Torque3D/Engine/source/T3D/lightFlareData.cpp
Areloch 5525f8ecdd Converts all game, gui editor, and system classes to utilize assets
Processed core, tools and default modules to utilize assets
Converted all console types that were string based, such as TypeImageFilename to utilize const char*/the string table, which avoids a lot of type swapping shenanigans and avoids string corruption
Removed unneeded MainEditor mockup module
Removed some unused/duplicate image assets from the tools
2021-07-19 01:07:08 -05:00

679 lines
24 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "T3D/lightFlareData.h"
#include "core/stream/bitStream.h"
#include "console/engineAPI.h"
#include "lighting/lightInfo.h"
#include "lighting/lightQuery.h"
#include "math/mathUtils.h"
#include "math/mathIO.h"
#include "scene/sceneRenderState.h"
#include "gfx/gfxOcclusionQuery.h"
#include "gfx/gfxDrawUtil.h"
#include "gfx/gfxTextureManager.h"
#include "gfx/sim/debugDraw.h"
#include "renderInstance/renderPassManager.h"
#include "T3D/gameBase/gameConnection.h"
#include "T3D/gameBase/processList.h"
#include "collision/collision.h"
#include "lighting/lightManager.h"
const U32 LightFlareData::LosMask = STATIC_COLLISION_TYPEMASK |
ShapeBaseObjectType |
StaticShapeObjectType |
ItemObjectType;
LightFlareState::~LightFlareState()
{
}
void LightFlareState::clear()
{
visChangedTime = 0;
visible = false;
scale = 1.0f;
fullBrightness = 1.0f;
lightMat = MatrixF::Identity;
lightInfo = NULL;
worldRadius = -1.0f;
occlusion = -1.0f;
}
Point3F LightFlareData::sBasePoints[] =
{
Point3F( -0.5, 0.5, 0.0 ),
Point3F( -0.5, -0.5, 0.0 ),
Point3F( 0.5, -0.5, 0.0 ),
Point3F( 0.5, 0.5, 0.0 )
};
IMPLEMENT_CO_DATABLOCK_V1( LightFlareData );
ConsoleDocClass( LightFlareData,
"@brief Defines a light flare effect usable by scene lights.\n\n"
"%LightFlareData is a datablock which defines a type of flare effect. "
"This may then be referenced by other classes which support the rendering "
"of a flare: Sun, ScatterSky, LightBase.\n\n"
"A flare contains one or more elements defined in the element* named fields "
"of %LightFlareData, with a maximum of ten elements. Each element is rendered "
"as a 2D sprite in screenspace.\n\n"
"@tsexample\n"
"// example from Full Template, core/art/datablocks/lights." TORQUE_SCRIPT_EXTENSION "\n"
"datablock LightFlareData( LightFlareExample0 )\n"
"{\n"
" overallScale = 2.0;\n"
" flareEnabled = true;\n"
" renderReflectPass = true;\n"
" flareTexture = \"./../special/lensFlareSheet1\";\n"
" occlusionRadius = 0.25;\n"
" \n"
" elementRect[0] = \"0 512 512 512\";\n"
" elementDist[0] = 0.0;\n"
" elementScale[0] = 0.5;\n"
" elementTint[0] = \"1.0 1.0 1.0\";\n"
" elementRotate[0] = false;\n"
" elementUseLightColor[0] = false;\n"
" \n"
" elementRect[1] = \"512 0 512 512\";\n"
" elementDist[1] = 0.0;\n"
" elementScale[1] = 2.0;\n"
" elementTint[1] = \"0.5 0.5 0.5\";\n"
" elementRotate[1] = false;\n"
" elementUseLightColor[1] = false;\n"
"};\n"
"@endtsexample\n"
"The elementDist field defines where along the flare's beam the element appears. "
