Torque3D/Engine/source/gfx/bitmap/gBitmap.cpp
Robert Fritzen 171a24459f Remove namespace from header
Removing the "using namespace Torque" from header file to prevent issues
with certain engine addons conflicting with ::UUID defined by windows
and Torque::UUID defined by T3D.
2013-07-28 12:55:52 -05:00

1186 lines
33 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "gfx/bitmap/gBitmap.h"
#include "core/resourceManager.h"
#include "core/stream/fileStream.h"
#include "core/strings/stringFunctions.h"
#include "core/color.h"
#include "gfx/bitmap/bitmapUtils.h"
#include "math/mRect.h"
#include "console/console.h"
#include "platform/profiler.h"
#include "console/engineAPI.h"
using namespace Torque;
const U32 GBitmap::csFileVersion = 3;
Vector<GBitmap::Registration> GBitmap::sRegistrations( __FILE__, __LINE__ );
GBitmap::GBitmap()
: mInternalFormat(GFXFormatR8G8B8),
mBits(NULL),
mByteSize(0),
mWidth(0),
mHeight(0),
mBytesPerPixel(0),
mNumMipLevels(0),
mHasTransparency(false)
{
for (U32 i = 0; i < c_maxMipLevels; i++)
mMipLevelOffsets[i] = 0xffffffff;
}
GBitmap::GBitmap(const GBitmap& rCopy)
{
mInternalFormat = rCopy.mInternalFormat;
mByteSize = rCopy.mByteSize;
mBits = new U8[mByteSize];
dMemcpy(mBits, rCopy.mBits, mByteSize);
mWidth = rCopy.mWidth;
mHeight = rCopy.mHeight;
mBytesPerPixel = rCopy.mBytesPerPixel;
mNumMipLevels = rCopy.mNumMipLevels;
dMemcpy(mMipLevelOffsets, rCopy.mMipLevelOffsets, sizeof(mMipLevelOffsets));
mHasTransparency = rCopy.mHasTransparency;
}
GBitmap::GBitmap(const U32 in_width,
const U32 in_height,
const bool in_extrudeMipLevels,
const GFXFormat in_format)
: mBits(NULL),
mByteSize(0)
{
for (U32 i = 0; i < c_maxMipLevels; i++)
mMipLevelOffsets[i] = 0xffffffff;
allocateBitmap(in_width, in_height, in_extrudeMipLevels, in_format);
mHasTransparency = false;
}
GBitmap::GBitmap(const U32 in_width,
const U32 in_height,
const U8* data )
: mBits(NULL),
mByteSize(0)
{
allocateBitmap(in_width, in_height, false, GFXFormatR8G8B8A8);
mHasTransparency = false;
for (U32 x = 0; x < in_width; x++)
{
for (U32 y = 0; y < in_height; y++)
{
U32 offset = (x + y * in_width) * 4;
ColorI color(data[offset],
data[offset + 1],
data[offset + 2],
data[offset + 3]);
if (color.alpha < 255)
mHasTransparency = true;
setColor(x, y, color);
}
}
}
//--------------------------------------------------------------------------
GBitmap::~GBitmap()
{
deleteImage();
}
//--------------------------------------------------------------------------
void GBitmap::sRegisterFormat( const GBitmap::Registration &reg )
{
U32 insert = sRegistrations.size();
for ( U32 i = 0; i < sRegistrations.size(); i++ )
{
if ( sRegistrations[i].priority <= reg.priority )
{
insert = i;
break;
}
}
sRegistrations.insert( insert, reg );
}
const GBitmap::Registration *GBitmap::sFindRegInfo( const String &extension )
{
for ( U32 i = 0; i < GBitmap::sRegistrations.size(); i++ )
{
const GBitmap::Registration &reg = GBitmap::sRegistrations[i];
const Vector<String> &extensions = reg.extensions;
for ( U32 j = 0; j < extensions.size(); ++j )
{
if ( extensions[j].equal( extension, String::NoCase ) )
return &reg;
}
}
return NULL;
}
bool GBitmap::sFindFile( const Path &path, Path *outPath )
{
PROFILE_SCOPE( GBitmap_sFindFile );
const String origExt( String::ToLower( path.getExtension() ) );
Path tryPath( path );
for ( U32 i = 0; i < sRegistrations.size(); i++ )
{
const Registration &reg = sRegistrations[i];
const Vector<String> &extensions = reg.extensions;
for ( U32 j = 0; j < extensions.size(); ++j )
{
// We've already tried this one.
