Torque3D/Engine/source/lighting/advanced/glsl/advancedLightingFeaturesGLSL.cpp
AzaezelX 0d4221fa59 uninitialized and unused value cleanups
(cherry picked from commit 1f08602cf0ad84409cd8b3520510f9c6ce7d5f9c)
2023-05-01 10:40:02 -05:00

591 lines
22 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "lighting/advanced/glsl/advancedLightingFeaturesGLSL.h"
#include "lighting/advanced/advancedLightBinManager.h"
#include "shaderGen/langElement.h"
#include "shaderGen/shaderOp.h"
#include "shaderGen/conditionerFeature.h"
#include "renderInstance/renderDeferredMgr.h"
#include "materials/processedMaterial.h"
#include "materials/materialFeatureTypes.h"
void DeferredRTLightingFeatGLSL::processPixMacros( Vector<GFXShaderMacro> &macros,
const MaterialFeatureData &fd )
{
// Skip deferred features, and use forward shading instead
if ( !fd.features[MFT_isDeferred] )
{
Parent::processPixMacros( macros, fd );
return;
}
// Pull in the uncondition method for the light info buffer
NamedTexTarget *texTarget = NamedTexTarget::find( AdvancedLightBinManager::smBufferName );
if ( texTarget && texTarget->getConditioner() )
{
ConditionerMethodDependency *unconditionMethod = texTarget->getConditioner()->getConditionerMethodDependency(ConditionerFeature::UnconditionMethod);
unconditionMethod->createMethodMacro( String::ToLower( AdvancedLightBinManager::smBufferName ) + "Uncondition", macros );
addDependency(unconditionMethod);
}
}
void DeferredRTLightingFeatGLSL::processVert( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
// Skip deferred features, and use forward shading instead
if ( !fd.features[MFT_isDeferred] )
{
Parent::processVert( componentList, fd );
return;
}
// Pass screen space position to pixel shader to compute a full screen buffer uv
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
Var *ssPos = connectComp->getElement( RT_TEXCOORD );
ssPos->setName( "screenspacePos" );
ssPos->setStructName( "OUT" );
ssPos->setType( "vec4" );
Var *outPosition = (Var*) LangElement::find( "gl_Position" );
AssertFatal( outPosition, "No gl_Position, ohnoes." );
output = new GenOp( " @ = @;\r\n", ssPos, outPosition );
}
void DeferredRTLightingFeatGLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
// Skip deferred features, and use forward shading instead
if ( !fd.features[MFT_isDeferred] )
{
Parent::processPix( componentList, fd );
return;
}
MultiLine *meta = new MultiLine;
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
Var *ssPos = connectComp->getElement( RT_TEXCOORD );
ssPos->setName( "screenspacePos" );
ssPos->setStructName( "IN" );
ssPos->setType( "vec4" );
Var *uvScene = new Var;
uvScene->setType( "vec2" );
uvScene->setName( "uvScene" );
LangElement *uvSceneDecl = new DecOp( uvScene );
String rtParamName = String::ToString( "rtParams%s", "diffuseLightingBuffer" );
Var *rtParams = (Var*) LangElement::find( rtParamName );
if( !rtParams )
{
rtParams = new Var;
rtParams->setType( "vec4" );
rtParams->setName( rtParamName );
rtParams->uniform = true;
rtParams->constSortPos = cspPass;
}
meta->addStatement( new GenOp( " @ = @.xy / @.w;\r\n", uvSceneDecl, ssPos, ssPos ) ); // get the screen coord... its -1 to +1
meta->addStatement( new GenOp( " @ = ( @ + 1.0 ) / 2.0;\r\n", uvScene, uvScene ) ); // get the screen coord to 0 to 1
meta->addStatement( new GenOp( " @.y = 1.0 - @.y;\r\n", uvScene, uvScene ) ); // flip the y axis
meta->addStatement( new GenOp( " @ = ( @ * @.zw ) + @.xy;\r\n", uvScene, uvScene, rtParams, rtParams) ); // scale it down and offset it to the rt size
// create texture var
Var *lightInfoBuffer = new Var;
lightInfoBuffer->setType( "sampler2D" );
lightInfoBuffer->setName( "diffuseLightingBuffer" );
lightInfoBuffer->uniform = true;
lightInfoBuffer->sampler = true;
lightInfoBuffer->constNum = Var::getTexUnitNum(); // used as texture unit num here
// Declare the RTLighting variables in this feature, they will either be assigned
// in this feature, or in the tonemap/lightmap feature
Var *d_lightcolor = new Var( "d_lightcolor", "vec3" );
meta->addStatement( new GenOp( " @;\r\n", new DecOp( d_lightcolor ) ) );
Var *d_NL_Att = new Var( "d_NL_Att", "float" );
meta->addStatement( new GenOp( " @;\r\n", new DecOp( d_NL_Att ) ) );
Var *d_specular = new Var( "d_specular", "float" );
meta->addStatement( new GenOp( " @;\r\n", new DecOp( d_specular ) ) );
// Perform the uncondition here.
