Torque3D/Engine/source/T3D/components/render/meshComponent.cpp
2018-03-13 01:05:15 -05:00

632 lines
18 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "console/consoleTypes.h"
#include "T3D/components/render/meshComponent.h"
#include "core/util/safeDelete.h"
#include "core/resourceManager.h"
#include "core/stream/fileStream.h"
#include "console/consoleTypes.h"
#include "console/consoleObject.h"
#include "core/stream/bitStream.h"
#include "sim/netConnection.h"
#include "gfx/gfxTransformSaver.h"
#include "console/engineAPI.h"
#include "lighting/lightQuery.h"
#include "scene/sceneManager.h"
#include "gfx/bitmap/ddsFile.h"
#include "gfx/gfxTextureManager.h"
#include "materials/materialFeatureTypes.h"
#include "renderInstance/renderImposterMgr.h"
#include "util/imposterCapture.h"
#include "gfx/sim/debugDraw.h"
#include "gfx/gfxDrawUtil.h"
#include "materials/materialManager.h"
#include "materials/matInstance.h"
#include "core/strings/findMatch.h"
#include "T3D/components/render/meshComponent_ScriptBinding.h"
ImplementEnumType(BatchingMode,
"Type of mesh data available in a shape.\n"
"@ingroup gameObjects")
{
MeshComponent::Individual, "Individual", "This mesh is rendered indivudally, wthout batching or instancing."
},
{ MeshComponent::StaticBatch, "Static Batching", "Statically batches this mesh together with others to reduce drawcalls." },
//{ MeshComponent::DynamicBatch, "Dynamic Batching", "Dynamical batches this mesh together with others to reduce drawcalls each frame." },
// { MeshComponent::Instanced, "Instanced", "This mesh is rendered as an instance, reducing draw overhead with others that share the same mesh and material." },
EndImplementEnumType;
//////////////////////////////////////////////////////////////////////////
// Constructor/Destructor
//////////////////////////////////////////////////////////////////////////
MeshComponent::MeshComponent() : Component(), mShape(nullptr), mRenderMode(Individual)
{
mFriendlyName = "Mesh Component";
mComponentType = "Render";
mDescription = getDescriptionText("Causes the object to render a non-animating 3d shape using the file provided.");
mNetworked = true;
mShapeName = StringTable->EmptyString();
mShapeAsset = StringTable->EmptyString();
mMeshAsset = StringTable->EmptyString();
mMeshAssetId = StringTable->EmptyString();
mInterfaceData = new MeshRenderSystemInterface();
mRenderMode = Individual;
}
MeshComponent::~MeshComponent()
{
if (mInterfaceData)
SAFE_DELETE(mInterfaceData);
}
IMPLEMENT_CO_NETOBJECT_V1(MeshComponent);
//==========================================================================================
bool MeshComponent::onAdd()
{
if(! Parent::onAdd())
return false;
// Register for the resource change signal.
ResourceManager::get().getChangedSignal().notify( this, &MeshComponent::_onResourceChanged );
return true;
}
void MeshComponent::onComponentAdd()
{
Parent::onComponentAdd();
if (isClientObject())
mInterfaceData->mIsClient = true;
// if (mInterfaceData != nullptr)
// mInterfaceData->mIsClient = isClientObject();
//get the default shape, if any
updateShape();
}
void MeshComponent::onRemove()
{
Parent::onRemove();
}
void MeshComponent::onComponentRemove()
{
if(mOwner)
{
Point3F pos = mOwner->getPosition(); //store our center pos
mOwner->setObjectBox(Box3F(Point3F(-1,-1,-1), Point3F(1,1,1)));
mOwner->setPosition(pos);
}
Parent::onComponentRemove();
}
void MeshComponent::initPersistFields()
{
Parent::initPersistFields();
addGroup("Rendering");
addField("BatchingMode", TypeBatchingMode, Offset(mRenderMode, MeshComponent),
"The mode of batching this shape should be rendered with.");
endGroup("Rendering");
//create a hook to our internal variables
addGroup("Model");
addProtectedField("MeshAsset", TypeShapeAssetPtr, Offset(mShapeAsset, MeshComponent), &_setMesh, &defaultProtectedGetFn,
"The asset Id used for the mesh.", AbstractClassRep::FieldFlags::FIELD_ComponentInspectors);
endGroup("Model");
}
bool MeshComponent::_setMesh(void *object, const char *index, const char *data)
{
MeshComponent *rbI = static_cast<MeshComponent*>(object);
// Sanity!