"A distance of 0.0 is directly over the light source, a distance of 1.0 "
"is at the screen center, and a distance of 2.0 is at the position of the "
"light source mirrored across the screen center.\n"
"@image html images/lightFlareData_diagram.png\n"
"@ingroup Lighting"
);
LightFlareData::LightFlareData()
: mScale( 1.0f ),
mFlareEnabled( true ),
mOcclusionRadius( 0.0f ),
mRenderReflectPass( true ),
mElementCount( 0 )
{
dMemset( mElementRect, 0, sizeof( RectF ) * MAX_ELEMENTS );
dMemset( mElementScale, 0, sizeof( F32 ) * MAX_ELEMENTS );
dMemset( mElementTint, 0, sizeof( LinearColorF ) * MAX_ELEMENTS );
dMemset( mElementRotate, 0, sizeof( bool ) * MAX_ELEMENTS );
dMemset( mElementUseLightColor, 0, sizeof( bool ) * MAX_ELEMENTS );
for ( U32 i = 0; i < MAX_ELEMENTS; i++ )
mElementDist[i] = -1.0f;
INIT_IMAGEASSET(FlareTexture);
}
LightFlareData::~LightFlareData()
{
}
void LightFlareData::initPersistFields()
{
addGroup( "LightFlareData" );
addField( "overallScale", TypeF32, Offset( mScale, LightFlareData ),
"Size scale applied to all elements of the flare." );
addField( "occlusionRadius", TypeF32, Offset( mOcclusionRadius, LightFlareData ),
"If positive an occlusion query is used to test flare visibility, else it uses simple raycasts." );
addField( "renderReflectPass", TypeBool, Offset( mRenderReflectPass, LightFlareData ),
"If false the flare does not render in reflections, else only non-zero distance elements are rendered." );
endGroup( "LightFlareData" );
addGroup( "FlareElements" );
addField( "flareEnabled", TypeBool, Offset( mFlareEnabled, LightFlareData ),
"Allows the user to disable this flare globally for any lights referencing it." );
INITPERSISTFIELD_IMAGEASSET(FlareTexture, LightFlareData, "The texture / sprite sheet for this flare.");
addArray( "Elements", MAX_ELEMENTS );
addField( "elementRect", TypeRectF, Offset( mElementRect, LightFlareData ), MAX_ELEMENTS,
"A rectangle specified in pixels of the flareTexture image." );
addField( "elementDist", TypeF32, Offset( mElementDist, LightFlareData ), MAX_ELEMENTS,
"Where this element appears along the flare beam." );
addField( "elementScale", TypeF32, Offset( mElementScale, LightFlareData ), MAX_ELEMENTS,
"Size scale applied to this element." );
addField( "elementTint", TypeColorF, Offset( mElementTint, LightFlareData ), MAX_ELEMENTS,
"Used to modulate this element's color if elementUseLightColor "
"is false.\n"
"@see elementUseLightColor" );
addField( "elementRotate", TypeBool, Offset( mElementRotate, LightFlareData ), MAX_ELEMENTS,
"Defines if this element orients to point along the flare beam "
"or if it is always upright." );
addField( "elementUseLightColor", TypeBool, Offset( mElementUseLightColor, LightFlareData ), MAX_ELEMENTS,
"If true this element's color is modulated by the light color. "
"If false, elementTint will be used.\n"
"@see elementTint" );
endArray( "FlareElements" );
endGroup( "Flares" );
Parent::initPersistFields();
}
void LightFlareData::inspectPostApply()
{
Parent::inspectPostApply();
// Hack to allow changing properties in game.
// Do the same work as preload.
