Torque3D/Engine/lib/openal-soft/alc/panning.cpp

1276 lines
59 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2010 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <cstddef>
#include <cstdio>
#include <cstdint>
#include <functional>
#include <memory>
#include <numeric>
#include <optional>
#include <string>
#include <string_view>
#include <utility>
#include <vector>
#include "AL/alc.h"
#include "AL/alext.h"
#include "alc/context.h"
#include "alnumbers.h"
#include "alnumeric.h"
#include "alspan.h"
#include "alstring.h"
#include "alu.h"
#include "core/ambdec.h"
#include "core/ambidefs.h"
#include "core/bformatdec.h"
#include "core/bufferline.h"
#include "core/bs2b.h"
#include "core/context.h"
#include "core/devformat.h"
#include "core/device.h"
#include "core/effectslot.h"
#include "core/filters/nfc.h"
#include "core/filters/splitter.h"
#include "core/front_stablizer.h"
#include "core/hrtf.h"
#include "core/logging.h"
#include "core/mixer/hrtfdefs.h"
#include "core/uhjfilter.h"
#include "device.h"
#include "flexarray.h"
#include "intrusive_ptr.h"
#include "opthelpers.h"
#include "vector.h"
namespace {
using namespace std::string_view_literals;
using std::chrono::seconds;
using std::chrono::nanoseconds;
[[nodiscard]]
auto GetLabelFromChannel(Channel channel) -> std::string_view
{
switch(channel)
{
case FrontLeft: return "front-left"sv;
case FrontRight: return "front-right"sv;
case FrontCenter: return "front-center"sv;
case LFE: return "lfe"sv;
case BackLeft: return "back-left"sv;
case BackRight: return "back-right"sv;
case BackCenter: return "back-center"sv;
case SideLeft: return "side-left"sv;
case SideRight: return "side-right"sv;
case TopFrontLeft: return "top-front-left"sv;
case TopFrontCenter: return "top-front-center"sv;
case TopFrontRight: return "top-front-right"sv;
case TopCenter: return "top-center"sv;
case TopBackLeft: return "top-back-left"sv;
case TopBackCenter: return "top-back-center"sv;
case TopBackRight: return "top-back-right"sv;
case BottomFrontLeft: return "bottom-front-left"sv;
case BottomFrontRight: return "bottom-front-right"sv;
case BottomBackLeft: return "bottom-back-left"sv;
case BottomBackRight: return "bottom-back-right"sv;
case Aux0: return "Aux0"sv;
case Aux1: return "Aux1"sv;
case Aux2: return "Aux2"sv;
case Aux3: return "Aux3"sv;
case Aux4: return "Aux4"sv;
case Aux5: return "Aux5"sv;
case Aux6: return "Aux6"sv;
case Aux7: return "Aux7"sv;
case Aux8: return "Aux8"sv;
case Aux9: return "Aux9"sv;
case Aux10: return "Aux10"sv;
case Aux11: return "Aux11"sv;
case Aux12: return "Aux12"sv;
case Aux13: return "Aux13"sv;
case Aux14: return "Aux14"sv;
case Aux15: return "Aux15"sv;
case MaxChannels: break;
}
return "(unknown)"sv;
}
[[nodiscard]]
auto GetLayoutName(DevAmbiLayout layout) noexcept -> std::string_view
{
switch(layout)
{
case DevAmbiLayout::FuMa: return "FuMa"sv;
case DevAmbiLayout::ACN: return "ACN"sv;
}
return "<unknown layout enum>"sv;
}
[[nodiscard]]
auto GetScalingName(DevAmbiScaling scaling) noexcept -> std::string_view
{
switch(scaling)
{
case DevAmbiScaling::FuMa: return "FuMa"sv;
case DevAmbiScaling::SN3D: return "SN3D"sv;
case DevAmbiScaling::N3D: return "N3D"sv;
}
return "<unknown scaling enum>"sv;
}
std::unique_ptr<FrontStablizer> CreateStablizer(const size_t outchans, const uint srate)
{
auto stablizer = FrontStablizer::Create(outchans);
/* Initialize band-splitting filter for the mid signal, with a crossover at
* 5khz (could be higher).
