Torque3D/Engine/source/ts/tsPartInstance.cpp
James Urquhart 3496c549b5 Hardware Skinning Support
- Supports GL, D3D9 & D3D11
- Extends vertex formats & shadergen to support blend indices and weights
- Adds basic support for using 4x3 matrices for shader constants
- Supports software fallback
2016-08-21 01:43:30 +01:00

376 lines
12 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "ts/tsPartInstance.h"
#include "math/mMath.h"
//-------------------------------------------------------------------------------------
// Constructors
//-------------------------------------------------------------------------------------
MRandomR250 TSPartInstance::smRandom;
TSPartInstance::TSPartInstance(TSShapeInstance * sourceShape)
{
VECTOR_SET_ASSOCIATION(mMeshObjects);
init(sourceShape);
}
TSPartInstance::TSPartInstance(TSShapeInstance * sourceShape, S32 objectIndex)
{
init(sourceShape);
addObject(objectIndex);
}
void TSPartInstance::init(TSShapeInstance * sourceShape)
{
mSourceShape = sourceShape;
mSizeCutoffs = NULL;
mPolyCount = NULL;
mNumDetails = 0;
mCurrentObjectDetail = 0;
mCurrentIntraDL = 1.0f;
mData = 0;
}
TSPartInstance::~TSPartInstance()
{
delete [] mPolyCount;
}
//-------------------------------------------------------------------------------------
// Methods for updating PartInstances
//-------------------------------------------------------------------------------------
void TSPartInstance::addObject(S32 objectIndex)
{
if (mSourceShape->mMeshObjects[objectIndex].forceHidden ||
mSourceShape->mMeshObjects[objectIndex].visible < 0.01f)
// not visible, don't bother
return;
mMeshObjects.push_back(&mSourceShape->mMeshObjects[objectIndex]);
}
void TSPartInstance::updateBounds()
{
// run through meshes and brute force it?
Box3F bounds;
mBounds.minExtents.set( 10E30f, 10E30f, 10E30f);
mBounds.maxExtents.set(-10E30f,-10E30f,-10E30f);
for (S32 i=0; i<mMeshObjects.size(); i++)
{
if (mMeshObjects[i]->getMesh(0))
mMeshObjects[i]->getMesh(0)->computeBounds(mMeshObjects[i]->getTransform(),bounds,mMeshObjects[i]->frame);
mBounds.minExtents.setMin(bounds.minExtents);
mBounds.maxExtents.setMax(bounds.maxExtents);
}
mCenter = mBounds.minExtents + mBounds.maxExtents;
mCenter *= 0.5f;
Point3F r = mBounds.maxExtents-mCenter;
mRadius = mSqrt(mDot(r,r));
}
//-------------------------------------------------------------------------------------
// Methods for breaking shapes into pieces
//-------------------------------------------------------------------------------------
void TSPartInstance::breakShape(TSShapeInstance * shape, S32 subShape, Vector<TSPartInstance*> & partList, F32 * probShatter, F32 * probBreak, S32 probDepth)
{
AssertFatal(subShape>=0 && subShape<shape->mShape->subShapeFirstNode.size(),"TSPartInstance::breakShape: subShape out of range.");
S32 start = shape->mShape->subShapeFirstNode[subShape];
TSPartInstance::breakShape(shape, NULL, start, partList, probShatter, probBreak, probDepth);
// update bounds (and get rid of empty parts)
for (S32 i=0; i<partList.size(); i++)
{
if (partList[i]->mMeshObjects.size())
partList[i]->updateBounds();
else
{
partList.erase(i);
i--;
}
}
}
void TSPartInstance::breakShape(TSShapeInstance * shape, TSPartInstance * currentPart, S32 currentNode, Vector<TSPartInstance*> & partList, F32 * probShatter, F32 * probBreak, S32 probDepth)
{
AssertFatal( !probDepth || (probShatter && probBreak),"TSPartInstance::breakShape: probabilities improperly specified.");
const TSShape::Node * node = &shape->mShape->nodes[currentNode];
S32 object = node->firstObject;
S32 child = node->firstChild;
// copy off probabilities and update probability lists for next level
F32 ps = probShatter ? *probShatter : 1.0f;
F32 pb = probBreak ? *probBreak : 1.0f;
if (probDepth>1 && probShatter && probBreak)
{
probShatter++;
probBreak++;
probDepth--;
}
// what to do...depending on how the die roll, we can:
// a) shatter the shape at this level -- meaning we make a part out of each object on this node and
// we make parts out of all the children (perhaps breaking them up further still)
// b) break the shape off at this level -- meaning we make a part out of the intact piece from here
// on down (again, we might break the result further as we iterate through the nodes...what breaking
// the shape really does is separate this piece from the parent piece).