if ( extensions[j] == origExt )
continue;
tryPath.setExtension( extensions[j] );
if ( !Torque::FS::IsFile( tryPath ) )
continue;
if ( outPath )
*outPath = tryPath;
return true;
}
}
return false;
}
bool GBitmap::sFindFiles( const Path &path, Vector<Path> *outFoundPaths )
{
PROFILE_SCOPE( GBitmap_sFindFiles );
Path tryPath( path );
for ( U32 i = 0; i < GBitmap::sRegistrations.size(); i++ )
{
const GBitmap::Registration &reg = GBitmap::sRegistrations[i];
const Vector<String> &extensions = reg.extensions;
for ( U32 j = 0; j < extensions.size(); ++j )
{
tryPath.setExtension( extensions[j] );
if ( Torque::FS::IsFile( tryPath ) )
{
if ( outFoundPaths )
outFoundPaths->push_back( tryPath );
else
return true;
}
}
}
return outFoundPaths ? outFoundPaths->size() > 0 : false;
}
String GBitmap::sGetExtensionList()
{
String list;
for ( U32 i = 0; i < sRegistrations.size(); i++ )
{
const Registration &reg = sRegistrations[i];
for ( U32 j = 0; j < reg.extensions.size(); j++ )
{
list += reg.extensions[j];
list += " ";
}
}
return list;
}
//--------------------------------------------------------------------------
void GBitmap::deleteImage()
{
delete [] mBits;
mBits = NULL;
mByteSize = 0;
mWidth = 0;
mHeight = 0;
mNumMipLevels = 0;
}
//--------------------------------------------------------------------------
void GBitmap::copyRect(const GBitmap *src, const RectI &srcRect, const Point2I &dstPt, const U32 srcMipLevel, const U32 dstMipLevel)
{
if(src->getFormat() != getFormat())
return;
if(srcRect.extent.x + srcRect.point.x > src->getWidth(srcMipLevel) || srcRect.extent.y + srcRect.point.y > src->getHeight(srcMipLevel))
return;
if(srcRect.extent.x + dstPt.x > getWidth(dstMipLevel) || srcRect.extent.y + dstPt.y > getHeight(dstMipLevel))
return;
for(U32 i = 0; i < srcRect.extent.y; i++)
{
dMemcpy(getAddress(dstPt.x, dstPt.y + i, dstMipLevel),
src->getAddress(srcRect.point.x, srcRect.point.y + i, srcMipLevel),
mBytesPerPixel * srcRect.extent.x);
}
}
//--------------------------------------------------------------------------
void GBitmap::allocateBitmap(const U32 in_width, const U32 in_height, const bool in_extrudeMipLevels, const GFXFormat in_format )
{
//-------------------------------------- Some debug checks...
U32 svByteSize = mByteSize;
U8 *svBits = mBits;
AssertFatal(in_width != 0 && in_height != 0, "GBitmap::allocateBitmap: width or height is 0");
if (in_extrudeMipLevels == true)
{
AssertFatal(isPow2(in_width) == true && isPow2(in_height) == true, "GBitmap::GBitmap: in order to extrude mip levels, bitmap w/h must be pow2");
}
mInternalFormat = in_format;
mWidth = in_width;
mHeight = in_height;
mBytesPerPixel = 1;
switch (mInternalFormat)
{
case GFXFormatA8:
case GFXFormatL8: mBytesPerPixel = 1;
break;
case GFXFormatR8G8B8: mBytesPerPixel = 3;
break;
case GFXFormatR8G8B8X8:
case GFXFormatR8G8B8A8: mBytesPerPixel = 4;
break;
case GFXFormatR5G6B5:
case GFXFormatR5G5B5A1: mBytesPerPixel = 2;
break;
default:
AssertFatal(false, "GBitmap::GBitmap: misunderstood format specifier");
break;
}
// Set up the mip levels, if necessary...
mNumMipLevels = 1;
U32 allocPixels = in_width * in_height * mBytesPerPixel;
mMipLevelOffsets[0] = 0;
if (in_extrudeMipLevels == true)
{
U32 currWidth = in_width;
U32 currHeight = in_height;
do
{
mMipLevelOffsets[mNumMipLevels] = mMipLevelOffsets[mNumMipLevels - 1] +
(currWidth * currHeight * mBytesPerPixel);
currWidth >>= 1;
currHeight >>= 1;
if (currWidth == 0) currWidth = 1;
if (currHeight == 0) currHeight = 1;
mNumMipLevels++;
allocPixels += currWidth * currHeight * mBytesPerPixel;
} while (currWidth != 1 || currHeight != 1);
}
AssertFatal(mNumMipLevels <= c_maxMipLevels, "GBitmap::allocateBitmap: too many miplevels");
// Set up the memory...
