Torque3D/Engine/source/lighting/advanced/glsl/advancedLightingFeaturesGLSL.cpp
Areloch 01f562b9e5 Added check for when getting the Detail feature's output, to validate if we have the foliage feature, which was causing a stomp on the required float4 texCoord for the foliage featuer to work right
Temporarily disabled wsNormal addition when we have no defined normal map until it's finished being integrated
Fixed the structure for the lighting/probe shadergen logic in GL so it generates correctly, resolving a crash on unix machines.
2019-10-03 23:46:53 -05:00

616 lines
23 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "lighting/advanced/glsl/advancedLightingFeaturesGLSL.h"
#include "lighting/advanced/advancedLightBinManager.h"
#include "shaderGen/langElement.h"
#include "shaderGen/shaderOp.h"
#include "shaderGen/conditionerFeature.h"
#include "renderInstance/renderDeferredMgr.h"
#include "materials/processedMaterial.h"
#include "materials/materialFeatureTypes.h"
void DeferredRTLightingFeatGLSL::processPixMacros( Vector<GFXShaderMacro> &macros,
const MaterialFeatureData &fd )
{
// Skip deferred features, and use forward shading instead
if ( !fd.features[MFT_isDeferred] )
{
Parent::processPixMacros( macros, fd );
return;
}
// Pull in the uncondition method for the light info buffer
NamedTexTarget *texTarget = NamedTexTarget::find( AdvancedLightBinManager::smBufferName );
if ( texTarget && texTarget->getConditioner() )
{
ConditionerMethodDependency *unconditionMethod = texTarget->getConditioner()->getConditionerMethodDependency(ConditionerFeature::UnconditionMethod);
unconditionMethod->createMethodMacro( String::ToLower( AdvancedLightBinManager::smBufferName ) + "Uncondition", macros );
addDependency(unconditionMethod);
}
}
void DeferredRTLightingFeatGLSL::processVert( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
// Skip deferred features, and use forward shading instead
if ( !fd.features[MFT_isDeferred] )
{
Parent::processVert( componentList, fd );
return;
}
// Pass screen space position to pixel shader to compute a full screen buffer uv
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
Var *ssPos = connectComp->getElement( RT_TEXCOORD );
ssPos->setName( "screenspacePos" );
ssPos->setStructName( "OUT" );
ssPos->setType( "vec4" );
Var *outPosition = (Var*) LangElement::find( "gl_Position" );
AssertFatal( outPosition, "No gl_Position, ohnoes." );
output = new GenOp( " @ = @;\r\n", ssPos, outPosition );
}
void DeferredRTLightingFeatGLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
// Skip deferred features, and use forward shading instead
if ( !fd.features[MFT_isDeferred] )
{
Parent::processPix( componentList, fd );
return;
}
MultiLine *meta = new MultiLine;
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
Var *ssPos = connectComp->getElement( RT_TEXCOORD );
ssPos->setName( "screenspacePos" );
ssPos->setStructName( "IN" );
ssPos->setType( "vec4" );
Var *uvScene = new Var;
uvScene->setType( "vec2" );
uvScene->setName( "uvScene" );
LangElement *uvSceneDecl = new DecOp( uvScene );
String rtParamName = String::ToString( "rtParams%s", "diffuseLightingBuffer" );
Var *rtParams = (Var*) LangElement::find( rtParamName );
if( !rtParams )
{
rtParams = new Var;
rtParams->setType( "vec4" );
rtParams->setName( rtParamName );
rtParams->uniform = true;
rtParams->constSortPos = cspPass;
}
meta->addStatement( new GenOp( " @ = @.xy / @.w;\r\n", uvSceneDecl, ssPos, ssPos ) ); // get the screen coord... its -1 to +1
meta->addStatement( new GenOp( " @ = ( @ + 1.0 ) / 2.0;\r\n", uvScene, uvScene ) ); // get the screen coord to 0 to 1
meta->addStatement( new GenOp( " @.y = 1.0 - @.y;\r\n", uvScene, uvScene ) ); // flip the y axis
meta->addStatement( new GenOp( " @ = ( @ * @.zw ) + @.xy;\r\n", uvScene, uvScene, rtParams, rtParams) ); // scale it down and offset it to the rt size
Var *lightInfoSamp = new Var;
lightInfoSamp->setType( "vec4" );
lightInfoSamp->setName( "lightInfoSample" );
// create texture var
Var *lightInfoBuffer = new Var;
lightInfoBuffer->setType( "sampler2D" );
lightInfoBuffer->setName( "diffuseLightingBuffer" );
lightInfoBuffer->uniform = true;
lightInfoBuffer->sampler = true;
lightInfoBuffer->constNum = Var::getTexUnitNum(); // used as texture unit num here
// Declare the RTLighting variables in this feature, they will either be assigned
// in this feature, or in the tonemap/lightmap feature
Var *d_lightcolor = new Var( "d_lightcolor", "vec3" );
meta->addStatement( new GenOp( " @;\r\n", new DecOp( d_lightcolor ) ) );
Var *d_NL_Att = new Var( "d_NL_Att", "float" );
meta->addStatement( new GenOp( " @;\r\n", new DecOp( d_NL_Att ) ) );
Var *d_specular = new Var( "d_specular", "float" );
meta->addStatement( new GenOp( " @;\r\n", new DecOp( d_specular ) ) );
// Perform the uncondition here.
