Torque3D/Engine/lib/openal-soft/utils/uhjdecoder.cpp

547 lines
20 KiB
C++

/*
* 2-channel UHJ Decoder
*
* Copyright (c) Chris Robinson <chris.kcat@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "config.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cerrno>
#include <complex>
#include <cstddef>
#include <cstdio>
#include <cstring>
#include <memory>
#include <string>
#include <string_view>
#include <system_error>
#include <utility>
#include <vector>
#include "albit.h"
#include "almalloc.h"
#include "alnumbers.h"
#include "alspan.h"
#include "fmt/core.h"
#include "vector.h"
#include "opthelpers.h"
#include "phase_shifter.h"
#include "sndfile.h"
#include "win_main_utf8.h"
namespace {
struct FileDeleter {
void operator()(gsl::owner<FILE*> file) { fclose(file); }
};
using FilePtr = std::unique_ptr<FILE,FileDeleter>;
struct SndFileDeleter {
void operator()(SNDFILE *sndfile) { sf_close(sndfile); }
};
using SndFilePtr = std::unique_ptr<SNDFILE,SndFileDeleter>;
using ubyte = unsigned char;
using ushort = unsigned short;
using uint = unsigned int;
using complex_d = std::complex<double>;
using byte4 = std::array<std::byte,4>;
constexpr std::array<ubyte,16> SUBTYPE_BFORMAT_FLOAT{
0x03, 0x00, 0x00, 0x00, 0x21, 0x07, 0xd3, 0x11, 0x86, 0x44, 0xc8, 0xc1,
0xca, 0x00, 0x00, 0x00
};
void fwrite16le(ushort val, FILE *f)
{
std::array data{static_cast<ubyte>(val&0xff), static_cast<ubyte>((val>>8)&0xff)};
fwrite(data.data(), 1, data.size(), f);
}
void fwrite32le(uint val, FILE *f)
{
std::array data{static_cast<ubyte>(val&0xff), static_cast<ubyte>((val>>8)&0xff),
static_cast<ubyte>((val>>16)&0xff), static_cast<ubyte>((val>>24)&0xff)};
fwrite(data.data(), 1, data.size(), f);
}
byte4 f32AsLEBytes(const float value)
{
auto ret = al::bit_cast<byte4>(value);
if constexpr(al::endian::native == al::endian::big)
{
std::swap(ret[0], ret[3]);
std::swap(ret[1], ret[2]);
}
return ret;
}
constexpr uint BufferLineSize{1024};
using FloatBufferLine = std::array<float,BufferLineSize>;
using FloatBufferSpan = al::span<float,BufferLineSize>;
struct UhjDecoder {
constexpr static std::size_t sFilterDelay{1024};
alignas(16) std::array<float,BufferLineSize+sFilterDelay> mS{};
alignas(16) std::array<float,BufferLineSize+sFilterDelay> mD{};
alignas(16) std::array<float,BufferLineSize+sFilterDelay> mT{};
alignas(16) std::array<float,BufferLineSize+sFilterDelay> mQ{};
/* History for the FIR filter. */
alignas(16) std::array<float,sFilterDelay-1> mDTHistory{};
alignas(16) std::array<float,sFilterDelay-1> mSHistory{};
alignas(16) std::array<float,BufferLineSize + sFilterDelay*2> mTemp{};
void decode(const al::span<const float> InSamples, const std::size_t InChannels,
const al::span<FloatBufferLine> OutSamples, const std::size_t SamplesToDo);
void decode2(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutSamples,
const std::size_t SamplesToDo);
};
const PhaseShifterT<UhjDecoder::sFilterDelay*2> PShift{};
/* Decoding UHJ is done as:
*
* S = Left + Right
* D = Left - Right
*
* W = 0.981532*S + 0.197484*j(0.828331*D + 0.767820*T)
* X = 0.418496*S - j(0.828331*D + 0.767820*T)
* Y = 0.795968*D - 0.676392*T + j(0.186633*S)
* Z = 1.023332*Q
*
* where j is a +90 degree phase shift. 3-channel UHJ excludes Q, while 2-
* channel excludes Q and T. The B-Format signal reconstructed from 2-channel
* UHJ should not be run through a normal B-Format decoder, as it needs
* different shelf filters.
