Torque3D/Engine/lib/openal-soft/common/almalloc.h

199 lines
6.7 KiB
C++

#ifndef AL_MALLOC_H
#define AL_MALLOC_H
#include <algorithm>
#include <cstddef>
#include <limits>
#include <new>
#include <type_traits>
#include <utility>
#include <variant>
namespace gsl {
template<typename T> using owner = T;
}
#define DISABLE_ALLOC \
void *operator new(size_t) = delete; \
void *operator new[](size_t) = delete; \
void operator delete(void*) noexcept = delete; \
void operator delete[](void*) noexcept = delete;
enum FamCount : size_t { };
#define DEF_FAM_NEWDEL(T, FamMem) \
static constexpr size_t Sizeof(size_t count) noexcept \
{ \
static_assert(&Sizeof == &T::Sizeof, \
"Incorrect container type specified"); \
return std::max(decltype(FamMem)::Sizeof(count, offsetof(T, FamMem)), \
sizeof(T)); \
} \
\
gsl::owner<void*> operator new(size_t /*size*/, FamCount count) \
{ \
const auto alignment = std::align_val_t{alignof(T)}; \
return ::operator new[](T::Sizeof(count), alignment); \
} \
void operator delete(gsl::owner<void*> block, FamCount) noexcept \
{ ::operator delete[](block, std::align_val_t{alignof(T)}); } \
void operator delete(gsl::owner<void*> block) noexcept \
{ ::operator delete[](block, std::align_val_t{alignof(T)}); } \
void *operator new[](size_t /*size*/) = delete; \
void operator delete[](void* /*block*/) = delete;
namespace al {
template<typename T, std::size_t AlignV=alignof(T)>
struct allocator {
static constexpr auto Alignment = std::max(AlignV, alignof(T));
static constexpr auto AlignVal = std::align_val_t{Alignment};
using value_type = std::remove_cv_t<std::remove_reference_t<T>>;
using reference = value_type&;
using const_reference = const value_type&;
using pointer = value_type*;
using const_pointer = const value_type*;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using is_always_equal = std::true_type;
template<typename U, std::enable_if_t<alignof(U) <= Alignment,bool> = true>
struct rebind {
using other = allocator<U,Alignment>;
};
constexpr explicit allocator() noexcept = default;
template<typename U, std::size_t N>
constexpr explicit allocator(const allocator<U,N>&) noexcept
{ static_assert(Alignment == allocator<U,N>::Alignment); }
gsl::owner<T*> allocate(std::size_t n)
{
if(n > std::numeric_limits<std::size_t>::max()/sizeof(T)) throw std::bad_alloc();
return static_cast<gsl::owner<T*>>(::operator new[](n*sizeof(T), AlignVal));
}
void deallocate(gsl::owner<T*> p, std::size_t) noexcept
{ ::operator delete[](gsl::owner<void*>{p}, AlignVal); }
};
template<typename T, std::size_t N, typename U, std::size_t M>
constexpr bool operator==(const allocator<T,N>&, const allocator<U,M>&) noexcept
{ return allocator<T,N>::Alignment == allocator<U,M>::Alignment; }
template<typename T, std::size_t N, typename U, std::size_t M>
constexpr bool operator!=(const allocator<T,N>&, const allocator<U,M>&) noexcept
{ return allocator<T,N>::Alignment != allocator<U,M>::Alignment; }
#ifdef __cpp_lib_to_address
using std::to_address;
#else
template<typename T>
constexpr T *to_address(T *p) noexcept
{
static_assert(!std::is_function<T>::value, "Can't be a function type");
return p;
}
template<typename T>
constexpr auto to_address(const T &p) noexcept
{
return ::al::to_address(p.operator->());
}
#endif
template<typename T, typename ...Args>
constexpr T* construct_at(T *ptr, Args&& ...args)
noexcept(std::is_nothrow_constructible_v<T, Args...>)
{
/* NOLINTBEGIN(cppcoreguidelines-owning-memory) construct_at doesn't
* necessarily handle the address from an owner, while placement new
* expects to.
*/
return ::new(static_cast<void*>(ptr)) T{std::forward<Args>(args)...};
/* NOLINTEND(cppcoreguidelines-owning-memory) */
}
template<typename SP, typename PT, typename ...Args>
class out_ptr_t {
static_assert(!std::is_same_v<PT,void*>);
SP &mRes;
std::variant<PT,void*> mPtr;
public:
explicit out_ptr_t(SP &res) : mRes{res} { }
~out_ptr_t() { std::visit([this](auto &ptr) { mRes.reset(static_cast<PT>(ptr)); }, mPtr); }
out_ptr_t() = delete;
out_ptr_t(const out_ptr_t&) = delete;
out_ptr_t& operator=(const out_ptr_t&) = delete;
operator PT*() noexcept /* NOLINT(google-explicit-constructor) */
{ return &std::get<PT>(mPtr); }
operator void**() noexcept /* NOLINT(google-explicit-constructor) */
{ return &mPtr.template emplace<void*>(); }
};
template<typename T=void, typename SP, typename ...Args>
auto out_ptr(SP &res, Args&& ...args)
{
static_assert(sizeof...(args) == 0);
if constexpr(std::is_same_v<T,void>)
{
using ptype = typename SP::element_type*;
return out_ptr_t<SP,ptype,Args...>{res};
}
else
return out_ptr_t<SP,T,Args...>{res};
}
template<typename SP, typename PT, typename ...Args>
class inout_ptr_t {
static_assert(!std::is_same_v<PT,void*>);
SP &mRes;
std::variant<PT,void*> mPtr;
public:
explicit inout_ptr_t(SP &res) : mRes{res}, mPtr{res.get()} { }
~inout_ptr_t()
{
mRes.release();
std::visit([this](auto &ptr) { mRes.reset(static_cast<PT>(ptr)); }, mPtr);
}
inout_ptr_t() = delete;
inout_ptr_t(const inout_ptr_t&) = delete;
inout_ptr_t& operator=(const inout_ptr_t&) = delete;
operator PT*() noexcept /* NOLINT(google-explicit-constructor) */
{ return &std::get<PT>(mPtr); }
operator void**() noexcept /* NOLINT(google-explicit-constructor) */
{ return &mPtr.template emplace<void*>(mRes.get()); }
};
template<typename T=void, typename SP, typename ...Args>
auto inout_ptr(SP &res, Args&& ...args)
{
static_assert(sizeof...(args) == 0);
if constexpr(std::is_same_v<T,void>)
{
using ptype = typename SP::element_type*;
return inout_ptr_t<SP,ptype,Args...>{res};
}
else
return inout_ptr_t<SP,T,Args...>{res};
}
} // namespace al
#endif /* AL_MALLOC_H */