String unconditionLightInfo = String::ToLower( AdvancedLightBinManager::smBufferName ) + "Uncondition";
meta->addStatement( new GenOp( avar( " %s(tex2D(@, @), @, @, @);\r\n",
unconditionLightInfo.c_str() ), lightInfoBuffer, uvScene, d_lightcolor, d_NL_Att, d_specular ) );
// If this has an interlaced pre-pass, do averaging here
if( fd.features[MFT_InterlacedDeferred] )
{
Var *oneOverTargetSize = (Var*) LangElement::find( "oneOverTargetSize" );
if( !oneOverTargetSize )
{
oneOverTargetSize = new Var;
oneOverTargetSize->setType( "vec2" );
oneOverTargetSize->setName( "oneOverTargetSize" );
oneOverTargetSize->uniform = true;
oneOverTargetSize->constSortPos = cspPass;
}
meta->addStatement( new GenOp( " float id_NL_Att, id_specular;\r\n vec3 id_lightcolor;\r\n" ) );
meta->addStatement( new GenOp( avar( " %s(tex2D(@, @ + vec2(0.0, @.y)), id_lightcolor, id_NL_Att, id_specular);\r\n",
unconditionLightInfo.c_str() ), lightInfoBuffer, uvScene, oneOverTargetSize ) );
meta->addStatement( new GenOp(" @ = lerp(@, id_lightcolor, 0.5);\r\n", d_lightcolor, d_lightcolor ) );
meta->addStatement( new GenOp(" @ = lerp(@, id_NL_Att, 0.5);\r\n", d_NL_Att, d_NL_Att ) );
meta->addStatement( new GenOp(" @ = lerp(@, id_specular, 0.5);\r\n", d_specular, d_specular ) );
}
// This is kind of weak sauce
if( !fd.features[MFT_VertLit] && !fd.features[MFT_ToneMap] && !fd.features[MFT_LightMap] && !fd.features[MFT_SubSurface] )
meta->addStatement( new GenOp( " @;\r\n", assignColor( new GenOp( "vec4(@, 1.0)", d_lightcolor ), Material::Mul ) ) );
output = meta;
}
ShaderFeature::Resources DeferredRTLightingFeatGLSL::getResources( const MaterialFeatureData &fd )
{
// Skip deferred features, and use forward shading instead
if ( !fd.features[MFT_isDeferred] )
return Parent::getResources( fd );
// HACK: See DeferredRTLightingFeatGLSL::setTexData.
mLastTexIndex = 0;
Resources res;
res.numTex = 1;
res.numTexReg = 1;
return res;
}
void DeferredRTLightingFeatGLSL::setTexData( Material::StageData &stageDat,
const MaterialFeatureData &fd,
RenderPassData &passData,
U32 &texIndex )
{
// Skip deferred features, and use forward shading instead
if ( !fd.features[MFT_isDeferred] )
{
Parent::setTexData( stageDat, fd, passData, texIndex );
return;
}
NamedTexTarget *texTarget = NamedTexTarget::find( AdvancedLightBinManager::smBufferName );
if( texTarget )
{
// HACK: We store this for use in DeferredRTLightingFeatGLSL::processPix()
// which cannot deduce the texture unit itself.
mLastTexIndex = texIndex;
passData.mTexType[ texIndex ] = Material::TexTarget;
passData.mSamplerNames[ texIndex ]= "diffuseLightingBuffer";
passData.mTexSlot[ texIndex++ ].texTarget = texTarget;
}
}
void DeferredBumpFeatGLSL::processVert( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
if( fd.features[MFT_DeferredConditioner] )
{
// There is an output conditioner active, so we need to supply a transform
// to the pixel shader.