*
* NOTE: Some sources specify
*
* S = (Left + Right)/2
* D = (Left - Right)/2
*
* However, this is incorrect. It's halving Left and Right even though they
* were already halved during encoding, causing S and D to be half what they
* initially were at the encoding stage. This division is not present in
* Gerzon's original paper for deriving Sigma (S) or Delta (D) from the L and R
* signals. As proof, taking Y for example:
*
* Y = 0.795968*D - 0.676392*T + j(0.186633*S)
*
* * Plug in the encoding parameters, using ? as a placeholder for whether S
* and D should receive an extra 0.5 factor
* Y = 0.795968*(j(-0.3420201*W + 0.5098604*X) + 0.6554516*Y)*? -
* 0.676392*(j(-0.1432*W + 0.6512*X) - 0.7071068*Y) +
* 0.186633*j(0.9396926*W + 0.1855740*X)*?
*
* * Move common factors in
* Y = (j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X) + 0.6554516*0.795968*?*Y) -
* (j(-0.1432*0.676392*W + 0.6512*0.676392*X) - 0.7071068*0.676392*Y) +
* j(0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X)
*
* * Clean up extraneous groupings
* Y = j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X) + 0.6554516*0.795968*?*Y -
* j(-0.1432*0.676392*W + 0.6512*0.676392*X) + 0.7071068*0.676392*Y +
* j*(0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X)
*
* * Move phase shifts together and combine them
* Y = j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X - -0.1432*0.676392*W -
* 0.6512*0.676392*X + 0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X) +
* 0.6554516*0.795968*?*Y + 0.7071068*0.676392*Y
*
* * Reorder terms
* Y = j(-0.3420201*0.795968*?*W + 0.1432*0.676392*W + 0.9396926*0.186633*?*W +
* 0.5098604*0.795968*?*X + -0.6512*0.676392*X + 0.1855740*0.186633*?*X) +
* 0.7071068*0.676392*Y + 0.6554516*0.795968*?*Y
*
* * Move common factors out
* Y = j((-0.3420201*0.795968*? + 0.1432*0.676392 + 0.9396926*0.186633*?)*W +
* ( 0.5098604*0.795968*? + -0.6512*0.676392 + 0.1855740*0.186633*?)*X) +
* (0.7071068*0.676392 + 0.6554516*0.795968*?)*Y
*
* * Result w/ 0.5 factor:
* -0.3420201*0.795968*0.5 + 0.1432*0.676392 + 0.9396926*0.186633*0.5 = 0.04843*W
* 0.5098604*0.795968*0.5 + -0.6512*0.676392 + 0.1855740*0.186633*0.5 = -0.22023*X
* 0.7071068*0.676392 + 0.6554516*0.795968*0.5 = 0.73914*Y
* -> Y = j(0.04843*W + -0.22023*X) + 0.73914*Y
*
* * Result w/o 0.5 factor:
* -0.3420201*0.795968 + 0.1432*0.676392 + 0.9396926*0.186633 = 0.00000*W
* 0.5098604*0.795968 + -0.6512*0.676392 + 0.1855740*0.186633 = 0.00000*X
* 0.7071068*0.676392 + 0.6554516*0.795968 = 1.00000*Y
* -> Y = j(0.00000*W + 0.00000*X) + 1.00000*Y
*
* Not halving produces a result matching the original input.
*/
void UhjDecoder::decode(const al::span<const float> InSamples, const std::size_t InChannels,
const al::span<FloatBufferLine> OutSamples, const std::size_t SamplesToDo)
{
ASSUME(SamplesToDo > 0);
auto woutput = al::span{OutSamples[0]};
auto xoutput = al::span{OutSamples[1]};
auto youtput = al::span{OutSamples[2]};
/* Add a delay to the input channels, to align it with the all-passed
* signal.