mByteSize = allocPixels;
mBits = new U8[mByteSize];
dMemset(mBits, 0xFF, mByteSize);
if(svBits != NULL)
{
dMemcpy(mBits, svBits, getMin(mByteSize, svByteSize));
delete[] svBits;
}
}
//--------------------------------------------------------------------------
void GBitmap::extrudeMipLevels(bool clearBorders)
{
if(mNumMipLevels == 1)
allocateBitmap(getWidth(), getHeight(), true, getFormat());
switch (getFormat())
{
case GFXFormatR5G5B5A1:
{
for(U32 i = 1; i < mNumMipLevels; i++)
bitmapExtrude5551(getBits(i - 1), getWritableBits(i), getHeight(i), getWidth(i));
break;
}
case GFXFormatR8G8B8:
{
for(U32 i = 1; i < mNumMipLevels; i++)
bitmapExtrudeRGB(getBits(i - 1), getWritableBits(i), getHeight(i-1), getWidth(i-1));
break;
}
case GFXFormatR8G8B8A8:
case GFXFormatR8G8B8X8:
{
for(U32 i = 1; i < mNumMipLevels; i++)
bitmapExtrudeRGBA(getBits(i - 1), getWritableBits(i), getHeight(i-1), getWidth(i-1));
break;
}
default:
break;
}
if (clearBorders)
{
for (U32 i = 1; i<mNumMipLevels; i++)
{
U32 width = getWidth(i);
U32 height = getHeight(i);
if (height<3 || width<3)
// bmp is all borders at this mip level
dMemset(getWritableBits(i),0,width*height*mBytesPerPixel);
else
{
width *= mBytesPerPixel;
U8 * bytes = getWritableBits(i);
U8 * end = bytes + (height-1)*width - mBytesPerPixel; // end = last row, 2nd column
// clear first row sans the last pixel
dMemset(bytes,0,width-mBytesPerPixel);
bytes -= mBytesPerPixel;
while (bytes<end)
{
// clear last pixel of row N-1 and first pixel of row N
bytes += width;
dMemset(bytes,0,mBytesPerPixel*2);
}
// clear last row sans the first pixel
dMemset(bytes+2*mBytesPerPixel,0,width-mBytesPerPixel);
}
}
}
}
//--------------------------------------------------------------------------
void GBitmap::extrudeMipLevelsDetail()
{
AssertFatal(getFormat() == GFXFormatR8G8B8, "Error, only handles RGB for now...");
U32 i,j;
if(mNumMipLevels == 1)
allocateBitmap(getWidth(), getHeight(), true, getFormat());
for (i = 1; i < mNumMipLevels; i++) {
bitmapExtrudeRGB(getBits(i - 1), getWritableBits(i), getHeight(i-1), getWidth(i-1));
}
// Ok, now that we have the levels extruded, we need to move the lower miplevels
// closer to 0.5.
for (i = 1; i < mNumMipLevels - 1; i++) {
U8* pMipBits = (U8*)getWritableBits(i);
U32 numBytes = getWidth(i) * getHeight(i) * 3;
U32 shift = i;
U32 start = ((1 << i) - 1) * 0x80;
for (j = 0; j < numBytes; j++) {
U32 newVal = (start + pMipBits[j]) >> shift;
AssertFatal(newVal <= 255, "Error, oob");
pMipBits[j] = U8(newVal);
}
}
AssertFatal(getWidth(mNumMipLevels - 1) == 1 && getHeight(mNumMipLevels - 1) == 1,
"Error, last miplevel should be 1x1!");
((U8*)getWritableBits(mNumMipLevels - 1))[0] = 0x80;
((U8*)getWritableBits(mNumMipLevels - 1))[1] = 0x80;
((U8*)getWritableBits(mNumMipLevels - 1))[2] = 0x80;
}
//--------------------------------------------------------------------------
bool GBitmap::setFormat(GFXFormat fmt)
{
if (getFormat() == fmt)
return true;
PROFILE_SCOPE(GBitmap_setFormat);
// this is a nasty pointer math hack
// is there a quick way to calc pixels of a fully mipped bitmap?