String unconditionLightInfo = String::ToLower( AdvancedLightBinManager::smBufferName ) + "Uncondition";
meta->addStatement( new GenOp( avar( " %s(tex2D(@, @), @, @, @);\r\n",
unconditionLightInfo.c_str() ), lightInfoBuffer, uvScene, d_lightcolor, d_NL_Att, d_specular ) );
// This is kind of weak sauce
if( !fd.features[MFT_VertLit] && !fd.features[MFT_ToneMap] && !fd.features[MFT_LightMap] && !fd.features[MFT_SubSurface] )
meta->addStatement( new GenOp( " @;\r\n", assignColor( new GenOp( "vec4(@, 1.0)", d_lightcolor ), Material::Mul ) ) );
output = meta;
}
ShaderFeature::Resources DeferredRTLightingFeatGLSL::getResources( const MaterialFeatureData &fd )
{
// Skip deferred features, and use forward shading instead
if ( !fd.features[MFT_isDeferred] )
return Parent::getResources( fd );
// HACK: See DeferredRTLightingFeatGLSL::setTexData.
mLastTexIndex = 0;
Resources res;
res.numTex = 1;
res.numTexReg = 1;
return res;
}
void DeferredRTLightingFeatGLSL::setTexData( Material::StageData &stageDat,
const MaterialFeatureData &fd,
RenderPassData &passData,
U32 &texIndex )
{
// Skip deferred features, and use forward shading instead
if ( !fd.features[MFT_isDeferred] )
{
Parent::setTexData( stageDat, fd, passData, texIndex );
return;
}
NamedTexTarget *texTarget = NamedTexTarget::find( AdvancedLightBinManager::smBufferName );
if( texTarget )
{
// HACK: We store this for use in DeferredRTLightingFeatGLSL::processPix()
// which cannot deduce the texture unit itself.
mLastTexIndex = texIndex;
passData.mTexType[ texIndex ] = Material::TexTarget;
passData.mSamplerNames[ texIndex ]= "diffuseLightingBuffer";
passData.mTexSlot[ texIndex++ ].texTarget = texTarget;
}
}
void DeferredBumpFeatGLSL::processVert( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
if( fd.features[MFT_DeferredConditioner] )
{
// There is an output conditioner active, so we need to supply a transform
// to the pixel shader.
MultiLine *meta = new MultiLine;
// We need the view to tangent space transform in the pixel shader.
getOutViewToTangent( componentList, meta, fd );
const bool useTexAnim = fd.features[MFT_TexAnim];
// Make sure there are texcoords
if( !fd.features[MFT_Parallax] && !fd.features[MFT_DiffuseMap])
{
getOutTexCoord( "texCoord",
"vec2",
useTexAnim,
meta,
componentList );
}
const bool useFoliageTexCoord = fd.features[MFT_Foliage];
if ( fd.features.hasFeature( MFT_DetailNormalMap ) )
addOutDetailTexCoord( componentList,
meta,
useTexAnim, useFoliageTexCoord);
output = meta;
}
else if ( fd.materialFeatures[MFT_NormalsOut] ||
!fd.features[MFT_isDeferred] ||
!fd.features[MFT_RTLighting] )
{
Parent::processVert( componentList, fd );
return;
}
else
{
output = NULL;
}
}
void DeferredBumpFeatGLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
// NULL output in case nothing gets handled
output = NULL;
if( fd.features[MFT_DeferredConditioner] )
{
MultiLine *meta = new MultiLine;
Var *viewToTangent = getInViewToTangent( componentList );
// create texture var
Var *bumpMap = getNormalMapTex();
Var *texCoord = getInTexCoord( "texCoord", "vec2", componentList );
LangElement *texOp = new GenOp( "tex2D(@, @)", bumpMap, texCoord );
// create bump normal
Var *bumpNorm = new Var;
bumpNorm->setName( "bumpNormal" );
bumpNorm->setType( "vec4" );
LangElement *bumpNormDecl = new DecOp( bumpNorm );
meta->addStatement( expandNormalMap( texOp, bumpNormDecl, bumpNorm, fd ) );
// If we have a detail normal map we add the xy coords of
// it to the base normal map. This gives us the effect we
// want with few instructions and minial artifacts.