*/
stablizer->MidFilter.init(5000.0f / static_cast<float>(srate));
for(auto &filter : stablizer->ChannelFilters)
filter = stablizer->MidFilter;
return stablizer;
}
void AllocChannels(al::Device *device, const size_t main_chans, const size_t real_chans)
{
TRACE("Channel config, Main: {}, Real: {}", main_chans, real_chans);
/* Allocate extra channels for any post-filter output. */
const size_t num_chans{main_chans + real_chans};
TRACE("Allocating {} channels, {} bytes", num_chans,
num_chans*sizeof(device->MixBuffer[0]));
device->MixBuffer.resize(num_chans);
al::span<FloatBufferLine> buffer{device->MixBuffer};
device->Dry.Buffer = buffer.first(main_chans);
buffer = buffer.subspan(main_chans);
if(real_chans != 0)
{
device->RealOut.Buffer = buffer.first(real_chans);
buffer = buffer.subspan(real_chans);
}
else
device->RealOut.Buffer = device->Dry.Buffer;
}
using ChannelCoeffs = std::array<float,MaxAmbiChannels>;
enum DecoderMode : bool {
SingleBand = false,
DualBand = true
};
template<DecoderMode Mode, size_t N>
struct DecoderConfig;
template<size_t N>
struct DecoderConfig<SingleBand, N> {
uint8_t mOrder{};
bool mIs3D{};
std::array<Channel,N> mChannels{};
DevAmbiScaling mScaling{};
std::array<float,MaxAmbiOrder+1> mOrderGain{};
std::array<ChannelCoeffs,N> mCoeffs{};
};
template<size_t N>
struct DecoderConfig<DualBand, N> {
uint8_t mOrder{};
bool mIs3D{};
std::array<Channel,N> mChannels{};
DevAmbiScaling mScaling{};
std::array<float,MaxAmbiOrder+1> mOrderGain{};
std::array<ChannelCoeffs,N> mCoeffs{};
std::array<float,MaxAmbiOrder+1> mOrderGainLF{};
std::array<ChannelCoeffs,N> mCoeffsLF{};
};
template<>
struct DecoderConfig<DualBand, 0> {
uint8_t mOrder{};
bool mIs3D{};
al::span<const Channel> mChannels;
DevAmbiScaling mScaling{};
al::span<const float> mOrderGain;
al::span<const ChannelCoeffs> mCoeffs;
al::span<const float> mOrderGainLF;
al::span<const ChannelCoeffs> mCoeffsLF;
template<size_t N>
DecoderConfig& operator=(const DecoderConfig<SingleBand,N> &rhs) noexcept
{
mOrder = rhs.mOrder;
mIs3D = rhs.mIs3D;
mChannels = rhs.mChannels;
mScaling = rhs.mScaling;
mOrderGain = rhs.mOrderGain;
mCoeffs = rhs.mCoeffs;
mOrderGainLF = {};
mCoeffsLF = {};
return *this;
}
template<size_t N>
DecoderConfig& operator=(const DecoderConfig<DualBand,N> &rhs) noexcept
{
mOrder = rhs.mOrder;
mIs3D = rhs.mIs3D;
mChannels = rhs.mChannels;
mScaling = rhs.mScaling;
mOrderGain = rhs.mOrderGain;
mCoeffs = rhs.mCoeffs;
mOrderGainLF = rhs.mOrderGainLF;
mCoeffsLF = rhs.mCoeffsLF;
return *this;
}
explicit operator bool() const noexcept { return !mChannels.empty(); }
};
using DecoderView = DecoderConfig<DualBand, 0>;
void InitNearFieldCtrl(al::Device *device, const float ctrl_dist, const uint order,
const bool is3d)
{
static const std::array<uint,MaxAmbiOrder+1> chans_per_order2d{{1, 2, 2, 2}};
static const std::array<uint,MaxAmbiOrder+1> chans_per_order3d{{1, 3, 5, 7}};
/* NFC is only used when AvgSpeakerDist is greater than 0. */