*/
/* S = Left + Right */
for(std::size_t i{0};i < SamplesToDo;++i)
mS[sFilterDelay+i] = InSamples[i*InChannels + 0] + InSamples[i*InChannels + 1];
/* D = Left - Right */
for(std::size_t i{0};i < SamplesToDo;++i)
mD[sFilterDelay+i] = InSamples[i*InChannels + 0] - InSamples[i*InChannels + 1];
if(InChannels > 2)
{
/* T */
for(std::size_t i{0};i < SamplesToDo;++i)
mT[sFilterDelay+i] = InSamples[i*InChannels + 2];
}
if(InChannels > 3)
{
/* Q */
for(std::size_t i{0};i < SamplesToDo;++i)
mQ[sFilterDelay+i] = InSamples[i*InChannels + 3];
}
/* Precompute j(0.828331*D + 0.767820*T) and store in xoutput. */
auto tmpiter = std::copy(mDTHistory.cbegin(), mDTHistory.cend(), mTemp.begin());
std::transform(mD.cbegin(), mD.cbegin()+SamplesToDo+sFilterDelay, mT.cbegin(), tmpiter,
[](const float d, const float t) noexcept { return 0.828331f*d + 0.767820f*t; });
std::copy_n(mTemp.cbegin()+SamplesToDo, mDTHistory.size(), mDTHistory.begin());
PShift.process(xoutput.first(SamplesToDo), mTemp);
for(std::size_t i{0};i < SamplesToDo;++i)
{
/* W = 0.981532*S + 0.197484*j(0.828331*D + 0.767820*T) */
woutput[i] = 0.981532f*mS[i] + 0.197484f*xoutput[i];
/* X = 0.418496*S - j(0.828331*D + 0.767820*T) */
xoutput[i] = 0.418496f*mS[i] - xoutput[i];
}
/* Precompute j*S and store in youtput. */
tmpiter = std::copy(mSHistory.cbegin(), mSHistory.cend(), mTemp.begin());
std::copy_n(mS.cbegin(), SamplesToDo+sFilterDelay, tmpiter);
std::copy_n(mTemp.cbegin()+SamplesToDo, mSHistory.size(), mSHistory.begin());
PShift.process(youtput.first(SamplesToDo), mTemp);
for(std::size_t i{0};i < SamplesToDo;++i)
{
/* Y = 0.795968*D - 0.676392*T + j(0.186633*S) */
youtput[i] = 0.795968f*mD[i] - 0.676392f*mT[i] + 0.186633f*youtput[i];
}
if(OutSamples.size() > 3)
{
auto zoutput = al::span{OutSamples[3]};
/* Z = 1.023332*Q */
for(std::size_t i{0};i < SamplesToDo;++i)
zoutput[i] = 1.023332f*mQ[i];
}
std::copy(mS.begin()+SamplesToDo, mS.begin()+SamplesToDo+sFilterDelay, mS.begin());
std::copy(mD.begin()+SamplesToDo, mD.begin()+SamplesToDo+sFilterDelay, mD.begin());
std::copy(mT.begin()+SamplesToDo, mT.begin()+SamplesToDo+sFilterDelay, mT.begin());
std::copy(mQ.begin()+SamplesToDo, mQ.begin()+SamplesToDo+sFilterDelay, mQ.begin());
}
/* This is an alternative equation for decoding 2-channel UHJ. Not sure what
* the intended benefit is over the above equation as this slightly reduces the
* amount of the original left response and has more of the phase-shifted
* forward response on the left response.
*
* This decoding is done as:
*
* S = Left + Right
* D = Left - Right
*
* W = 0.981530*S + j*0.163585*D
* X = 0.418504*S - j*0.828347*D
* Y = 0.762956*D + j*0.384230*S
*
* where j is a +90 degree phase shift.
*
* NOTE: As above, S and D should not be halved. The only consequence of
* halving here is merely a -6dB reduction in output, but it's still incorrect.
