mirror of
https://github.com/TorqueGameEngines/Torque3D.git
synced 2026-01-20 04:34:48 +00:00
keeping the alt 87514151c4 (diff-73a8dc1ce58605f6c5ea53548454c3bae516ec5132a29c9d7ff7edf9730c75be)
227 lines
7.3 KiB
C++
227 lines
7.3 KiB
C++
/**
|
|
* OpenAL cross platform audio library
|
|
* Copyright (C) 2009 by Chris Robinson.
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <functional>
|
|
#include <variant>
|
|
|
|
#include "alc/effects/base.h"
|
|
#include "alnumbers.h"
|
|
#include "alnumeric.h"
|
|
#include "alspan.h"
|
|
#include "core/ambidefs.h"
|
|
#include "core/bufferline.h"
|
|
#include "core/context.h"
|
|
#include "core/device.h"
|
|
#include "core/effects/base.h"
|
|
#include "core/effectslot.h"
|
|
#include "core/filters/biquad.h"
|
|
#include "core/mixer.h"
|
|
#include "intrusive_ptr.h"
|
|
#include "opthelpers.h"
|
|
|
|
struct BufferStorage;
|
|
|
|
namespace {
|
|
|
|
using uint = unsigned int;
|
|
|
|
struct SinFunc {
|
|
static auto Get(uint index, float scale) noexcept(noexcept(std::sin(0.0f))) -> float
|
|
{ return std::sin(static_cast<float>(index) * scale); }
|
|
};
|
|
|
|
struct SawFunc {
|
|
static constexpr auto Get(uint index, float scale) noexcept -> float
|
|
{ return static_cast<float>(index)*scale - 1.0f; }
|
|
};
|
|
|
|
struct SquareFunc {
|
|
static constexpr auto Get(uint index, float scale) noexcept -> float
|
|
{ return float(static_cast<float>(index)*scale < 0.5f)*2.0f - 1.0f; }
|
|
};
|
|
|
|
struct OneFunc {
|
|
static constexpr auto Get(uint, float) noexcept -> float
|
|
{ return 1.0f; }
|
|
};
|
|
|
|
|
|
struct ModulatorState final : public EffectState {
|
|
std::variant<OneFunc,SinFunc,SawFunc,SquareFunc> mSampleGen;
|
|
|
|
uint mIndex{0};
|
|
uint mRange{1};
|
|
float mIndexScale{0.0f};
|
|
|
|
alignas(16) FloatBufferLine mModSamples{};
|
|
alignas(16) FloatBufferLine mBuffer{};
|
|
|
|
struct OutParams {
|
|
uint mTargetChannel{InvalidChannelIndex};
|
|
|
|
BiquadFilter mFilter;
|
|
|
|
float mCurrentGain{};
|
|
float mTargetGain{};
|
|
};
|
|
std::array<OutParams,MaxAmbiChannels> mChans;
|
|
|
|
|
|
void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override;
|
|
void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
|
|
const EffectTarget target) override;
|
|
void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
|
|
const al::span<FloatBufferLine> samplesOut) override;
|
|
};
|
|
|
|
void ModulatorState::deviceUpdate(const DeviceBase*, const BufferStorage*)
|
|
{
|
|
for(auto &e : mChans)
|
|
{
|
|
e.mTargetChannel = InvalidChannelIndex;
|
|
e.mFilter.clear();
|
|
e.mCurrentGain = 0.0f;
|
|
}
|
|
}
|
|
|
|
void ModulatorState::update(const ContextBase *context, const EffectSlot *slot,
|
|
const EffectProps *props_, const EffectTarget target)
|
|
{
|
|
auto &props = std::get<ModulatorProps>(*props_);
|
|
const DeviceBase *device{context->mDevice};
|
|
|
|
/* The effective frequency will be adjusted to have a whole number of
|
|
* samples per cycle (at 48khz, that allows 8000, 6857.14, 6000, 5333.33,
|
|
* 4800, etc). We could do better by using fixed-point stepping over a sin
|
|
* function, with additive synthesis for the square and sawtooth waveforms,
|
|
* but that may need a more efficient sin function since it needs to do
|
|
* many iterations per sample.