if ( fd.features.hasFeature( MFT_DetailNormalMap ) )
{
bumpMap = new Var;
bumpMap->setType( "sampler2D" );
bumpMap->setName( "detailBumpMap" );
bumpMap->uniform = true;
bumpMap->sampler = true;
bumpMap->constNum = Var::getTexUnitNum();
texCoord = getInTexCoord( "detCoord", "vec2", componentList );
texOp = new GenOp( "tex2D(@, @)", bumpMap, texCoord );
Var *detailBump = new Var;
detailBump->setName( "detailBump" );
detailBump->setType( "vec4" );
meta->addStatement( expandNormalMap( texOp, new DecOp( detailBump ), detailBump, fd ) );
Var *detailBumpScale = new Var;
detailBumpScale->setType( "float" );
detailBumpScale->setName( "detailBumpStrength" );
detailBumpScale->uniform = true;
detailBumpScale->constSortPos = cspPass;
meta->addStatement( new GenOp( " @.xy += @.xy * @;\r\n", bumpNorm, detailBump, detailBumpScale ) );
}
// This var is read from GBufferConditionerGLSL and
// used in the deferred output.
//
// By using the 'half' type here we get a bunch of partial
// precision optimized code on further operations on the normal
// which helps alot on older Geforce cards.
//
Var *gbNormal = new Var;
gbNormal->setName( "gbNormal" );
gbNormal->setType( "half3" );
LangElement *gbNormalDecl = new DecOp( gbNormal );
// Normalize is done later...
// Note: The reverse mul order is intentional. Affine matrix.
meta->addStatement( new GenOp( " @ = half3(tMul( @.xyz, @ ));\r\n", gbNormalDecl, bumpNorm, viewToTangent ) );
output = meta;
return;
}
else if (fd.features[MFT_AccuMap])
{
Var *bumpSample = (Var *)LangElement::find("bumpSample");
if (bumpSample == NULL)
{
MultiLine *meta = new MultiLine;
Var *texCoord = getInTexCoord("texCoord", "vec2", componentList);
Var *bumpMap = getNormalMapTex();
bumpSample = new Var;
bumpSample->setType("vec4");
bumpSample->setName("bumpSample");
LangElement *bumpSampleDecl = new DecOp(bumpSample);
meta->addStatement(new GenOp(" @ = tex2D(@, @);\r\n", bumpSampleDecl, bumpMap, texCoord));
if (fd.features.hasFeature(MFT_DetailNormalMap))
{
bumpMap = (Var*)LangElement::find("detailBumpMap");
if (!bumpMap) {
bumpMap = new Var;
bumpMap->setType("sampler2D");
bumpMap->setName("detailBumpMap");
bumpMap->uniform = true;
bumpMap->sampler = true;
bumpMap->constNum = Var::getTexUnitNum();
}
texCoord = getInTexCoord("detCoord", "vec2", componentList);
LangElement *texOp = new GenOp("tex2D(@, @)", bumpMap, texCoord);
Var *detailBump = new Var;
detailBump->setName("detailBump");
detailBump->setType("vec4");
meta->addStatement(expandNormalMap(texOp, new DecOp(detailBump), detailBump, fd));
Var *detailBumpScale = new Var;
detailBumpScale->setType("float");
detailBumpScale->setName("detailBumpStrength");
detailBumpScale->uniform = true;
detailBumpScale->constSortPos = cspPass;
meta->addStatement(new GenOp(" @.xy += @.xy * @;\r\n", bumpSample, detailBump, detailBumpScale));
}
output = meta;
return;
}
}
else if ( fd.materialFeatures[MFT_NormalsOut] ||
!fd.features[MFT_isDeferred] ||
!fd.features[MFT_RTLighting] )
{
Parent::processPix( componentList, fd );
return;
}
else if (!fd.features[MFT_OrmMap] )
{
Var *bumpSample = (Var *)LangElement::find( "bumpSample" );
if( bumpSample == NULL )
{
Var *texCoord = getInTexCoord( "texCoord", "vec2", componentList );
Var *bumpMap = getNormalMapTex();
bumpSample = new Var;
bumpSample->setType( "vec4" );
bumpSample->setName( "bumpSample" );
LangElement *bumpSampleDecl = new DecOp( bumpSample );
output = new GenOp( " @ = tex2D(@, @);\r\n", bumpSampleDecl, bumpMap, texCoord );
return;
}
}
output = NULL;
}
ShaderFeature::Resources DeferredBumpFeatGLSL::getResources( const MaterialFeatureData &fd )