// c) add this piece to the parent -- meaning all objects on this node are added to the parent, and children
// are also added (but children will be recursively sent through this routine, so if a parent gets option
// (c) and the child option (a) or (b), then the child will be ripped from the parents grasp. Cruel
// people us coders are.
// Note: (a) is the only way that two objects on the same node can be separated...that is why both
// option a and option b are needed.
if (!probShatter || smRandom.randF() < ps)
{
// option a -- shatter the shape at this level
// iterate through the objects, make part out of each one
while (object>=0)
{
partList.increment();
partList.last() = new TSPartInstance(shape,object);
object = shape->mShape->objects[object].nextSibling;
}
// iterate through the child nodes, call ourselves on each one with currentPart = NULL
while (child>=0)
{
TSPartInstance::breakShape(shape,NULL,child,partList,probShatter,probBreak,probDepth);
child = shape->mShape->nodes[child].nextSibling;
}
return;
}
if (!probBreak || smRandom.randF() < pb)
// option b -- break the shape off at this level
currentPart = NULL; // fall through to option C
// option c -- add this piece to the parent
if (!currentPart)
{
currentPart = new TSPartInstance(shape);
partList.push_back(currentPart);
}
// iterate through objects, add to currentPart
while (object>=0)
{
currentPart->addObject(object);
object = shape->mShape->objects[object].nextSibling;
}
// iterate through child nodes, call ourselves on each one with currentPart as is
while (child>=0)
{
TSPartInstance::breakShape(shape,currentPart,child,partList,probShatter,probBreak,probDepth);
child = shape->mShape->nodes[child].nextSibling;
}
}
//-------------------------------------------------------------------------------------
// render methods -- we use TSShapeInstance code as much as possible
// issues: setupTexturing expects a detail level, we give it an object detail level
//-------------------------------------------------------------------------------------
void TSPartInstance::render(S32 od, const TSRenderState &rdata)
{
S32 i;
// render mesh objects
for (i=0; i<mMeshObjects.size(); i++)
{
TSRenderState objState = rdata;
const char *meshName = mSourceShape->mShape->names[mMeshObjects[i]->object->nameIndex];
mMeshObjects[i]->render(od,mSourceShape->mShape->mShapeVertexBuffer,mSourceShape->getMaterialList(),objState,1.0, meshName);
}
}
//-------------------------------------------------------------------------------------
// Detail selection
// 2 methods:
// method 1: use source shapes detail levels...
// method 2: pass in our own table...
// In either case, you can compute the pixel size on your own or let open gl do it.