MultiLine *meta = new MultiLine;
// We need the view to tangent space transform in the pixel shader.
getOutViewToTangent( componentList, meta, fd );
const bool useTexAnim = fd.features[MFT_TexAnim];
// Make sure there are texcoords
if( !fd.features[MFT_Parallax] && !fd.features[MFT_DiffuseMap])
{
getOutTexCoord( "texCoord",
"vec2",
useTexAnim,
meta,
componentList );
}
const bool useFoliageTexCoord = fd.features[MFT_Foliage];
if ( fd.features.hasFeature( MFT_DetailNormalMap ) )
addOutDetailTexCoord( componentList,
meta,
useTexAnim, useFoliageTexCoord);
output = meta;
}
else if ( fd.materialFeatures[MFT_NormalsOut] ||
!fd.features[MFT_isDeferred] ||
!fd.features[MFT_RTLighting] )
{
Parent::processVert( componentList, fd );
return;
}
else
{
output = NULL;
}
}
void DeferredBumpFeatGLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
// NULL output in case nothing gets handled
output = NULL;
if( fd.features[MFT_DeferredConditioner] )
{
MultiLine *meta = new MultiLine;
Var *viewToTangent = getInViewToTangent( componentList );
// create texture var
Var *bumpMap = getNormalMapTex();
Var *texCoord = getInTexCoord( "texCoord", "vec2", componentList );
LangElement *texOp = new GenOp( "tex2D(@, @)", bumpMap, texCoord );
// create bump normal
Var *bumpNorm = new Var;
bumpNorm->setName( "bumpNormal" );
bumpNorm->setType( "vec4" );
LangElement *bumpNormDecl = new DecOp( bumpNorm );
meta->addStatement( expandNormalMap( texOp, bumpNormDecl, bumpNorm, fd ) );
// If we have a detail normal map we add the xy coords of
// it to the base normal map. This gives us the effect we
// want with few instructions and minial artifacts.
if ( fd.features.hasFeature( MFT_DetailNormalMap ) )
{
bumpMap = new Var;
bumpMap->setType( "sampler2D" );
bumpMap->setName( "detailBumpMap" );
bumpMap->uniform = true;
bumpMap->sampler = true;
bumpMap->constNum = Var::getTexUnitNum();
texCoord = getInTexCoord( "detCoord", "vec2", componentList );
texOp = new GenOp( "tex2D(@, @)", bumpMap, texCoord );
Var *detailBump = new Var;
detailBump->setName( "detailBump" );
detailBump->setType( "vec4" );
meta->addStatement( expandNormalMap( texOp, new DecOp( detailBump ), detailBump, fd ) );
Var *detailBumpScale = new Var;
detailBumpScale->setType( "float" );
detailBumpScale->setName( "detailBumpStrength" );
detailBumpScale->uniform = true;
detailBumpScale->constSortPos = cspPass;
meta->addStatement( new GenOp( " @.xy += @.xy * @;\r\n", bumpNorm, detailBump, detailBumpScale ) );
}
// This var is read from GBufferConditionerGLSL and
// used in the deferred output.
//
// By using the 'half' type here we get a bunch of partial
// precision optimized code on further operations on the normal
// which helps alot on older Geforce cards.
//
Var *gbNormal = new Var;
gbNormal->setName( "gbNormal" );
gbNormal->setType( "half3" );
LangElement *gbNormalDecl = new DecOp( gbNormal );
// Normalize is done later...
// Note: The reverse mul order is intentional. Affine matrix.