String str;
_preload( false, str );
}
bool LightFlareData::preload( bool server, String &errorStr )
{
if ( !Parent::preload( server, errorStr ) )
return false;
return _preload( server, errorStr );
}
void LightFlareData::packData( BitStream *stream )
{
Parent::packData( stream );
stream->writeFlag( mFlareEnabled );
PACKDATA_IMAGEASSET(FlareTexture);
stream->write( mScale );
stream->write( mOcclusionRadius );
stream->writeFlag( mRenderReflectPass );
stream->write( mElementCount );
for ( U32 i = 0; i < mElementCount; i++ )
{
mathWrite( *stream, mElementRect[i] );
stream->write( mElementDist[i] );
stream->write( mElementScale[i] );
stream->write( mElementTint[i] );
stream->writeFlag( mElementRotate[i] );
stream->writeFlag( mElementUseLightColor[i] );
}
}
void LightFlareData::unpackData( BitStream *stream )
{
Parent::unpackData( stream );
mFlareEnabled = stream->readFlag();
UNPACKDATA_IMAGEASSET(FlareTexture);
stream->read( &mScale );
stream->read( &mOcclusionRadius );
mRenderReflectPass = stream->readFlag();
stream->read( &mElementCount );
for ( U32 i = 0; i < mElementCount; i++ )
{
mathRead( *stream, &mElementRect[i] );
stream->read( &mElementDist[i] );
stream->read( &mElementScale[i] );
stream->read( &mElementTint[i] );
mElementRotate[i] = stream->readFlag();
mElementUseLightColor[i] = stream->readFlag();
}
}
bool LightFlareData::_testVisibility(const SceneRenderState *state, LightFlareState *flareState, U32 *outVisDelta, F32 *outOcclusionFade, Point3F *outLightPosSS)
{
// Reflections use the results from the last forward
// render so we don't need multiple queries.
if ( state->isReflectPass() )
{
*outOcclusionFade = flareState->occlusion;
*outVisDelta = Sim::getCurrentTime() - flareState->visChangedTime;
return flareState->visible;
}
// Initialize it to something first.
*outOcclusionFade = 0;
// First check to see if the flare point
// is on scren at all... if not then return
// the last result.
const Point3F &lightPos = flareState->lightMat.getPosition();
const RectI &viewport = RectI(Point2I(0, 0), GFX->getViewport().extent);
MatrixF camProjMatrix = state->getSceneManager()->getNonClipProjection();
bool onScreen = MathUtils::mProjectWorldToScreen( lightPos, outLightPosSS, viewport, GFX->getWorldMatrix(), camProjMatrix );
// It is onscreen, so raycast as a simple occlusion test.
const LightInfo *lightInfo = flareState->lightInfo;
const bool isVectorLight = lightInfo->getType() == LightInfo::Vector;
const bool useOcclusionQuery = isVectorLight ? flareState->worldRadius > 0.0f : mOcclusionRadius > 0.0f;
bool needsRaycast = true;
// NOTE: if hardware does not support HOQ it will return NULL
// and we will retry every time but there is not currently a good place
// for one-shot initialization of LightFlareState
if ( useOcclusionQuery )
{
// Always treat light as onscreen if using HOQ
// it will be faded out if offscreen anyway.
onScreen = true;
needsRaycast = false;
// Test the hardware queries for rendered pixels.
U32 pixels = 0, fullPixels = 0;
GFXOcclusionQuery::OcclusionQueryStatus status;
flareState->occlusionQuery.getLastStatus( false, &status, &pixels );
flareState->fullPixelQuery.getLastStatus( false, NULL, &fullPixels );
if ( status == GFXOcclusionQuery::NotOccluded && fullPixels != 0 )
*outOcclusionFade = mClampF( (F32)pixels / (F32)fullPixels, 0.0f, 1.0f );
if( !flareState->occlusionQuery.isWaiting() )
{
// Setup the new queries.
RenderPassManager *rpm = state->getRenderPass();
OccluderRenderInst *ri = rpm->allocInst<OccluderRenderInst>();
ri->type = RenderPassManager::RIT_Occluder;
ri->query = flareState->occlusionQuery.getQuery();
ri->query2 = flareState->fullPixelQuery.getQuery();
ri->isSphere = true;
ri->position = lightPos;
if ( isVectorLight && flareState->worldRadius > 0.0f )
ri->scale.set( flareState->worldRadius );
else
ri->scale.set( mOcclusionRadius );
ri->orientation = rpm->allocUniqueXform( lightInfo->getTransform() );
// Submit the queries.
state->getRenderPass()->addInst( ri );
}
}
const Point3F &camPos = state->getCameraPosition();
if ( needsRaycast )
{
// Use a raycast to determine occlusion.