U32 pixels = 0;
for (U32 i=0; i < mNumMipLevels; i++)
pixels += getHeight(i) * getWidth(i);
switch( getFormat() )
{
case GFXFormatR8G8B8:
switch ( fmt )
{
case GFXFormatR5G5B5A1:
#ifdef _XBOX
bitmapConvertRGB_to_1555(mBits, pixels);
#else
bitmapConvertRGB_to_5551(mBits, pixels);
#endif
mInternalFormat = GFXFormatR5G5B5A1;
mBytesPerPixel = 2;
break;
case GFXFormatR8G8B8A8:
case GFXFormatR8G8B8X8:
// Took this out, it may crash -patw
//AssertFatal( mNumMipLevels == 1, "Do the mip-mapping in hardware." );
bitmapConvertRGB_to_RGBX( &mBits, pixels );
mInternalFormat = fmt;
mBytesPerPixel = 4;
mByteSize = pixels * 4;
break;
default:
AssertWarn(0, "GBitmap::setFormat: unable to convert bitmap to requested format.");
return false;
}
break;
case GFXFormatR8G8B8X8:
switch( fmt )
{
// No change needed for this
case GFXFormatR8G8B8A8:
mInternalFormat = GFXFormatR8G8B8A8;
break;
case GFXFormatR8G8B8:
bitmapConvertRGBX_to_RGB( &mBits, pixels );
mInternalFormat = GFXFormatR8G8B8;
mBytesPerPixel = 3;
mByteSize = pixels * 3;
break;
default:
AssertWarn(0, "GBitmap::setFormat: unable to convert bitmap to requested format.");
return false;
}
break;
case GFXFormatR8G8B8A8:
switch( fmt )
{
// No change needed for this
case GFXFormatR8G8B8X8:
mInternalFormat = GFXFormatR8G8B8X8;
break;
case GFXFormatR8G8B8:
bitmapConvertRGBX_to_RGB( &mBits, pixels );
mInternalFormat = GFXFormatR8G8B8;
mBytesPerPixel = 3;
mByteSize = pixels * 3;
break;
default:
AssertWarn(0, "GBitmap::setFormat: unable to convert bitmap to requested format.");
return false;
}
break;
case GFXFormatA8:
switch( fmt )
{
case GFXFormatR8G8B8A8:
mInternalFormat = GFXFormatR8G8B8A8;
bitmapConvertA8_to_RGBA( &mBits, pixels );
mBytesPerPixel = 4;
mByteSize = pixels * 4;
break;
default:
AssertWarn(0, "GBitmap::setFormat: unable to convert bitmap to requested format.");
return false;
}
break;
default:
AssertWarn(0, "GBitmap::setFormat: unable to convert bitmap to requested format.");
return false;
}
U32 offset = 0;
for (U32 j=0; j < mNumMipLevels; j++)
{
mMipLevelOffsets[j] = offset;
offset += getHeight(j) * getWidth(j) * mBytesPerPixel;
}
return true;
}
//------------------------------------------------------------------------------
bool GBitmap::checkForTransparency()
{
mHasTransparency = false;
ColorI pixel(255, 255, 255, 255);
switch (mInternalFormat)
{
// Non-transparent formats
case GFXFormatL8:
case GFXFormatR8G8B8:
case GFXFormatR5G6B5:
break;
// Transparent formats
case GFXFormatA8:
case GFXFormatR8G8B8A8:
case GFXFormatR5G5B5A1:
// Let getColor() do the heavy lifting
for (U32 x = 0; x < mWidth; x++)
{
for (U32 y = 0; y < mHeight; y++)
{
if (getColor(x, y, pixel))
{
if (pixel.alpha < 255)
{
mHasTransparency = true;
break;
}
}
}
}
break;
default:
AssertFatal(false, "GBitmap::checkForTransparency: misunderstood format specifier");
break;
}
return mHasTransparency;
}
//------------------------------------------------------------------------------
ColorF GBitmap::sampleTexel(F32 u, F32 v) const
{
ColorF col(0.5f, 0.5f, 0.5f);
// normally sampling wraps all the way around at 1.0,
// but locking doesn't support this, and we seem to calc
// the uv based on a clamped 0 - 1...