meta->addStatement( new GenOp( " @ = half3(tMul( @.xyz, @ ));\r\n", gbNormalDecl, bumpNorm, viewToTangent ) );
output = meta;
return;
}
else if (fd.features[MFT_AccuMap])
{
Var *bumpSample = (Var *)LangElement::find("bumpSample");
if (bumpSample == NULL)
{
MultiLine *meta = new MultiLine;
Var *texCoord = getInTexCoord("texCoord", "vec2", componentList);
Var *bumpMap = getNormalMapTex();
bumpSample = new Var;
bumpSample->setType("vec4");
bumpSample->setName("bumpSample");
LangElement *bumpSampleDecl = new DecOp(bumpSample);
meta->addStatement(new GenOp(" @ = tex2D(@, @);\r\n", bumpSampleDecl, bumpMap, texCoord));
if (fd.features.hasFeature(MFT_DetailNormalMap))
{
bumpMap = (Var*)LangElement::find("detailBumpMap");
if (!bumpMap) {
bumpMap = new Var;
bumpMap->setType("sampler2D");
bumpMap->setName("detailBumpMap");
bumpMap->uniform = true;
bumpMap->sampler = true;
bumpMap->constNum = Var::getTexUnitNum();
}
texCoord = getInTexCoord("detCoord", "vec2", componentList);
LangElement *texOp = new GenOp("tex2D(@, @)", bumpMap, texCoord);
Var *detailBump = new Var;
detailBump->setName("detailBump");
detailBump->setType("vec4");
meta->addStatement(expandNormalMap(texOp, new DecOp(detailBump), detailBump, fd));
Var *detailBumpScale = new Var;
detailBumpScale->setType("float");
detailBumpScale->setName("detailBumpStrength");
detailBumpScale->uniform = true;
detailBumpScale->constSortPos = cspPass;
meta->addStatement(new GenOp(" @.xy += @.xy * @;\r\n", bumpSample, detailBump, detailBumpScale));
}
output = meta;
return;
}
}
else if ( fd.materialFeatures[MFT_NormalsOut] ||
!fd.features[MFT_isDeferred] ||
!fd.features[MFT_RTLighting] )
{
Parent::processPix( componentList, fd );
return;
}
else if (!fd.features[MFT_SpecularMap] )
{
Var *bumpSample = (Var *)LangElement::find( "bumpSample" );
if( bumpSample == NULL )
{
Var *texCoord = getInTexCoord( "texCoord", "vec2", componentList );
Var *bumpMap = getNormalMapTex();
bumpSample = new Var;
bumpSample->setType( "vec4" );
bumpSample->setName( "bumpSample" );
LangElement *bumpSampleDecl = new DecOp( bumpSample );
output = new GenOp( " @ = tex2D(@, @);\r\n", bumpSampleDecl, bumpMap, texCoord );
return;
}
}
output = NULL;
}
ShaderFeature::Resources DeferredBumpFeatGLSL::getResources( const MaterialFeatureData &fd )
{
if ( fd.materialFeatures[MFT_NormalsOut] ||
!fd.features[MFT_isDeferred] ||
fd.features[MFT_Parallax] ||
!fd.features[MFT_RTLighting] )
return Parent::getResources( fd );
Resources res;
if(!fd.features[MFT_SpecularMap])
{
res.numTex = 1;
res.numTexReg = 1;
if ( fd.features[MFT_DeferredConditioner] &&
fd.features.hasFeature( MFT_DetailNormalMap ) )
{
res.numTex += 1;
if ( !fd.features.hasFeature( MFT_DetailMap ) )
res.numTexReg += 1;
}
}
return res;
}
void DeferredBumpFeatGLSL::setTexData( Material::StageData &stageDat,
const MaterialFeatureData &fd,
RenderPassData &passData,
U32 &texIndex )
{
if ( fd.materialFeatures[MFT_NormalsOut] ||
!fd.features[MFT_isDeferred] ||
!fd.features[MFT_RTLighting] )
{
Parent::setTexData( stageDat, fd, passData, texIndex );
return;
}
if (!fd.features[MFT_DeferredConditioner] && fd.features[MFT_AccuMap])
{
passData.mTexType[texIndex] = Material::Bump;
passData.mSamplerNames[texIndex] = "bumpMap";
passData.mTexSlot[texIndex++].texObject = stageDat.getTex(MFT_NormalMap);
if (fd.features.hasFeature(MFT_DetailNormalMap))
{
passData.mTexType[texIndex] = Material::DetailBump;
passData.mSamplerNames[texIndex] = "detailBumpMap";
passData.mTexSlot[texIndex++].texObject = stageDat.getTex(MFT_DetailNormalMap);
}
}
else if (!fd.features[MFT_Parallax] && !fd.features[MFT_SpecularMap] &&
( fd.features[MFT_DeferredConditioner]) )
{
passData.mTexType[ texIndex ] = Material::Bump;
passData.mSamplerNames[ texIndex ] = "bumpMap";
passData.mTexSlot[ texIndex++ ].texObject = stageDat.getTex( MFT_NormalMap );
if ( fd.features[MFT_DeferredConditioner] &&
fd.features.hasFeature( MFT_DetailNormalMap ) )
{
passData.mTexType[ texIndex ] = Material::DetailBump;
passData.mSamplerNames[ texIndex ] = "detailBumpMap";
passData.mTexSlot[ texIndex++ ].texObject = stageDat.getTex( MFT_DetailNormalMap );
}
}
}
ShaderFeature::Resources DeferredMinnaertGLSL::getResources( const MaterialFeatureData &fd )