GameConnection *conn = GameConnection::getConnectionToServer();
if ( !conn )
return false;
const bool fps = conn->isFirstPerson();
GameBase *control = conn->getControlObject();
if ( control && fps )
control->disableCollision();
RayInfo rayInfo;
if ( !gClientContainer.castRay( camPos, lightPos, LosMask, &rayInfo ) )
*outOcclusionFade = 1.0f;
if ( control && fps )
control->enableCollision();
}
// The raycast and hardware occlusion query only calculate if
// the flare is on screen... if does not account for being
// partially offscreen.
//
// The code here clips a box against the viewport to
// get an approximate percentage of onscreen area.
//
F32 worldRadius = flareState->worldRadius > 0 ? flareState->worldRadius : mOcclusionRadius;
if ( worldRadius > 0.0f )
{
F32 dist = ( camPos - lightPos ).len();
F32 pixelRadius = state->projectRadius(dist, worldRadius);
RectI visRect( outLightPosSS->x - pixelRadius, outLightPosSS->y - pixelRadius,
pixelRadius * 2.0f, pixelRadius * 2.0f );
F32 fullArea = visRect.area();
if ( visRect.intersect( viewport ) )
{
F32 visArea = visRect.area();
*outOcclusionFade *= visArea / fullArea;
onScreen = true;
}
else
*outOcclusionFade = 0.0f;
}
const bool lightVisible = onScreen && *outOcclusionFade > 0.0f;
// To perform a fade in/out when we gain or lose visibility
// we must update/store the visibility state and time.
const U32 currentTime = Sim::getCurrentTime();
if ( lightVisible != flareState->visible )
{
flareState->visible = lightVisible;
flareState->visChangedTime = currentTime;
}
// Return the visibility delta for time fading.
*outVisDelta = currentTime - flareState->visChangedTime;
// Store the final occlusion fade so that it can
// be used in reflection rendering later.
flareState->occlusion = *outOcclusionFade;
return lightVisible;
}
void LightFlareData::prepRender(SceneRenderState *state, LightFlareState *flareState)
{
PROFILE_SCOPE(LightFlareData_prepRender);
const LightInfo *lightInfo = flareState->lightInfo;
if (mIsZero(flareState->fullBrightness) ||
mIsZero(lightInfo->getBrightness()))
return;
// Figure out the element count to render.
U32 elementCount = mElementCount;
const bool isReflectPass = state->isReflectPass();
if (isReflectPass)
{
// Then we don't render anything this pass.
if (!mRenderReflectPass)
return;
// Find the zero distance elements which make
// up the corona of the light flare.
elementCount = 0.0f;
for (U32 i = 0; i < mElementCount; i++)
if (mIsZero(mElementDist[i]))
elementCount++;
}
// Better have something to render.
if (elementCount == 0)
return;
U32 visDelta = U32_MAX;
F32 occlusionFade = 1.0f;
Point3F lightPosSS;
bool lightVisible = _testVisibility(state, flareState, &visDelta, &occlusionFade, &lightPosSS);
//DebugDrawer::get()->drawBox(flareState->lightMat.getPosition() + Point3F(-0.5, -0.5, -0.5) * 4, flareState->lightMat.getPosition() + Point3F(0.5, 0.5, 0.5) * 4, ColorI::BLUE);
// We can only skip rendering if the light is not
// visible, and it has elapsed the fade out time.
if (mIsZero(occlusionFade) ||
(!lightVisible && visDelta > FadeOutTime))
return;
const RectI &viewport = GFX->getViewport();
Point3F oneOverViewportExtent(1.0f / (F32)viewport.extent.x, 1.0f / (F32)viewport.extent.y, 0.0f);
lightPosSS *= oneOverViewportExtent;
lightPosSS = (lightPosSS * 2.0f) - Point3F::One;
lightPosSS.y = -lightPosSS.y;
lightPosSS.z = 0.0f;
// Determine the center of the current projection so we can converge there
Point3F centerProj(0);
{
MatrixF camProjMatrix = state->getSceneManager()->getNonClipProjection();
Point3F outCenterPos;
RectI centerViewport = RectI(Point2I(0, 0), viewport.extent);
MathUtils::mProjectWorldToScreen(Point3F(0,state->getSceneManager()->getNearClip(),0), &outCenterPos, centerViewport, MatrixF::Identity, camProjMatrix);
centerProj = outCenterPos;
centerProj *= oneOverViewportExtent;
centerProj = (centerProj * 2.0f) - Point3F::One;
centerProj.y = -centerProj.y;
centerProj.z = 0.0f;
}
// Take any projection offset into account so that the point where the flare's
// elements converge is at the 'eye' point rather than the center of the viewport.