AssertFatal(data != NULL, "Cannot use a NULL asset Id.");
return rbI->setMeshAsset(data);
}
bool MeshComponent::_setShape( void *object, const char *index, const char *data )
{
MeshComponent *rbI = static_cast<MeshComponent*>(object);
rbI->mShapeName = StringTable->insert(data);
rbI->updateShape(); //make sure we force the update to resize the owner bounds
rbI->setMaskBits(ShapeMask);
return true;
}
bool MeshComponent::setMeshAsset(const char* assetName)
{
// Fetch the asset Id.
if (mInterfaceData == nullptr)
return false;
mMeshAssetId = StringTable->insert(assetName);
mMeshAsset = mMeshAssetId;
if (mMeshAsset.isNull())
{
Con::errorf("[MeshComponent] Failed to load mesh asset.");
return false;
}
mShapeName = mMeshAssetId;
mShapeAsset = mShapeName;
updateShape(); //make sure we force the update to resize the owner bounds
setMaskBits(ShapeMask);
return true;
}
void MeshComponent::updateShape()
{
if (mInterfaceData == nullptr)
return;
//if ((mShapeName && mShapeName[0] != '\0') || (mShapeAsset && mShapeAsset[0] != '\0'))
if ((mShapeName && mShapeName[0] != '\0') || (mMeshAssetId && mMeshAssetId[0] != '\0'))
{
if (mMeshAsset == NULL)
return;
mShape = mMeshAsset->getShape();
if (!mMeshAsset->getShape())
return;
setupShape();
//Do this on both the server and client
S32 materialCount = mMeshAsset->getShape()->materialList->getMaterialNameList().size();
if (isServerObject())
{
//we need to update the editor
for (U32 i = 0; i < mFields.size(); i++)
{
//find any with the materialslot title and clear them out
if (FindMatch::isMatch("MaterialSlot*", mFields[i].mFieldName, false))
{
setDataField(mFields[i].mFieldName, NULL, "");
mFields.erase(i);
continue;
}
}
//next, get a listing of our materials in the shape, and build our field list for them
char matFieldName[128];
if (materialCount > 0)
mComponentGroup = StringTable->insert("Materials");
for (U32 i = 0; i < materialCount; i++)
{
String materialname = mMeshAsset->getShape()->materialList->getMaterialName(i);
if (materialname == String("ShapeBounds"))
continue;
dSprintf(matFieldName, 128, "MaterialSlot%d", i);
addComponentField(matFieldName, "A material used in the shape file", "Material", materialname, "");
}
if (materialCount > 0)
mComponentGroup = "";
}
if (mOwner != NULL)
{
Point3F min, max, pos;
pos = mOwner->getPosition();
mOwner->getWorldToObj().mulP(pos);
min = mMeshAsset->getShape()->mBounds.minExtents;
max = mMeshAsset->getShape()->mBounds.maxExtents;
if (mInterfaceData)
{
mInterfaceData->mBounds.set(min, max);
mInterfaceData->mScale = mOwner->getScale();
mInterfaceData->mTransform = mOwner->getRenderTransform();
}
mOwner->setObjectBox(Box3F(min, max));
mOwner->resetWorldBox();
if (mOwner->getSceneManager() != NULL)
mOwner->getSceneManager()->notifyObjectDirty(mOwner);
}
if (isClientObject() && mInterfaceData)
{
if (mRenderMode == StaticBatch)
{
mInterfaceData->mStatic = true;
OptimizedPolyList geom;
MatrixF transform = mInterfaceData->mTransform;
mInterfaceData->mGeometry.setTransform(&transform, mInterfaceData->mScale);
mInterfaceData->mGeometry.setObject(mOwner);
mInterfaceData->mShapeInstance->buildPolyList(&mInterfaceData->mGeometry, 0);
}
else
{
mInterfaceData->mStatic = false;
}
MeshRenderSystem::rebuildBuffers();
}
//finally, notify that our shape was changed
onShapeInstanceChanged.trigger(this);
}
}
void MeshComponent::setupShape()
{
mInterfaceData->mShapeInstance = new TSShapeInstance(mMeshAsset->getShape(), true);
}
void MeshComponent::_onResourceChanged( const Torque::Path &path )
{
if (mInterfaceData == nullptr)
return;
String filePath;
if (mMeshAsset)
filePath = Torque::Path(mMeshAsset->getShapeFilename());
if (!mMeshAsset || path != Torque::Path(mMeshAsset->getShapeFilename()) )
return;
updateShape();
setMaskBits(ShapeMask);
}
void MeshComponent::inspectPostApply()
{
Parent::inspectPostApply();
}