Point2F max((F32)(getWidth()-1), (F32)(getHeight()-1));
Point2F posf;
posf.x = mClampF(((u) * max.x), 0.0f, max.x);
posf.y = mClampF(((v) * max.y), 0.0f, max.y);
Point2I posi((S32)posf.x, (S32)posf.y);
const U8 *buffer = getBits();
U32 lexelindex = ((posi.y * getWidth()) + posi.x) * mBytesPerPixel;
if(mBytesPerPixel == 2)
{
//U16 *buffer = (U16 *)lockrect->pBits;
}
else if(mBytesPerPixel > 2)
{
col.red = F32(buffer[lexelindex + 0]) / 255.0f;
col.green = F32(buffer[lexelindex + 1]) / 255.0f;
col.blue = F32(buffer[lexelindex + 2]) / 255.0f;
}
return col;
}
//--------------------------------------------------------------------------
bool GBitmap::getColor(const U32 x, const U32 y, ColorI& rColor) const
{
if (x >= mWidth || y >= mHeight)
return false;
const U8* pLoc = getAddress(x, y);
switch (mInternalFormat) {
case GFXFormatA8:
case GFXFormatL8:
rColor.set( *pLoc, *pLoc, *pLoc, *pLoc );
break;
case GFXFormatR8G8B8:
case GFXFormatR8G8B8X8:
rColor.set( pLoc[0], pLoc[1], pLoc[2], 255 );
break;
case GFXFormatR8G8B8A8:
rColor.set( pLoc[0], pLoc[1], pLoc[2], pLoc[3] );
break;
case GFXFormatR5G5B5A1:
#if defined(TORQUE_OS_MAC)
rColor.set( (*((U16*)pLoc) >> 0) & 0x1F,
(*((U16*)pLoc) >> 5) & 0x1F,
(*((U16*)pLoc) >> 10) & 0x1F,
((*((U16*)pLoc) >> 15) & 0x01) ? 255 : 0 );
#else
rColor.set( *((U16*)pLoc) >> 11,
(*((U16*)pLoc) >> 6) & 0x1f,
(*((U16*)pLoc) >> 1) & 0x1f,
(*((U16*)pLoc) & 1) ? 255 : 0 );
#endif
break;
default:
AssertFatal(false, "Bad internal format");
return false;
}
return true;
}
//--------------------------------------------------------------------------
bool GBitmap::setColor(const U32 x, const U32 y, const ColorI& rColor)
{
if (x >= mWidth || y >= mHeight)
return false;
U8* pLoc = getAddress(x, y);
switch (mInternalFormat) {
case GFXFormatA8:
case GFXFormatL8:
*pLoc = rColor.alpha;
break;
case GFXFormatR8G8B8:
dMemcpy( pLoc, &rColor, 3 * sizeof( U8 ) );
break;
case GFXFormatR8G8B8A8:
case GFXFormatR8G8B8X8:
dMemcpy( pLoc, &rColor, 4 * sizeof( U8 ) );
break;
case GFXFormatR5G6B5:
#ifdef TORQUE_OS_MAC
*((U16*)pLoc) = (rColor.red << 11) | (rColor.green << 5) | (rColor.blue << 0) ;
#else
*((U16*)pLoc) = (rColor.blue << 0) | (rColor.green << 5) | (rColor.red << 11);
#endif
break;
case GFXFormatR5G5B5A1:
#ifdef TORQUE_OS_MAC
*((U16*)pLoc) = (((rColor.alpha>0) ? 1 : 0)<<15) | (rColor.blue << 10) | (rColor.green << 5) | (rColor.red << 0);
#else
*((U16*)pLoc) = (rColor.blue << 1) | (rColor.green << 6) | (rColor.red << 11) | ((rColor.alpha>0) ? 1 : 0);
#endif
break;
default:
AssertFatal(false, "Bad internal format");
return false;
}
return true;
}
//-----------------------------------------------------------------------------
bool GBitmap::combine( const GBitmap *bitmapA, const GBitmap *bitmapB, const GFXTextureOp combineOp )
{
// Check valid texture ops
switch( combineOp )
{
case GFXTOPAdd:
case GFXTOPSubtract:
break;
default:
Con::errorf( "GBitmap::combine - Invalid op type" );
return false;
}
// Check bitmapA format
switch( bitmapA->getFormat() )
{
case GFXFormatR8G8B8:
case GFXFormatR8G8B8X8:
case GFXFormatR8G8B8A8:
break;
default:
Con::errorf( "GBitmap::combine - invalid format for bitmapA" );
return false;
}
// Check bitmapB format
switch( bitmapB->getFormat() )
{
case GFXFormatR8G8B8:
case GFXFormatR8G8B8X8:
case GFXFormatR8G8B8A8:
break;
default:
Con::errorf( "GBitmap::combine - invalid format for bitmapB" );
return false;
}
// Determine format of result texture
// CodeReview: This is dependent on the order of the GFXFormat enum. [5/11/2007 Pat]
GFXFormat resFmt = static_cast<GFXFormat>( getMax( bitmapA->getFormat(), bitmapB->getFormat() ) );
U32 resWidth = getMax( bitmapA->getWidth(), bitmapB->getWidth() );
U32 resHeight = getMax( bitmapA->getHeight(), bitmapB->getHeight() );
// Adjust size OF bitmap based on the biggest one
if( bitmapA->getWidth() != bitmapB->getWidth() ||
bitmapA->getHeight() != bitmapB->getHeight() )
{
// Delete old bitmap
deleteImage();
// Allocate new one
allocateBitmap( resWidth, resHeight, false, resFmt );
}
// Adjust format of result bitmap (if resFmt == getFormat() it will not perform the format convert)
setFormat( resFmt );
// Perform combine
U8 *destBits = getWritableBits();
const U8 *aBits = bitmapA->getBits();
const U8 *bBits = bitmapB->getBits();
for( int y = 0; y < getHeight(); y++ )
{
for( int x = 0; x < getWidth(); x++ )
{
for( int _byte = 0; _byte < mBytesPerPixel; _byte++ )
{
U8 pxA = 0;
U8 pxB = 0;
// Get contributions from A and B
if( y < bitmapA->getHeight() &&
x < bitmapA->getWidth() &&
_byte < bitmapA->mBytesPerPixel )
pxA = *aBits++;
if( y < bitmapB->getHeight() &&
x < bitmapB->getWidth() &&
_byte < bitmapB->mBytesPerPixel )
pxB = *bBits++;
// Combine them (clamp values 0-U8_MAX)
switch( combineOp )
{
case GFXTOPAdd:
*destBits++ = getMin( U8( pxA + pxB ), U8_MAX );
break;
case GFXTOPSubtract:
*destBits++ = getMax( U8( pxA - pxB ), U8( 0 ) );
break;
default:
AssertFatal(false, "GBitmap::combine - Invalid combineOp");
break;
}
}
}
}
return true;
}
void GBitmap::fill( const ColorI &rColor )
{
// Set the first pixel using the slow
// but proper method.
setColor( 0, 0, rColor );
mHasTransparency = rColor.alpha < 255;
// Now fill the first row of the bitmap by
// copying the first pixel across the row.
const U32 stride = getWidth() * mBytesPerPixel;
const U8 *src = getBits();
U8 *dest = getWritableBits() + mBytesPerPixel;
const U8 *end = src + stride;
for ( ; dest != end; dest += mBytesPerPixel )
dMemcpy( dest, src, mBytesPerPixel );
// Now copy the first row to all the others.
//
// TODO: This could adaptively size the copy
// amount to copy more rows from the source
// and reduce the total number of memcpy calls.