Point3F flareVec( centerProj - lightPosSS );
const F32 flareLength = flareVec.len();
if ( flareLength > 0.0f )
flareVec *= 1.0f / flareLength;
// Setup the flare quad points.
Point3F rotatedBasePoints[4];
dMemcpy(rotatedBasePoints, sBasePoints, sizeof( sBasePoints ));
// Rotate the flare quad.
F32 rot = mAcos( -1.0f * flareVec.x );
rot *= flareVec.y > 0.0f ? -1.0f : 1.0f;
MathUtils::vectorRotateZAxis( rot, rotatedBasePoints, 4 );
// Here we calculate a the light source's influence on
// the effect's size and brightness.
// Scale based on the current light brightness compared to its normal output.
F32 lightSourceBrightnessScale = lightInfo->getBrightness() / flareState->fullBrightness;
const Point3F &camPos = state->getCameraPosition();
const Point3F &lightPos = flareState->lightMat.getPosition();
const bool isVectorLight = lightInfo->getType() == LightInfo::Vector;
// Scale based on world space distance from camera to light source.
F32 distToCamera = ( camPos - lightPos ).len();
F32 lightSourceWSDistanceScale = isVectorLight && distToCamera > 0.0f ? 1.0f : getMin( 10.0f / distToCamera, 10.0f );
// Scale based on screen space distance from screen position of light source to the screen center.
F32 lightSourceSSDistanceScale = getMax( ( 1.5f - flareLength ) / 1.5f, 0.0f );
// Scale based on recent visibility changes, fading in or out.
F32 fadeInOutScale = 1.0f;
if ( lightVisible &&
visDelta < FadeInTime &&
flareState->occlusion > 0.0f )
fadeInOutScale = (F32)visDelta / (F32)FadeInTime;
else if ( !lightVisible &&
visDelta < FadeOutTime )
fadeInOutScale = 1.0f - (F32)visDelta / (F32)FadeOutTime;
// This combined scale influences the size of all elements this effect renders.
// Note we also add in a scale that is user specified in the Light.
F32 lightSourceIntensityScale = lightSourceBrightnessScale *
lightSourceWSDistanceScale *
lightSourceSSDistanceScale *
fadeInOutScale *
flareState->scale *
occlusionFade;
if ( mIsZero( lightSourceIntensityScale ) )
return;
// The baseColor which modulates the color of all elements.
//
// These are the factors which affect the "alpha" of the flare effect.
// Modulate more in as appropriate.
LinearColorF baseColor = LinearColorF::WHITE * lightSourceBrightnessScale * occlusionFade;
// Setup the vertex buffer for the maximum flare elements.
const U32 vertCount = 4 * mElementCount;
if ( flareState->vertBuffer.isNull() ||
flareState->vertBuffer->mNumVerts != vertCount )
flareState->vertBuffer.set( GFX, vertCount, GFXBufferTypeDynamic );
GFXVertexPCT *vert = flareState->vertBuffer.lock();
const Point2F oneOverTexSize( 1.0f / (F32)mFlareTexture.getWidth(), 1.0f / (F32)mFlareTexture.getHeight() );
for ( U32 i = 0; i < mElementCount; i++ )
{
// Skip non-zero elements for reflections.