// If you want to use method 2, you have to call setDetailData sometime before selecting detail
//-------------------------------------------------------------------------------------
void TSPartInstance::setDetailData(F32 * sizeCutoffs, S32 numDetails)
{
if (mSizeCutoffs == sizeCutoffs && mNumDetails==numDetails)
return;
mSizeCutoffs = sizeCutoffs;
mNumDetails = numDetails;
delete [] mPolyCount;
mPolyCount = NULL;
}
/*
void TSPartInstance::selectCurrentDetail(bool ignoreScale)
{
if (mSizeCutoffs)
{
selectCurrentDetail(mSizeCutoffs,mNumDetails,ignoreScale);
return;
}
mSourceShape->selectCurrentDetail(ignoreScale);
mCurrentObjectDetail = mSourceShape->getCurrentDetail();
mCurrentIntraDL = mSourceShape->getCurrentIntraDetail();
}
void TSPartInstance::selectCurrentDetail(F32 pixelSize)
{
if (mSizeCutoffs)
{
selectCurrentDetail(pixelSize,mSizeCutoffs,mNumDetails);
return;
}
mSourceShape->selectCurrentDetail(pixelSize);
mCurrentObjectDetail = mSourceShape->getCurrentDetail();
mCurrentIntraDL = mSourceShape->getCurrentIntraDetail();
}
void TSPartInstance::selectCurrentDetail(F32 dist, F32 invScale)
{
if (mSizeCutoffs)
{
const RectI &viewport = GFX->getViewport();
F32 pixelScale = viewport.extent.x * 1.6f / 640.0f;
F32 pixelSize = GFX->projectRadius(dist*invScale,mSourceShape->getShape()->radius) * pixelScale * TSShapeInstance::smDetailAdjust;
selectCurrentDetail(pixelSize,mSizeCutoffs,mNumDetails);
return;
}
mSourceShape->selectCurrentDetail(dist, invScale);
mCurrentObjectDetail = mSourceShape->getCurrentDetail();
mCurrentIntraDL = mSourceShape->getCurrentIntraDetail();
}
void TSPartInstance::selectCurrentDetail(F32 * sizeCutoffs, S32 numDetails, bool ignoreScale)
{
// compute pixel size
Point3F p;
MatrixF toCam = GFX->getWorldMatrix();
toCam.mulP(mCenter,&p);
F32 dist = mDot(p,p);
F32 scale = 1.0f;
if (!ignoreScale)
{
// any scale?
Point3F x,y,z;
toCam.getRow(0,&x);
toCam.getRow(1,&y);
toCam.getRow(2,&z);
F32 scalex = mDot(x,x);
F32 scaley = mDot(y,y);
F32 scalez = mDot(z,z);
scale = scalex;
if (scaley > scale)
scale = scaley;
if (scalez > scale)
scale = scalez;
}
dist /= scale;
dist = mSqrt(dist);
const RectI &viewport = GFX->getViewport();
// JMQMERGE: is this using a hardcoded res/aspect ? (and the code above)
F32 pixelScale = viewport.extent.x * 1.6f / 640.0f;
F32 pixelRadius = GFX->projectRadius(dist,mRadius) * pixelScale * TSShapeInstance::smDetailAdjust;
selectCurrentDetail(pixelRadius,sizeCutoffs,numDetails);
}
void TSPartInstance::selectCurrentDetail(F32 pixelSize, F32 * sizeCutoffs, S32 numDetails)
{
mCurrentObjectDetail = 0;
while (numDetails)
{
if (pixelSize > *sizeCutoffs)
return;
mCurrentObjectDetail++;
numDetails--;
sizeCutoffs++;
}
mCurrentObjectDetail = -1;
}
*/
//-------------------------------------------------------------------------------------
// Detail query methods...complicated because there are two ways that detail information
// can be determined...1) using source shape, or 2) using mSizeCutoffs
//-------------------------------------------------------------------------------------
F32 TSPartInstance::getDetailSize(S32 dl) const
{
if (dl<0)
return 0;
else if (mSizeCutoffs && dl<mNumDetails)
return mSizeCutoffs[dl];
else if (!mSizeCutoffs && dl<=mSourceShape->getShape()->mSmallestVisibleDL)
return mSourceShape->getShape()->details[dl].size;
else return 0;
}
S32 TSPartInstance::getPolyCount(S32 dl)
{
if (!mPolyCount)
computePolyCount();
if (dl<0 || dl>=mNumDetails)
return 0;
else
return mPolyCount[dl];
}
void TSPartInstance::computePolyCount()
{
if (!mSizeCutoffs)
mNumDetails = mSourceShape->getShape()->mSmallestVisibleDL+1;
delete [] mPolyCount;
mPolyCount = new S32[mNumDetails];
for (S32 i=0; i<mNumDetails; i++)
{
mPolyCount[i] = 0;
for (S32 j=0; j<mMeshObjects.size(); j++)
{
if (mMeshObjects[j]->getMesh(i))
mPolyCount[i] += mMeshObjects[j]->getMesh(i)->getNumPolys();
}
}
}