{
if ( fd.materialFeatures[MFT_NormalsOut] ||
!fd.features[MFT_isDeferred] ||
fd.features[MFT_Parallax] ||
!fd.features[MFT_RTLighting] )
return Parent::getResources( fd );
Resources res;
if(!fd.features[MFT_OrmMap])
{
res.numTex = 1;
res.numTexReg = 1;
if ( fd.features[MFT_DeferredConditioner] &&
fd.features.hasFeature( MFT_DetailNormalMap ) )
{
res.numTex += 1;
if ( !fd.features.hasFeature( MFT_DetailMap ) )
res.numTexReg += 1;
}
}
return res;
}
void DeferredBumpFeatGLSL::setTexData( Material::StageData &stageDat,
const MaterialFeatureData &fd,
RenderPassData &passData,
U32 &texIndex )
{
if ( fd.materialFeatures[MFT_NormalsOut] ||
!fd.features[MFT_isDeferred] ||
!fd.features[MFT_RTLighting] )
{
Parent::setTexData( stageDat, fd, passData, texIndex );
return;
}
if (!fd.features[MFT_DeferredConditioner] && fd.features[MFT_AccuMap])
{
passData.mTexType[texIndex] = Material::Bump;
passData.mSamplerNames[texIndex] = "bumpMap";
passData.mTexSlot[texIndex++].texObject = stageDat.getTex(MFT_NormalMap);
if (fd.features.hasFeature(MFT_DetailNormalMap))
{
passData.mTexType[texIndex] = Material::DetailBump;
passData.mSamplerNames[texIndex] = "detailBumpMap";
passData.mTexSlot[texIndex++].texObject = stageDat.getTex(MFT_DetailNormalMap);
}
}
else if (!fd.features[MFT_Parallax] && !fd.features[MFT_OrmMap] &&
( fd.features[MFT_DeferredConditioner]) )
{
passData.mTexType[ texIndex ] = Material::Bump;
passData.mSamplerNames[ texIndex ] = "bumpMap";
passData.mTexSlot[ texIndex++ ].texObject = stageDat.getTex( MFT_NormalMap );
if ( fd.features[MFT_DeferredConditioner] &&
fd.features.hasFeature( MFT_DetailNormalMap ) )
{
passData.mTexType[ texIndex ] = Material::DetailBump;
passData.mSamplerNames[ texIndex ] = "detailBumpMap";
passData.mTexSlot[ texIndex++ ].texObject = stageDat.getTex( MFT_DetailNormalMap );
}
}
}
ShaderFeature::Resources DeferredMinnaertGLSL::getResources( const MaterialFeatureData &fd )
{
Resources res;
if( fd.features[MFT_isDeferred] && fd.features[MFT_RTLighting] )
{
res.numTex = 1;
res.numTexReg = 1;
}
return res;
}
void DeferredMinnaertGLSL::setTexData( Material::StageData &stageDat,
const MaterialFeatureData &fd,
RenderPassData &passData,
U32 &texIndex )
{
if( fd.features[MFT_isDeferred] && fd.features[MFT_RTLighting] )
{
NamedTexTarget *texTarget = NamedTexTarget::find(RenderDeferredMgr::BufferName);
if ( texTarget )
{
passData.mTexType[texIndex] = Material::TexTarget;
passData.mSamplerNames[texIndex] = "deferredBuffer";
passData.mTexSlot[ texIndex++ ].texTarget = texTarget;
}
}
}
void DeferredMinnaertGLSL::processPixMacros( Vector<GFXShaderMacro> &macros,
const MaterialFeatureData &fd )
{
if( fd.features[MFT_isDeferred] && fd.features[MFT_RTLighting] )
{
// Pull in the uncondition method for the g buffer
NamedTexTarget *texTarget = NamedTexTarget::find( RenderDeferredMgr::BufferName );
if ( texTarget && texTarget->getConditioner() )
{
ConditionerMethodDependency *unconditionMethod = texTarget->getConditioner()->getConditionerMethodDependency(ConditionerFeature::UnconditionMethod);
unconditionMethod->createMethodMacro( String::ToLower(RenderDeferredMgr::BufferName) + "Uncondition", macros );
addDependency(unconditionMethod);
}
}
}
void DeferredMinnaertGLSL::processVert( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
// If there is no deferred information, bail on this feature
if( !fd.features[MFT_isDeferred] || !fd.features[MFT_RTLighting] )
{
output = NULL;
return;
}
// Make sure we pass the world space position to the
// pixel shader so we can calculate a view vector.