if ( isReflectPass && mElementDist[i] > 0.0f )
continue;
Point3F *basePos = mElementRotate[i] ? rotatedBasePoints : sBasePoints;
LinearColorF color( baseColor * mElementTint[i] );
if ( mElementUseLightColor[i] )
color *= lightInfo->getColor();
color.clamp();
Point3F pos( lightPosSS + flareVec * mElementDist[i] * flareLength );
const RectF &rect = mElementRect[i];
Point3F size( rect.extent.x, rect.extent.y, 1.0f );
size *= mElementScale[i] * mScale * lightSourceIntensityScale;
AssertFatal( size.x >= 0.0f, "LightFlareData::prepRender - Got a negative element size?" );
if ( size.x < 100.0f )
{
F32 alphaScale = mPow( size.x / 100.0f, 2 );
color *= alphaScale;
}
Point2F texCoordMin, texCoordMax;
texCoordMin = rect.point * oneOverTexSize;
texCoordMax = ( rect.point + rect.extent ) * oneOverTexSize;
size.x = getMax( size.x, 1.0f );
size.y = getMax( size.y, 1.0f );
size *= oneOverViewportExtent;
const ColorI colori = color.toColorI();
vert->color = colori;
vert->point = ( basePos[0] * size ) + pos;
vert->texCoord.set( texCoordMin.x, texCoordMax.y );
vert++;
vert->color = colori;
vert->point = ( basePos[1] * size ) + pos;
vert->texCoord.set( texCoordMax.x, texCoordMax.y );
vert++;
vert->color = colori;
vert->point = ( basePos[2] * size ) + pos;
vert->texCoord.set( texCoordMax.x, texCoordMin.y );
vert++;
vert->color = colori;
vert->point = ( basePos[3] * size ) + pos;
vert->texCoord.set( texCoordMin.x, texCoordMin.y );
vert++;
}
flareState->vertBuffer.unlock();
RenderPassManager *rpm = state->getRenderPass();
// Create and submit the render instance.
ParticleRenderInst *ri = rpm->allocInst<ParticleRenderInst>();
ri->type = RenderPassManager::RIT_Particle;
ri->vertBuff = &flareState->vertBuffer;
ri->primBuff = &mFlarePrimBuffer;
ri->translucentSort = true;
ri->sortDistSq = ( lightPos - camPos ).lenSquared();
ri->modelViewProj = &MatrixF::Identity;
ri->bbModelViewProj = &MatrixF::Identity;
ri->count = elementCount;
ri->blendStyle = ParticleRenderInst::BlendGreyscale;
ri->diffuseTex = mFlareTexture;
ri->softnessDistance = 1.0f;
ri->defaultKey = ri->diffuseTex ? (uintptr_t)ri->diffuseTex : (uintptr_t)ri->vertBuff; // Sort by texture too.
// NOTE: Offscreen partical code is currently disabled.
ri->systemState = PSS_AwaitingHighResDraw;
rpm->addInst( ri );
}
bool LightFlareData::_preload( bool server, String &errorStr )
{
mElementCount = 0;
for ( U32 i = 0; i < MAX_ELEMENTS; i++ )
{
if ( mElementDist[i] == -1 )
break;
mElementCount = i + 1;
}
if ( mElementCount > 0 )
_makePrimBuffer( &mFlarePrimBuffer, mElementCount );
return true;
}
void LightFlareData::_makePrimBuffer( GFXPrimitiveBufferHandle *pb, U32 count )
{
// create index buffer based on that size
U32 indexListSize = count * 6; // 6 indices per particle
U16 *indices = new U16[ indexListSize ];
for ( U32 i = 0; i < count; i++ )
{
// this index ordering should be optimal (hopefully) for the vertex cache
U16 *idx = &indices[i*6];
volatile U32 offset = i * 4; // set to volatile to fix VC6 Release mode compiler bug
idx[0] = 0 + offset;
idx[1] = 1 + offset;
idx[2] = 3 + offset;
idx[3] = 1 + offset;
idx[4] = 3 + offset;
idx[5] = 2 + offset;
}
U16 *ibIndices;
GFXBufferType bufferType = GFXBufferTypeStatic;
pb->set( GFX, indexListSize, 0, bufferType );
pb->lock( &ibIndices );
dMemcpy( ibIndices, indices, indexListSize * sizeof(U16) );
pb->unlock();
delete [] indices;
}
DefineEngineMethod( LightFlareData, apply, void, (),,
"Intended as a helper to developers and editor scripts.\n"
"Force trigger an inspectPostApply"
)
{
object->inspectPostApply();
}