Torque3D/Engine/source/materials/processedFFMaterial.cpp

380 lines
11 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "materials/processedFFMaterial.h"
#include "gfx/sim/cubemapData.h"
#include "materials/sceneData.h"
#include "materials/customMaterialDefinition.h"
#include "materials/materialFeatureTypes.h"
#include "gfx/sim/gfxStateBlockData.h"
#include "gfx/gfxDevice.h"
#include "gfx/genericConstBuffer.h"
#include "materials/materialParameters.h"
#include "lighting/lightInfo.h"
#include "scene/sceneRenderState.h"
#include "core/util/safeDelete.h"
#include "math/util/matrixSet.h"
class FFMaterialParameterHandle : public MaterialParameterHandle
{
public:
virtual ~FFMaterialParameterHandle() {}
virtual const String& getName() const { return mName; }
virtual bool isValid() const { return false; }
virtual S32 getSamplerRegister( U32 pass ) const { return -1; }
private:
String mName;
};
ProcessedFFMaterial::ProcessedFFMaterial()
{
VECTOR_SET_ASSOCIATION( mParamDesc );
_construct();
}
ProcessedFFMaterial::ProcessedFFMaterial(Material &mat, const bool isLightingMaterial)
{
VECTOR_SET_ASSOCIATION( mParamDesc );
_construct();
mMaterial = &mat;
mIsLightingMaterial = isLightingMaterial;
}
void ProcessedFFMaterial::_construct()
{
mHasSetStageData = false;
mHasGlow = false;
mHasAccumulation = false;
mIsLightingMaterial = false;
mDefaultHandle = new FFMaterialParameterHandle();
mDefaultParameters = new MaterialParameters();
mCurrentParams = mDefaultParameters;
}
ProcessedFFMaterial::~ProcessedFFMaterial()
{
SAFE_DELETE(mDefaultParameters);
SAFE_DELETE( mDefaultHandle );
}
void ProcessedFFMaterial::_createPasses( U32 stageNum, const FeatureSet &features )
{
FixedFuncFeatureData featData;
_determineFeatures(stageNum, featData, features);
// Just create a simple pass!
_addPass(0, featData);
mFeatures.clear();
if ( featData.features[FixedFuncFeatureData::DiffuseMap] )
mFeatures.addFeature( MFT_DiffuseMap );
if ( featData.features[FixedFuncFeatureData::LightMap] )
mFeatures.addFeature( MFT_LightMap );
if ( featData.features[FixedFuncFeatureData::ToneMap] )
mFeatures.addFeature( MFT_ToneMap );
}
void ProcessedFFMaterial::_determineFeatures( U32 stageNum,
FixedFuncFeatureData& featData,
const FeatureSet &features )
{
if ( mStages[stageNum].getTex( MFT_DiffuseMap ) )
featData.features[FixedFuncFeatureData::DiffuseMap] = true;
if ( features.hasFeature( MFT_LightMap ) )
featData.features[FixedFuncFeatureData::LightMap] = true;
if ( features.hasFeature( MFT_ToneMap ))
featData.features[FixedFuncFeatureData::ToneMap] = true;
}
U32 ProcessedFFMaterial::getNumStages()
{
// Loops through all stages to determine how many stages we actually use
U32 numStages = 0;
U32 i;
for( i=0; i<Material::MAX_STAGES; i++ )
{
// Assume stage is inactive
bool stageActive = false;
// Cubemaps only on first stage
if( i == 0 )
{
// If we have a cubemap the stage is active
if( mMaterial->mCubemapData || mMaterial->mDynamicCubemap )
{
numStages++;
continue;
}
}
// If we have a texture for the a feature the
// stage is active.
if ( mStages[i].hasValidTex() )
stageActive = true;
// If this stage has specular lighting, it's active
if ( mMaterial->mPixelSpecular[i] )
stageActive = true;
// If we have a Material that is vertex lit
// then it may not have a texture
if( mMaterial->mVertLit[i] )
{
stageActive = true;
}
// Increment the number of active stages
numStages += stageActive;
}
return numStages;
}
bool ProcessedFFMaterial::setupPass( SceneRenderState *state, const SceneData &sgData, U32 pass )
{
PROFILE_SCOPE( ProcessedFFMaterial_SetupPass );
// Make sure we have a pass
if(pass >= mPasses.size())
return false;
_setRenderState( state, sgData, pass );
// Bind our textures
setTextureStages( state, sgData, pass );
return true;
}
void ProcessedFFMaterial::setTextureStages(SceneRenderState * state, const SceneData& sgData, U32 pass)
{
// We may need to do some trickery in here for fixed function, this is just copy/paste from MatInstance
#ifdef TORQUE_DEBUG
AssertFatal( pass<mPasses.size(), "Pass out of bounds" );
#endif
RenderPassData *rpd = mPasses[pass];
for( U32 i=0; i<rpd->mNumTex; i++ )
{
U32 currTexFlag = rpd->mTexType[i];
if (!LIGHTMGR || !LIGHTMGR->setTextureStage(sgData, currTexFlag, i, NULL, NULL))
{
switch( currTexFlag )
{
case Material::NoTexture:
if (rpd->mTexSlot[i].texObject)
GFX->setTexture( i, rpd->mTexSlot[i].texObject );
break;
case Material::NormalizeCube:
GFX->setCubeTexture(i, Material::GetNormalizeCube());
break;
case Material::Lightmap:
GFX->setTexture( i, sgData.lightmap );
break;
case Material::Cube:
// TODO: Is this right?
