Torque3D/Engine/lib/openal-soft/alc/effects/echo.cpp

180 lines
6 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 2009 by Chris Robinson.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <algorithm>
#include <array>
#include <cmath>
#include <cstdlib>
#include <variant>
#include <vector>
#include "alc/effects/base.h"
#include "alnumeric.h"
#include "alspan.h"
#include "core/ambidefs.h"
#include "core/bufferline.h"
#include "core/context.h"
#include "core/device.h"
#include "core/effects/base.h"
#include "core/effectslot.h"
#include "core/filters/biquad.h"
#include "core/mixer.h"
#include "intrusive_ptr.h"
#include "opthelpers.h"
struct BufferStorage;
namespace {
using uint = unsigned int;
constexpr float LowpassFreqRef{5000.0f};
struct EchoState final : public EffectState {
std::vector<float> mSampleBuffer;
// The echo is two tap. The delay is the number of samples from before the
// current offset
std::array<size_t,2> mDelayTap{};
size_t mOffset{0u};
/* The panning gains for the two taps */
struct OutGains {
std::array<float,MaxAmbiChannels> Current{};
std::array<float,MaxAmbiChannels> Target{};
};
std::array<OutGains,2> mGains;
BiquadFilter mFilter;
float mFeedGain{0.0f};
alignas(16) std::array<FloatBufferLine,2> mTempBuffer{};
void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override;
void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
const EffectTarget target) override;
void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
const al::span<FloatBufferLine> samplesOut) override;
};
void EchoState::deviceUpdate(const DeviceBase *Device, const BufferStorage*)
{
const auto frequency = static_cast<float>(Device->mSampleRate);
// Use the next power of 2 for the buffer length, so the tap offsets can be
// wrapped using a mask instead of a modulo
const uint maxlen{NextPowerOf2(float2uint(EchoMaxDelay*frequency + 0.5f) +
float2uint(EchoMaxLRDelay*frequency + 0.5f))};
if(maxlen != mSampleBuffer.size())
decltype(mSampleBuffer)(maxlen).swap(mSampleBuffer);
std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), 0.0f);
for(auto &e : mGains)
{
std::fill(e.Current.begin(), e.Current.end(), 0.0f);
std::fill(e.Target.begin(), e.Target.end(), 0.0f);
}
}
void EchoState::update(const ContextBase *context, const EffectSlot *slot,
const EffectProps *props_, const EffectTarget target)
{
auto &props = std::get<EchoProps>(*props_);
const DeviceBase *device{context->mDevice};
const auto frequency = static_cast<float>(device->mSampleRate);
mDelayTap[0] = std::max(float2uint(std::round(props.Delay*frequency)), 1u);
mDelayTap[1] = float2uint(std::round(props.LRDelay*frequency)) + mDelayTap[0];
const float gainhf{std::max(1.0f - props.Damping, 0.0625f)}; /* Limit -24dB */
mFilter.setParamsFromSlope(BiquadType::HighShelf, LowpassFreqRef/frequency, gainhf, 1.0f);
mFeedGain = props.Feedback;
/* Convert echo spread (where 0 = center, +/-1 = sides) to a 2D vector. */
const float x{props.Spread}; /* +x = left */
const float z{std::sqrt(1.0f - x*x)};
const auto coeffs0 = CalcAmbiCoeffs( x, 0.0f, z, 0.0f);
const auto coeffs1 = CalcAmbiCoeffs(-x, 0.0f, z, 0.0f);
mOutTarget = target.Main->Buffer;
ComputePanGains(target.Main, coeffs0, slot->Gain, mGains[0].Target);
ComputePanGains(target.Main, coeffs1, slot->Gain, mGains[1].Target);
}
void EchoState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
{
const auto delaybuf = al::span{mSampleBuffer};
const size_t mask{delaybuf.size()-1};
size_t offset{mOffset};
size_t tap1{offset - mDelayTap[0]};
size_t tap2{offset - mDelayTap[1]};
ASSUME(samplesToDo > 0);
const BiquadFilter filter{mFilter};
auto [z1, z2] = mFilter.getComponents();
for(size_t i{0u};i < samplesToDo;)
{
offset &= mask;
tap1 &= mask;
tap2 &= mask;
size_t td{std::min(mask+1 - std::max(offset, std::max(tap1, tap2)), samplesToDo-i)};
do {
/* Feed the delay buffer's input first. */
delaybuf[offset] = samplesIn[0][i];
/* Get delayed output from the first and second taps. Use the
* second tap for feedback.
*/
mTempBuffer[0][i] = delaybuf[tap1++];
mTempBuffer[1][i] = delaybuf[tap2++];
const float feedb{mTempBuffer[1][i++]};
/* Add feedback to the delay buffer with damping and attenuation. */
delaybuf[offset++] += filter.processOne(feedb, z1, z2) * mFeedGain;
} while(--td);
}
mFilter.setComponents(z1, z2);
mOffset = offset;
for(size_t c{0};c < 2;c++)
MixSamples(al::span{mTempBuffer[c]}.first(samplesToDo), samplesOut, mGains[c].Current,
mGains[c].Target, samplesToDo, 0);
}
struct EchoStateFactory final : public EffectStateFactory {
al::intrusive_ptr<EffectState> create() override
{ return al::intrusive_ptr<EffectState>{new EchoState{}}; }
};
} // namespace
EffectStateFactory *EchoStateFactory_getFactory()
{
static EchoStateFactory EchoFactory{};
return &EchoFactory;
}