MultiLine *meta = new MultiLine;
addOutWsPosition( componentList, fd.features[MFT_UseInstancing], meta );
output = meta;
}
void DeferredMinnaertGLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
// If there is no deferred information, bail on this feature
if( !fd.features[MFT_isDeferred] || !fd.features[MFT_RTLighting] )
{
output = NULL;
return;
}
Var *minnaertConstant = new Var;
minnaertConstant->setType( "float" );
minnaertConstant->setName( "minnaertConstant" );
minnaertConstant->uniform = true;
minnaertConstant->constSortPos = cspPotentialPrimitive;
// create texture var
Var *deferredBuffer = new Var;
deferredBuffer->setType( "sampler2D" );
deferredBuffer->setName( "deferredBuffer" );
deferredBuffer->uniform = true;
deferredBuffer->sampler = true;
deferredBuffer->constNum = Var::getTexUnitNum(); // used as texture unit num here
// Texture coord
Var *uvScene = (Var*) LangElement::find( "uvScene" );
AssertFatal(uvScene != NULL, "Unable to find UVScene, no RTLighting feature?");
MultiLine *meta = new MultiLine;
// Get the world space view vector.
Var *wsViewVec = getWsView( getInWsPosition( componentList ), meta );
String unconditionDeferredMethod = String::ToLower(RenderDeferredMgr::BufferName) + "Uncondition";
Var *d_NL_Att = (Var*)LangElement::find( "d_NL_Att" );
meta->addStatement( new GenOp( avar( " vec4 normalDepth = %s(@, @);\r\n", unconditionDeferredMethod.c_str() ), deferredBuffer, uvScene ) );
meta->addStatement( new GenOp( " float vDotN = dot(normalDepth.xyz, @);\r\n", wsViewVec ) );
meta->addStatement( new GenOp( " float Minnaert = pow( @, @) * pow(vDotN, 1.0 - @);\r\n", d_NL_Att, minnaertConstant, minnaertConstant ) );
meta->addStatement( new GenOp( " @;\r\n", assignColor( new GenOp( "vec4(Minnaert, Minnaert, Minnaert, 1.0)" ), Material::Mul ) ) );
output = meta;
}
void DeferredSubSurfaceGLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
Var *subSurfaceParams = new Var;
subSurfaceParams->setType( "vec4" );
subSurfaceParams->setName( "subSurfaceParams" );
subSurfaceParams->uniform = true;
subSurfaceParams->constSortPos = cspPotentialPrimitive;
//Var *d_lightcolor = (Var*)LangElement::find( "d_lightcolor" );
//Var *d_NL_Att = (Var*)LangElement::find( "d_NL_Att" );
MultiLine *meta = new MultiLine;
Var* targ = (Var*)LangElement::find(getOutputTargetVarName(ShaderFeature::DefaultTarget));
if (fd.features[MFT_isDeferred])
{
targ = (Var*)LangElement::find(getOutputTargetVarName(ShaderFeature::RenderTarget3));
meta->addStatement(new GenOp(" @.rgb += @.rgb*@.a;\r\n", targ, subSurfaceParams, subSurfaceParams));
output = meta;
return;
}
output = meta;
}