MFT_SpecularMap, _createTexture(mMaterial->mSpecularMapFilename[i], profile));
if (!mStages[i].getTex(MFT_SpecularMap))
mMaterial->logError("Failed to load specular map %s for stage %i", _getTexturePath(mMaterial->mSpecularMapFilename[i]).c_str(), i);
}
else
{
if (mMaterial->mRoughMapFilename[i].isNotEmpty() && mMaterial->mMetalMapFilename[i].isNotEmpty())
{
U32 inputKey[4];
inputKey[0] = mMaterial->mSmoothnessChan[i];
inputKey[1] = mMaterial->mAOChan[i];
inputKey[2] = mMaterial->mMetalChan[i];
inputKey[3] = NULL;
mStages[i].setTex(MFT_SpecularMap, _createCompositeTexture(mMaterial->mRoughMapFilename[i], mMaterial->mAOMapFilename[i],
mMaterial->mMetalMapFilename[i], "",
inputKey, profile));
if (!mStages[i].getTex(MFT_SpecularMap))
mMaterial->logError("Failed to load specular map %s for stage %i", _getTexturePath(mMaterial->mSpecularMapFilename[i]).c_str(), i);
}
}
}
mMaterial->mCubemapData = dynamic_cast<CubemapData*>(Sim::findObject(mMaterial->mCubemapName));
if (!mMaterial->mCubemapData)
mMaterial->mCubemapData = NULL;
// If we have a cubemap put it on stage 0 (cubemaps only supported on stage 0)
if (mMaterial->mCubemapData)
{
mMaterial->mCubemapData->createMap();
mStages[0].setCubemap(mMaterial->mCubemapData->mCubemap);
if (!mStages[0].getCubemap())
mMaterial->logError("Failed to load cubemap");
}
}