{
Resources res;
if( fd.features[MFT_isDeferred] && fd.features[MFT_RTLighting] )
{
res.numTex = 1;
res.numTexReg = 1;
}
return res;
}
void DeferredMinnaertGLSL::setTexData( Material::StageData &stageDat,
const MaterialFeatureData &fd,
RenderPassData &passData,
U32 &texIndex )
{
if( fd.features[MFT_isDeferred] && fd.features[MFT_RTLighting] )
{
NamedTexTarget *texTarget = NamedTexTarget::find(RenderDeferredMgr::BufferName);
if ( texTarget )
{
passData.mTexType[texIndex] = Material::TexTarget;
passData.mSamplerNames[texIndex] = "deferredBuffer";
passData.mTexSlot[ texIndex++ ].texTarget = texTarget;
}
}
}
void DeferredMinnaertGLSL::processPixMacros( Vector<GFXShaderMacro> &macros,
const MaterialFeatureData &fd )
{
if( fd.features[MFT_isDeferred] && fd.features[MFT_RTLighting] )
{
// Pull in the uncondition method for the g buffer
NamedTexTarget *texTarget = NamedTexTarget::find( RenderDeferredMgr::BufferName );
if ( texTarget && texTarget->getConditioner() )
{
ConditionerMethodDependency *unconditionMethod = texTarget->getConditioner()->getConditionerMethodDependency(ConditionerFeature::UnconditionMethod);
unconditionMethod->createMethodMacro( String::ToLower(RenderDeferredMgr::BufferName) + "Uncondition", macros );
addDependency(unconditionMethod);
}
}
}
void DeferredMinnaertGLSL::processVert( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
// If there is no deferred information, bail on this feature
if( !fd.features[MFT_isDeferred] || !fd.features[MFT_RTLighting] )
{
output = NULL;
return;
}
// Make sure we pass the world space position to the
// pixel shader so we can calculate a view vector.
MultiLine *meta = new MultiLine;
addOutWsPosition( componentList, fd.features[MFT_UseInstancing], meta );
output = meta;
}
void DeferredMinnaertGLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
// If there is no deferred information, bail on this feature
if( !fd.features[MFT_isDeferred] || !fd.features[MFT_RTLighting] )
{
output = NULL;
return;
}
Var *minnaertConstant = new Var;
minnaertConstant->setType( "float" );
minnaertConstant->setName( "minnaertConstant" );
minnaertConstant->uniform = true;
minnaertConstant->constSortPos = cspPotentialPrimitive;
// create texture var
Var *deferredBuffer = new Var;
deferredBuffer->setType( "sampler2D" );
deferredBuffer->setName( "deferredBuffer" );
deferredBuffer->uniform = true;
deferredBuffer->sampler = true;
deferredBuffer->constNum = Var::getTexUnitNum(); // used as texture unit num here
// Texture coord
Var *uvScene = (Var*) LangElement::find( "uvScene" );
AssertFatal(uvScene != NULL, "Unable to find UVScene, no RTLighting feature?");
MultiLine *meta = new MultiLine;
// Get the world space view vector.
Var *wsViewVec = getWsView( getInWsPosition( componentList ), meta );
String unconditionDeferredMethod = String::ToLower(RenderDeferredMgr::BufferName) + "Uncondition";
Var *d_NL_Att = (Var*)LangElement::find( "d_NL_Att" );
meta->addStatement( new GenOp( avar( " vec4 normalDepth = %s(@, @);\r\n", unconditionDeferredMethod.c_str() ), deferredBuffer, uvScene ) );
meta->addStatement( new GenOp( " float vDotN = dot(normalDepth.xyz, @);\r\n", wsViewVec ) );
meta->addStatement( new GenOp( " float Minnaert = pow( @, @) * pow(vDotN, 1.0 - @);\r\n", d_NL_Att, minnaertConstant, minnaertConstant ) );
meta->addStatement( new GenOp( " @;\r\n", assignColor( new GenOp( "vec4(Minnaert, Minnaert, Minnaert, 1.0)" ), Material::Mul ) ) );
output = meta;
}
void DeferredSubSurfaceGLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
Var *subSurfaceParams = new Var;
subSurfaceParams->setType( "vec4" );
subSurfaceParams->setName( "subSurfaceParams" );
subSurfaceParams->uniform = true;
subSurfaceParams->constSortPos = cspPotentialPrimitive;
Var *d_lightcolor = (Var*)LangElement::find( "d_lightcolor" );
Var *d_NL_Att = (Var*)LangElement::find( "d_NL_Att" );
MultiLine *meta = new MultiLine;
if (fd.features[MFT_isDeferred])
{
Var* targ = (Var*)LangElement::find(getOutputTargetVarName(ShaderFeature::RenderTarget3));
meta->addStatement(new GenOp(" @.rgb += @.rgb*@.a;\r\n", targ, subSurfaceParams, subSurfaceParams));
output = meta;
return;
}
output = meta;
}