//
dest = getWritableBits() + stride;
end = src + ( stride * getHeight() );
for ( ; dest != end; dest += stride )
dMemcpy( dest, src, stride );
}
void GBitmap::fillWhite()
{
dMemset( getWritableBits(), 255, mByteSize );
mHasTransparency = false;
}
GBitmap* GBitmap::createPaddedBitmap() const
{
if (isPow2(getWidth()) && isPow2(getHeight()))
return NULL;
AssertFatal(getNumMipLevels() == 1,
"Cannot have non-pow2 bitmap with miplevels");
U32 width = getWidth();
U32 height = getHeight();
U32 newWidth = getNextPow2(getWidth());
U32 newHeight = getNextPow2(getHeight());
GBitmap* pReturn = new GBitmap(newWidth, newHeight, false, getFormat());
for (U32 i = 0; i < height; i++)
{
U8* pDest = (U8*)pReturn->getAddress(0, i);
const U8* pSrc = (const U8*)getAddress(0, i);
dMemcpy(pDest, pSrc, width * mBytesPerPixel);
pDest += width * mBytesPerPixel;
// set the src pixel to the last pixel in the row
const U8 *pSrcPixel = pDest - mBytesPerPixel;
for(U32 j = width; j < newWidth; j++)
for(U32 k = 0; k < mBytesPerPixel; k++)
*pDest++ = pSrcPixel[k];
}
for(U32 i = height; i < newHeight; i++)
{
U8* pDest = (U8*)pReturn->getAddress(0, i);
U8* pSrc = (U8*)pReturn->getAddress(0, height-1);
dMemcpy(pDest, pSrc, newWidth * mBytesPerPixel);
}
return pReturn;
}
GBitmap* GBitmap::createPow2Bitmap() const
{
if (isPow2(getWidth()) && isPow2(getHeight()))
return NULL;
AssertFatal(getNumMipLevels() == 1,
"Cannot have non-pow2 bitmap with miplevels");
U32 width = getWidth();
U32 height = getHeight();
U32 newWidth = getNextPow2(getWidth());
U32 newHeight = getNextPow2(getHeight());
GBitmap* pReturn = new GBitmap(newWidth, newHeight, false, getFormat());
U8* pDest = (U8*)pReturn->getAddress(0, 0);
const U8* pSrc = (const U8*)getAddress(0, 0);
F32 yCoeff = (F32) height / (F32) newHeight;
F32 xCoeff = (F32) width / (F32) newWidth;
F32 currY = 0.0f;
for (U32 y = 0; y < newHeight; y++)
{
F32 currX = 0.0f;
//U32 yDestOffset = (pReturn->mWidth * pReturn->mBytesPerPixel) * y;
//U32 xDestOffset = 0;
//U32 ySourceOffset = (U32)((mWidth * mBytesPerPixel) * currY);
//F32 xSourceOffset = 0.0f;
for (U32 x = 0; x < newWidth; x++)
{
pDest = (U8*) pReturn->getAddress(x, y);
pSrc = (U8*) getAddress((S32)currX, (S32)currY);
for (U32 p = 0; p < pReturn->mBytesPerPixel; p++)
{
pDest[p] = pSrc[p];
}
currX += xCoeff;
}
currY += yCoeff;
}
return pReturn;
}
void GBitmap::copyChannel( U32 index, GBitmap *outBitmap ) const
{
AssertFatal( index < mBytesPerPixel, "GBitmap::copyChannel() - Bad channel offset!" );
AssertFatal( outBitmap, "GBitmap::copyChannel() - Null output bitmap!" );
AssertFatal( outBitmap->getWidth() == getWidth(), "GBitmap::copyChannel() - Width mismatch!" );
AssertFatal( outBitmap->getHeight() == getHeight(), "GBitmap::copyChannel() - Height mismatch!" );
U8 *outBits = outBitmap->getWritableBits();
const U32 outBytesPerPixel = outBitmap->getBytesPerPixel();
const U8 *srcBits = getBits() + index;
const U8 *endBits = getBits() + mByteSize;
for ( ; srcBits < endBits; )
{
*outBits = *srcBits;
outBits += outBytesPerPixel;
srcBits += mBytesPerPixel;
}
}
//------------------------------------------------------------------------------
bool GBitmap::read(Stream& io_rStream)
{
// Handle versioning
U32 version;
io_rStream.read(&version);
AssertFatal(version == csFileVersion, "Bitmap::read: incorrect file version");
//-------------------------------------- Read the object
U32 fmt;
io_rStream.read(&fmt);
mInternalFormat = GFXFormat(fmt);
mBytesPerPixel = 1;
switch (mInternalFormat) {
case GFXFormatA8:
case GFXFormatL8: mBytesPerPixel = 1;
break;
case GFXFormatR8G8B8: mBytesPerPixel = 3;
break;
case GFXFormatR8G8B8A8: mBytesPerPixel = 4;
break;
case GFXFormatR5G6B5:
case GFXFormatR5G5B5A1: mBytesPerPixel = 2;
break;
default:
AssertFatal(false, "GBitmap::read: misunderstood format specifier");
break;
}
io_rStream.read(&mByteSize);
mBits = new U8[mByteSize];
io_rStream.read(mByteSize, mBits);
io_rStream.read(&mWidth);
io_rStream.read(&mHeight);
io_rStream.read(&mNumMipLevels);
for (U32 i = 0; i < c_maxMipLevels; i++)