U32 MeshComponent::packUpdate(NetConnection *con, U32 mask, BitStream *stream)
{
U32 retMask = Parent::packUpdate(con, mask, stream);
if (!mOwner || con->getGhostIndex(mOwner) == -1)
{
stream->writeFlag(false);
stream->writeFlag(false);
if (mask & ShapeMask)
retMask |= ShapeMask;
if (mask & MaterialMask)
retMask |= MaterialMask;
return retMask;
}
if (stream->writeFlag(mask & ShapeMask))
{
stream->writeString(mShapeName);
stream->writeInt(mRenderMode, 8);
}
if (stream->writeFlag( mask & MaterialMask ))
{
stream->writeInt(mChangingMaterials.size(), 16);
for(U32 i=0; i < mChangingMaterials.size(); i++)
{
stream->writeInt(mChangingMaterials[i].slot, 16);
NetStringHandle matNameStr = mChangingMaterials[i].assetId.c_str();
con->packNetStringHandleU(stream, matNameStr);
}
mChangingMaterials.clear();
}
return retMask;
}
void MeshComponent::unpackUpdate(NetConnection *con, BitStream *stream)
{
Parent::unpackUpdate(con, stream);
if(stream->readFlag())
{
mShapeName = stream->readSTString();
mRenderMode = (RenderMode)stream->readInt(8);
setMeshAsset(mShapeName);
updateShape();
}
if(stream->readFlag())
{
mChangingMaterials.clear();
U32 materialCount = stream->readInt(16);
for(U32 i=0; i < materialCount; i++)
{
matMap newMatMap;
newMatMap.slot = stream->readInt(16);
newMatMap.assetId = String(con->unpackNetStringHandleU(stream).getString());
//do the lookup, now
newMatMap.matAsset = AssetDatabase.acquireAsset<MaterialAsset>(newMatMap.assetId);
mChangingMaterials.push_back(newMatMap);
}
updateMaterials();
}
}
void MeshComponent::prepRenderImage( SceneRenderState *state )
{
/*if (!mEnabled || !mOwner || !mShapeInstance)
return;
Point3F cameraOffset;
mOwner->getRenderTransform().getColumn(3, &cameraOffset);
cameraOffset -= state->getDiffuseCameraPosition();
F32 dist = cameraOffset.len();
if (dist < 0.01f)
dist = 0.01f;
Point3F objScale = getOwner()->getScale();
F32 invScale = (1.0f / getMax(getMax(objScale.x, objScale.y), objScale.z));
mShapeInstance->setDetailFromDistance(state, dist * invScale);
if (mShapeInstance->getCurrentDetail() < 0)
return;
GFXTransformSaver saver;
// Set up our TS render state.
TSRenderState rdata;
rdata.setSceneState(state);
rdata.setFadeOverride(1.0f);
rdata.setOriginSort(false);
// We might have some forward lit materials
// so pass down a query to gather lights.
LightQuery query;
query.init(mOwner->getWorldSphere());
rdata.setLightQuery(&query);
MatrixF mat = mOwner->getRenderTransform();
if (mOwner->isMounted())
{
MatrixF wrldPos = mOwner->getWorldTransform();
Point3F wrldPosPos = wrldPos.getPosition();
Point3F mntPs = mat.getPosition();
EulerF mntRt = RotationF(mat).asEulerF();
bool tr = true;
}
mat.scale(objScale);
GFX->setWorldMatrix(mat);
mShapeInstance->render(rdata);*/
}
void MeshComponent::updateMaterials()
{
if (mChangingMaterials.empty() || !mMeshAsset->getShape())
return;
TSMaterialList* pMatList = mInterfaceData->mShapeInstance->getMaterialList();
pMatList->setTextureLookupPath(getShapeResource().getPath().getPath());
const Vector<String> &materialNames = pMatList->getMaterialNameList();
for ( S32 i = 0; i < materialNames.size(); i++ )
{
for(U32 m=0; m < mChangingMaterials.size(); m++)
{
if(mChangingMaterials[m].slot == i)
{
//Fetch the actual material asset
pMatList->renameMaterial( i, mChangingMaterials[m].matAsset->getMaterialDefinitionName());
}
}
mChangingMaterials.clear();
}
// Initialize the material instances
mInterfaceData->mShapeInstance->initMaterialList();
}
MatrixF MeshComponent::getNodeTransform(S32 nodeIdx)
{
if (mInterfaceData != nullptr && mMeshAsset->getShape())
{
S32 nodeCount = getShape()->nodes.size();
if(nodeIdx >= 0 && nodeIdx < nodeCount)
{
//animate();
MatrixF nodeTransform = mInterfaceData->mShapeInstance->mNodeTransforms[nodeIdx];
const Point3F& scale = mOwner->getScale();
// The position of the node needs to be scaled.