GFX->setTexture( i, rpd->mTexSlot[0].texObject );
break;
case Material::SGCube:
// No cubemap support just yet
//GFX->setCubeTexture( i, sgData.cubemap );
GFX->setTexture( i, rpd->mTexSlot[0].texObject );
break;
case Material::BackBuff:
GFX->setTexture( i, sgData.backBuffTex );
break;
}
}
}
}
MaterialParameters* ProcessedFFMaterial::allocMaterialParameters()
{
return new MaterialParameters();
}
MaterialParameters* ProcessedFFMaterial::getDefaultMaterialParameters()
{
return mDefaultParameters;
}
MaterialParameterHandle* ProcessedFFMaterial::getMaterialParameterHandle(const String& name)
{
return mDefaultHandle;
}
void ProcessedFFMaterial::setTransforms(const MatrixSet &matrixSet, SceneRenderState *state, const U32 pass)
{
GFX->setWorldMatrix(matrixSet.getObjectToWorld());
GFX->setViewMatrix(matrixSet.getWorldToCamera());
GFX->setProjectionMatrix(matrixSet.getCameraToScreen());
}
void ProcessedFFMaterial::setSceneInfo(SceneRenderState * state, const SceneData& sgData, U32 pass)
{
_setPrimaryLightInfo(*sgData.objTrans, sgData.lights[0], pass);
_setSecondaryLightInfo(*sgData.objTrans, sgData.lights[1]);
}
void ProcessedFFMaterial::_setPrimaryLightInfo(const MatrixF &_objTrans, LightInfo* light, U32 pass)
{
// Just in case
GFX->setGlobalAmbientColor(LinearColorF(0.0f, 0.0f, 0.0f, 1.0f));
if ( light->getType() == LightInfo::Ambient )
{
// Ambient light
GFX->setGlobalAmbientColor( light->getAmbient() );
return;
}
GFX->setLight(0, NULL);
GFX->setLight(1, NULL);
// This is a quick hack that lets us use FF lights
GFXLightMaterial lightMat;
lightMat.ambient = LinearColorF(1.0f, 1.0f, 1.0f, 1.0f);
lightMat.diffuse = LinearColorF(1.0f, 1.0f, 1.0f, 1.0f);
lightMat.emissive = LinearColorF(0.0f, 0.0f, 0.0f, 0.0f);
lightMat.specular = LinearColorF(0.0f, 0.0f, 0.0f, 0.0f);
lightMat.shininess = 128.0f;
GFX->setLightMaterial(lightMat);
// set object transform
MatrixF objTrans = _objTrans;
objTrans.inverse();
// fill in primary light
//-------------------------
GFXLightInfo xlatedLight;
light->setGFXLight(&xlatedLight);
Point3F lightPos = light->getPosition();
Point3F lightDir = light->getDirection();
objTrans.mulP(lightPos);
objTrans.mulV(lightDir);
xlatedLight.mPos = lightPos;
xlatedLight.mDirection = lightDir;
GFX->setLight(0, &xlatedLight);
}
void ProcessedFFMaterial::_setSecondaryLightInfo(const MatrixF &_objTrans, LightInfo* light)
{
// set object transform
MatrixF objTrans = _objTrans;
objTrans.inverse();
// fill in secondary light
//-------------------------
GFXLightInfo xlatedLight;
light->setGFXLight(&xlatedLight);
Point3F lightPos = light->getPosition();
Point3F lightDir = light->getDirection();
objTrans.mulP(lightPos);
objTrans.mulV(lightDir);
xlatedLight.mPos = lightPos;
xlatedLight.mDirection = lightDir;
GFX->setLight(1, &xlatedLight);
}
bool ProcessedFFMaterial::init( const FeatureSet &features,
const GFXVertexFormat *vertexFormat,
const MatFeaturesDelegate &featuresDelegate )
{
TORQUE_UNUSED( vertexFormat );
TORQUE_UNUSED( featuresDelegate );
_setStageData();
// Just create a simple pass
_createPasses(0, features);
_initRenderPassDataStateBlocks();
mStateHint.init( this );
return true;
}
void ProcessedFFMaterial::_addPass(U32 stageNum, FixedFuncFeatureData& featData)
{
U32 numTex = 0;
// Just creates a simple pass, but it can still glow!
RenderPassData rpd;
// Base texture, texunit 0
if(featData.features[FixedFuncFeatureData::DiffuseMap])
{
rpd.mTexSlot[0].texObject = mStages[stageNum].getTex( MFT_DiffuseMap );
rpd.mTexType[0] = Material::NoTexture;
numTex++;
}
// lightmap, texunit 1
if(featData.features[FixedFuncFeatureData::LightMap])
{
rpd.mTexType[1] = Material::Lightmap;
numTex++;
}
rpd.mNumTex = numTex;
rpd.mStageNum = stageNum;
rpd.mGlow = false;
mPasses.push_back( new RenderPassData(rpd) );
}
void ProcessedFFMaterial::_setPassBlendOp()
{
}
void ProcessedFFMaterial::_initPassStateBlock( RenderPassData *rpd, GFXStateBlockDesc &result )
{
Parent::_initPassStateBlock( rpd, result );
if ( mIsLightingMaterial )
{
result.ffLighting = true;
result.blendDefined = true;
result.blendEnable = true;
result.blendSrc = GFXBlendOne;
result.blendDest = GFXBlendZero;
}
// This is here for generic FF shader fallbacks.
CustomMaterial* custmat = dynamic_cast<CustomMaterial*>(mMaterial);
if (custmat && custmat->getStateBlockData() )
result.addDesc(custmat->getStateBlockData()->getState());
}