io_rStream.read(&mMipLevelOffsets[i]);
checkForTransparency();
return (io_rStream.getStatus() == Stream::Ok);
}
bool GBitmap::write(Stream& io_rStream) const
{
// Handle versioning
io_rStream.write(csFileVersion);
//-------------------------------------- Write the object
io_rStream.write(U32(mInternalFormat));
io_rStream.write(mByteSize);
io_rStream.write(mByteSize, mBits);
io_rStream.write(mWidth);
io_rStream.write(mHeight);
io_rStream.write(mNumMipLevels);
for (U32 i = 0; i < c_maxMipLevels; i++)
io_rStream.write(mMipLevelOffsets[i]);
return (io_rStream.getStatus() == Stream::Ok);
}
//------------------------------------------------------------------------------
//-------------------------------------- Persistent I/O
//
bool GBitmap::readBitmap( const String &bmType, Stream &ioStream )
{
const GBitmap::Registration *regInfo = GBitmap::sFindRegInfo( bmType );
if ( regInfo == NULL )
{
Con::errorf( "[GBitmap::readBitmap] unable to find registration for extension [%s]", bmType.c_str() );
return NULL;
}
return regInfo->readFunc( ioStream, this );
}
bool GBitmap::writeBitmap( const String &bmType, Stream &ioStream, U32 compressionLevel )
{
const GBitmap::Registration *regInfo = GBitmap::sFindRegInfo( bmType );
if ( regInfo == NULL )
{
Con::errorf( "[GBitmap::writeBitmap] unable to find registration for extension [%s]", bmType.c_str() );
return NULL;
}
return regInfo->writeFunc( this, ioStream, (compressionLevel == U32_MAX) ? regInfo->defaultCompression : compressionLevel );
}
template<> void *Resource<GBitmap>::create(const Torque::Path &path)
{
PROFILE_SCOPE( ResourceGBitmap_create );
#ifdef TORQUE_DEBUG_RES_MANAGER
Con::printf( "Resource<GBitmap>::create - [%s]", path.getFullPath().c_str() );
#endif
FileStream stream;
stream.open( path.getFullPath(), Torque::FS::File::Read );
if ( stream.getStatus() != Stream::Ok )
{
Con::errorf( "Resource<GBitmap>::create - failed to open '%s'", path.getFullPath().c_str() );
return NULL;
}
GBitmap *bmp = new GBitmap;
const String extension = path.getExtension();
if( !bmp->readBitmap( extension, stream ) )
{
Con::errorf( "Resource<GBitmap>::create - error reading '%s'", path.getFullPath().c_str() );
delete bmp;
bmp = NULL;
}
return bmp;
}
template<> ResourceBase::Signature Resource<GBitmap>::signature()
{
return MakeFourCC('b','i','t','m');
}
Resource<GBitmap> GBitmap::load(const Torque::Path &path)
{
Resource<GBitmap> ret = _load( path );
if ( ret != NULL )
return ret;
// Do a recursive search.
return _search( path );
}
Resource<GBitmap> GBitmap::_load(const Torque::Path &path)
{
PROFILE_SCOPE( GBitmap_load );
if ( Torque::FS::IsFile( path ) )
return ResourceManager::get().load( path );
Path foundPath;
if ( GBitmap::sFindFile( path, &foundPath ) )
{
Resource<GBitmap> ret = ResourceManager::get().load( foundPath );
if ( ret != NULL )
return ret;
}
return Resource< GBitmap >( NULL );
}
Resource<GBitmap> GBitmap::_search(const Torque::Path &path)
{
PROFILE_SCOPE( GBitmap_search );
// If unable to load texture in current directory
// look in the parent directory. But never look in the root.
Path newPath( path );
while ( true )
{
String filePath = newPath.getPath();
String::SizeType slash = filePath.find( '/', filePath.length(), String::Right );
if ( slash == String::NPos )
break;
slash = filePath.find( '/', filePath.length(), String::Right );
if ( slash == String::NPos )
break;
String truncPath = filePath.substr( 0, slash );
newPath.setPath( truncPath );
Resource<GBitmap> ret = _load( newPath );
if ( ret != NULL )
return ret;
}
return Resource< GBitmap >( NULL );
}
DefineEngineFunction( getBitmapInfo, String, ( const char *filename ),,
"Returns image info in the following format: width TAB height TAB bytesPerPixel. "
"It will return an empty string if the file is not found.\n"
"@ingroup Rendering\n" )
{
Resource<GBitmap> image = GBitmap::load( filename );
if ( !image )
return String::EmptyString;
return String::ToString( "%d\t%d\t%d", image->getWidth(),
image->getHeight(),
image->getBytesPerPixel() );
}