*/
void UhjDecoder::decode2(const al::span<const float> InSamples,
const al::span<FloatBufferLine> OutSamples, const std::size_t SamplesToDo)
{
ASSUME(SamplesToDo > 0);
auto woutput = al::span{OutSamples[0]};
auto xoutput = al::span{OutSamples[1]};
auto youtput = al::span{OutSamples[2]};
/* S = Left + Right */
for(std::size_t i{0};i < SamplesToDo;++i)
mS[sFilterDelay+i] = InSamples[i*2 + 0] + InSamples[i*2 + 1];
/* D = Left - Right */
for(std::size_t i{0};i < SamplesToDo;++i)
mD[sFilterDelay+i] = InSamples[i*2 + 0] - InSamples[i*2 + 1];
/* Precompute j*D and store in xoutput. */
auto tmpiter = std::copy(mDTHistory.cbegin(), mDTHistory.cend(), mTemp.begin());
std::copy_n(mD.cbegin(), SamplesToDo+sFilterDelay, tmpiter);
std::copy_n(mTemp.cbegin()+SamplesToDo, mDTHistory.size(), mDTHistory.begin());
PShift.process(xoutput.first(SamplesToDo), mTemp);
for(std::size_t i{0};i < SamplesToDo;++i)
{
/* W = 0.981530*S + j*0.163585*D */
woutput[i] = 0.981530f*mS[i] + 0.163585f*xoutput[i];
/* X = 0.418504*S - j*0.828347*D */
xoutput[i] = 0.418504f*mS[i] - 0.828347f*xoutput[i];
}
/* Precompute j*S and store in youtput. */
tmpiter = std::copy(mSHistory.cbegin(), mSHistory.cend(), mTemp.begin());
std::copy_n(mS.cbegin(), SamplesToDo+sFilterDelay, tmpiter);
std::copy_n(mTemp.cbegin()+SamplesToDo, mSHistory.size(), mSHistory.begin());
PShift.process(youtput.first(SamplesToDo), mTemp);
for(std::size_t i{0};i < SamplesToDo;++i)
{
/* Y = 0.762956*D + j*0.384230*S */
youtput[i] = 0.762956f*mD[i] + 0.384230f*youtput[i];
}
std::copy(mS.begin()+SamplesToDo, mS.begin()+SamplesToDo+sFilterDelay, mS.begin());
std::copy(mD.begin()+SamplesToDo, mD.begin()+SamplesToDo+sFilterDelay, mD.begin());
}
int main(al::span<std::string_view> args)
{
if(args.size() < 2 || args[1] == "-h" || args[1] == "--help")
{
fmt::println("Usage: {} <[options] filename.wav...>\n\n"
" Options:\n"
" --general Use the general equations for 2-channel UHJ (default).\n"
" --alternative Use the alternative equations for 2-channel UHJ.\n"
"\n"
"Note: When decoding 2-channel UHJ to an .amb file, the result should not use\n"
"the normal B-Format shelf filters! Only 3- and 4-channel UHJ can accurately\n"
"reconstruct the original B-Format signal.",
args[0]);
return 1;
}
std::size_t num_files{0}, num_decoded{0};
bool use_general{true};
for(size_t fidx{1};fidx < args.size();++fidx)
{
if(args[fidx] == "--general")
{
use_general = true;
continue;
}
if(args[fidx] == "--alternative")
{
use_general = false;
continue;
}
++num_files;
SF_INFO ininfo{};
SndFilePtr infile{sf_open(std::string{args[fidx]}.c_str(), SFM_READ, &ininfo)};
if(!infile)
{
fmt::println(stderr, "Failed to open {}", args[fidx]);
continue;
}
if(sf_command(infile.get(), SFC_WAVEX_GET_AMBISONIC, nullptr, 0) == SF_AMBISONIC_B_FORMAT)
{
fmt::println(stderr, "{} is already B-Format", args[fidx]);
continue;
}
uint outchans{};
if(ininfo.channels == 2)
outchans = 3;
else if(ininfo.channels == 3 || ininfo.channels == 4)
outchans = static_cast<uint>(ininfo.channels);
else
{
fmt::println(stderr, "{} is not a 2-, 3-, or 4-channel file", args[fidx]);
continue;
}
fmt::println("Converting {} from {}-channel UHJ%s...\n", args[fidx], ininfo.channels,
(ininfo.channels == 2) ? use_general ? " (general)" : " (alternative)" : "");
std::string outname{args[fidx]};
auto lastslash = outname.find_last_of('/');
if(lastslash != std::string::npos)
outname.erase(0, lastslash+1);
auto lastdot = outname.find_last_of('.');
if(lastdot != std::string::npos)
outname.resize(lastdot+1);
outname += "amb";
FilePtr outfile{fopen(outname.c_str(), "wb")};
if(!outfile)
{
fmt::println(stderr, "Failed to create {}", outname);
continue;
}
fputs("RIFF", outfile.get());
fwrite32le(0xFFFFFFFF, outfile.get()); // 'RIFF' header len; filled in at close
fputs("WAVE", outfile.get());
fputs("fmt ", outfile.get());
fwrite32le(40, outfile.get()); // 'fmt ' header len; 40 bytes for EXTENSIBLE