|
|
*/
|
|
const float samplesPerCycle{props.Frequency > 0.0f
|
|
? static_cast<float>(device->mSampleRate)/props.Frequency + 0.5f
|
|
: 1.0f};
|
|
const uint range{static_cast<uint>(std::clamp(samplesPerCycle, 1.0f,
|
|
static_cast<float>(device->mSampleRate)))};
|
|
mIndex = static_cast<uint>(uint64_t{mIndex} * range / mRange);
|
|
mRange = range;
|
|
|
|
if(mRange == 1)
|
|
{
|
|
mIndexScale = 0.0f;
|
|
mSampleGen.emplace<OneFunc>();
|
|
}
|
|
else if(props.Waveform == ModulatorWaveform::Sinusoid)
|
|
{
|
|
mIndexScale = al::numbers::pi_v<float>*2.0f / static_cast<float>(mRange);
|
|
mSampleGen.emplace<SinFunc>();
|
|
}
|
|
else if(props.Waveform == ModulatorWaveform::Sawtooth)
|
|
{
|
|
mIndexScale = 2.0f / static_cast<float>(mRange-1);
|
|
mSampleGen.emplace<SawFunc>();
|
|
}
|
|
else if(props.Waveform == ModulatorWaveform::Square)
|
|
{
|
|
/* For square wave, the range should be even (there should be an equal
|
|
* number of high and low samples). An odd number of samples per cycle
|
|
* would need a more complex value generator.
|
|
*/
|
|
mRange = (mRange+1) & ~1u;
|
|
mIndexScale = 1.0f / static_cast<float>(mRange-1);
|
|
mSampleGen.emplace<SquareFunc>();
|
|
}
|
|
|
|
float f0norm{props.HighPassCutoff / static_cast<float>(device->mSampleRate)};
|
|
f0norm = std::clamp(f0norm, 1.0f/512.0f, 0.49f);
|
|
/* Bandwidth value is constant in octaves. */
|
|
mChans[0].mFilter.setParamsFromBandwidth(BiquadType::HighPass, f0norm, 1.0f, 0.75f);
|
|
for(size_t i{1u};i < slot->Wet.Buffer.size();++i)
|
|
mChans[i].mFilter.copyParamsFrom(mChans[0].mFilter);
|
|
|
|
mOutTarget = target.Main->Buffer;
|
|
auto set_channel = [this](size_t idx, uint outchan, float outgain)
|
|
{
|
|
mChans[idx].mTargetChannel = outchan;
|
|
mChans[idx].mTargetGain = outgain;
|
|
};
|
|
target.Main->setAmbiMixParams(slot->Wet, slot->Gain, set_channel);
|
|
}
|
|
|
|
void ModulatorState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
|
|
{
|
|
ASSUME(samplesToDo > 0);
|
|
|
|
std::visit([this,samplesToDo](auto&& type)
|
|
{
|
|
const uint range{mRange};
|
|
const float scale{mIndexScale};
|
|
uint index{mIndex};
|
|
|
|
ASSUME(range > 1);
|
|
|
|
for(size_t i{0};i < samplesToDo;)
|
|
{
|
|
size_t rem{std::min(samplesToDo-i, size_t{range-index})};
|
|
do {
|
|
mModSamples[i++] = type.Get(index++, scale);
|
|
} while(--rem);
|
|
if(index == range)
|
|
index = 0;
|
|
}
|
|
mIndex = index;
|
|
}, mSampleGen);
|
|
|
|
auto chandata = mChans.begin();
|
|
for(const auto &input : samplesIn)
|
|
{
|
|
if(const size_t outidx{chandata->mTargetChannel}; outidx != InvalidChannelIndex)
|
|
{
|
|
chandata->mFilter.process(al::span{input}.first(samplesToDo), mBuffer);
|
|
std::transform(mBuffer.cbegin(), mBuffer.cbegin()+samplesToDo, mModSamples.cbegin(),
|
|
mBuffer.begin(), std::multiplies<>{});
|
|
|
|
MixSamples(al::span{mBuffer}.first(samplesToDo), samplesOut[outidx],
|
|
chandata->mCurrentGain, chandata->mTargetGain, std::min(samplesToDo, 64_uz));
|
|
}
|
|
++chandata;
|
|
}
|
|
}
|
|
|
|
|
|
struct ModulatorStateFactory final : public EffectStateFactory {
|
|
al::intrusive_ptr<EffectState> create() override
|
|
{ return al::intrusive_ptr<EffectState>{new ModulatorState{}}; }
|
|
};
|
|
|
|
} // namespace
|
|
|
|
EffectStateFactory *ModulatorStateFactory_getFactory()
|
|
{
|
|
static ModulatorStateFactory ModulatorFactory{};
|
|
return &ModulatorFactory;
|
|
}
|