Point3F position = nodeTransform.getPosition();
position.convolve(scale);
nodeTransform.setPosition(position);
MatrixF finalTransform = MatrixF::Identity;
finalTransform.mul(mOwner->getRenderTransform(), nodeTransform);
return finalTransform;
}
}
return MatrixF::Identity;
}
S32 MeshComponent::getNodeByName(String nodeName)
{
if (mMeshAsset->getShape())
{
S32 nodeIdx = getShape()->findNode(nodeName);
return nodeIdx;
}
return -1;
}
bool MeshComponent::castRayRendered(const Point3F &start, const Point3F &end, RayInfo *info)
{
return false;
}
void MeshComponent::mountObjectToNode(SceneObject* objB, String node, MatrixF txfm)
{
const char* test;
test = node.c_str();
if(dIsdigit(test[0]))
{
getOwner()->mountObject(objB, dAtoi(node), txfm);
}
else
{
if(TSShape* shape = getShape())
{
S32 idx = shape->findNode(node);
getOwner()->mountObject(objB, idx, txfm);
}
}
}
void MeshComponent::onDynamicModified(const char* slotName, const char* newValue)
{
if(FindMatch::isMatch( "materialslot*", slotName, false ))
{
if(!getShape())
return;
S32 slot = -1;
String outStr( String::GetTrailingNumber( slotName, slot ) );
if(slot == -1)
return;
//Safe to assume the inbound value for the material will be a MaterialAsset, so lets do a lookup on the name
MaterialAsset* matAsset = AssetDatabase.acquireAsset<MaterialAsset>(newValue);
if (!matAsset)
return;
bool found = false;
for(U32 i=0; i < mChangingMaterials.size(); i++)
{
if(mChangingMaterials[i].slot == slot)
{
mChangingMaterials[i].matAsset = matAsset;
mChangingMaterials[i].assetId = newValue;
found = true;
}
}
if(!found)
{
matMap newMatMap;
newMatMap.slot = slot;
newMatMap.matAsset = matAsset;
newMatMap.assetId = newValue;
mChangingMaterials.push_back(newMatMap);
}
setMaskBits(MaterialMask);
}
Parent::onDynamicModified(slotName, newValue);
}
void MeshComponent::changeMaterial(U32 slot, MaterialAsset* newMat)
{
char fieldName[512];
//update our respective field
dSprintf(fieldName, 512, "materialSlot%d", slot);
setDataField(fieldName, NULL, newMat->getAssetId());
}
bool MeshComponent::setMatInstField(U32 slot, const char* field, const char* value)
{
TSMaterialList* pMatList = mInterfaceData->mShapeInstance->getMaterialList();
pMatList->setTextureLookupPath(getShapeResource().getPath().getPath());
MaterialParameters* params = pMatList->getMaterialInst(slot)->getMaterialParameters();
if (pMatList->getMaterialInst(slot)->getFeatures().hasFeature(MFT_DiffuseColor))
{
MaterialParameterHandle* handle = pMatList->getMaterialInst(slot)->getMaterialParameterHandle("DiffuseColor");
params->set(handle, LinearColorF(0, 0, 0));
}
return true;
}
void MeshComponent::onInspect()
{
}
void MeshComponent::onEndInspect()
{
}
void MeshComponent::ownerTransformSet(MatrixF *mat)
{
if (mInterfaceData != nullptr)
{
MatrixF newTransform = *mat;
mInterfaceData->mTransform = newTransform;
}
}