// 16-bit val, format type id (extensible: 0xFFFE)
fwrite16le(0xFFFE, outfile.get());
// 16-bit val, channel count
fwrite16le(static_cast<ushort>(outchans), outfile.get());
// 32-bit val, frequency
fwrite32le(static_cast<uint>(ininfo.samplerate), outfile.get());
// 32-bit val, bytes per second
fwrite32le(static_cast<uint>(ininfo.samplerate)*outchans*uint{sizeof(float)}, outfile.get());
// 16-bit val, frame size
fwrite16le(static_cast<ushort>(sizeof(float)*outchans), outfile.get());
// 16-bit val, bits per sample
fwrite16le(static_cast<ushort>(sizeof(float)*8), outfile.get());
// 16-bit val, extra byte count
fwrite16le(22, outfile.get());
// 16-bit val, valid bits per sample
fwrite16le(static_cast<ushort>(sizeof(float)*8), outfile.get());
// 32-bit val, channel mask
fwrite32le(0, outfile.get());
// 16 byte GUID, sub-type format
fwrite(SUBTYPE_BFORMAT_FLOAT.data(), 1, SUBTYPE_BFORMAT_FLOAT.size(), outfile.get());
fputs("data", outfile.get());
fwrite32le(0xFFFFFFFF, outfile.get()); // 'data' header len; filled in at close
if(ferror(outfile.get()))
{
fmt::println(stderr, "Error writing wave file header: {} ({})",
std::generic_category().message(errno), errno);
continue;
}
auto DataStart = ftell(outfile.get());
auto decoder = std::make_unique<UhjDecoder>();
auto inmem = std::vector<float>(size_t{BufferLineSize}*static_cast<uint>(ininfo.channels));
auto decmem = al::vector<std::array<float,BufferLineSize>, 16>(outchans);
auto outmem = std::vector<byte4>(size_t{BufferLineSize}*outchans);
/* A number of initial samples need to be skipped to cut the lead-in
* from the all-pass filter delay. The same number of samples need to
* be fed through the decoder after reaching the end of the input file
* to ensure none of the original input is lost.
*/
std::size_t LeadIn{UhjDecoder::sFilterDelay};
sf_count_t LeadOut{UhjDecoder::sFilterDelay};
while(LeadOut > 0)
{
sf_count_t sgot{sf_readf_float(infile.get(), inmem.data(), BufferLineSize)};
sgot = std::max<sf_count_t>(sgot, 0);
if(sgot < BufferLineSize)
{
const sf_count_t remaining{std::min(BufferLineSize - sgot, LeadOut)};
std::fill_n(inmem.begin() + sgot*ininfo.channels, remaining*ininfo.channels, 0.0f);
sgot += remaining;
LeadOut -= remaining;
}
auto got = static_cast<std::size_t>(sgot);
if(ininfo.channels > 2 || use_general)
decoder->decode(inmem, static_cast<uint>(ininfo.channels), decmem, got);
else
decoder->decode2(inmem, decmem, got);
if(LeadIn >= got)
{
LeadIn -= got;
continue;
}
got -= LeadIn;
for(std::size_t i{0};i < got;++i)
{
/* Attenuate by -3dB for FuMa output levels. */
constexpr auto inv_sqrt2 = static_cast<float>(1.0/al::numbers::sqrt2);
for(std::size_t j{0};j < outchans;++j)
outmem[i*outchans + j] = f32AsLEBytes(decmem[j][LeadIn+i] * inv_sqrt2);
}
LeadIn = 0;
std::size_t wrote{fwrite(outmem.data(), sizeof(byte4)*outchans, got, outfile.get())};
if(wrote < got)
{
fmt::println(stderr, "Error writing wave data: {} ({})",
std::generic_category().message(errno), errno);
break;
}
}
auto DataEnd = ftell(outfile.get());
if(DataEnd > DataStart)
{
long dataLen{DataEnd - DataStart};
if(fseek(outfile.get(), 4, SEEK_SET) == 0)
fwrite32le(static_cast<uint>(DataEnd-8), outfile.get()); // 'WAVE' header len
if(fseek(outfile.get(), DataStart-4, SEEK_SET) == 0)
fwrite32le(static_cast<uint>(dataLen), outfile.get()); // 'data' header len
}
fflush(outfile.get());
++num_decoded;
}
if(num_decoded == 0)
fmt::println(stderr, "Failed to decode any input files");
else if(num_decoded < num_files)
fmt::println(stderr, "Decoded {} of {} files", num_decoded, num_files);
else
fmt::println("Decoded {} file{}", num_decoded, (num_decoded==1)?"":"s");
return 0;
}
} /* namespace */
int main(int argc, char **argv)
{
assert(argc >= 0);
auto args = std::vector<std::string_view>(static_cast<unsigned int>(argc));
std::copy_n(argv, args.size(), args.begin());
return main(al::span{args});
}