if(!device->getConfigValueBool("decoder", "nfc", false) || !(ctrl_dist > 0.0f))
return;
device->AvgSpeakerDist = std::clamp(ctrl_dist, 0.1f, 10.0f);
TRACE("Using near-field reference distance: {:.2f} meters", device->AvgSpeakerDist);
const float w1{SpeedOfSoundMetersPerSec /
(device->AvgSpeakerDist * static_cast<float>(device->mSampleRate))};
device->mNFCtrlFilter.init(w1);
auto iter = std::copy_n(is3d ? chans_per_order3d.begin() : chans_per_order2d.begin(), order+1u,
device->NumChannelsPerOrder.begin());
std::fill(iter, device->NumChannelsPerOrder.end(), 0u);
}
void InitDistanceComp(al::Device *device, const al::span<const Channel> channels,
const al::span<const float,MaxOutputChannels> dists)
{
const float maxdist{std::accumulate(dists.begin(), dists.end(), 0.0f,
[](const float a, const float b) noexcept -> float { return std::max(a, b); })};
if(!device->getConfigValueBool("decoder", "distance-comp", true) || !(maxdist > 0.0f))
return;
const auto distSampleScale = static_cast<float>(device->mSampleRate)/SpeedOfSoundMetersPerSec;
struct DistCoeffs { uint Length{}; float Gain{}; };
std::vector<DistCoeffs> ChanDelay;
ChanDelay.reserve(device->RealOut.Buffer.size());
size_t total{0u};
for(size_t chidx{0};chidx < channels.size();++chidx)
{
const Channel ch{channels[chidx]};
const size_t idx{device->RealOut.ChannelIndex[ch]};
if(idx == InvalidChannelIndex)
continue;
const float distance{dists[chidx]};
/* Distance compensation only delays in steps of the sample rate. This
* is a bit less accurate since the delay time falls to the nearest
* sample time, but it's far simpler as it doesn't have to deal with
* phase offsets. This means at 48khz, for instance, the distance delay
* will be in steps of about 7 millimeters.
*/
float delay{std::floor((maxdist - distance)*distSampleScale + 0.5f)};
if(delay > float{DistanceComp::MaxDelay-1})
{
ERR("Delay for channel {} ({}) exceeds buffer length ({:f} > {})", idx,
GetLabelFromChannel(ch), delay, DistanceComp::MaxDelay-1);
delay = float{DistanceComp::MaxDelay-1};
}
ChanDelay.resize(std::max(ChanDelay.size(), idx+1_uz));
ChanDelay[idx].Length = static_cast<uint>(delay);
ChanDelay[idx].Gain = distance / maxdist;
TRACE("Channel {} distance comp: {} samples, {:f} gain", GetLabelFromChannel(ch),
ChanDelay[idx].Length, ChanDelay[idx].Gain);
/* Round up to the next 4th sample, so each channel buffer starts
* 16-byte aligned.
*/
total += RoundUp(ChanDelay[idx].Length, 4);
}
if(total > 0)
{
auto chandelays = DistanceComp::Create(total);
auto chanbuffer = chandelays->mSamples.begin();
auto set_bufptr = [&chanbuffer](const DistCoeffs &data)
{
DistanceComp::ChanData ret{};
ret.Buffer = al::span{chanbuffer, data.Length};
ret.Gain = data.Gain;
chanbuffer += ptrdiff_t(RoundUp(data.Length, 4));
return ret;
};
std::transform(ChanDelay.begin(), ChanDelay.end(), chandelays->mChannels.begin(),
set_bufptr);
device->ChannelDelays = std::move(chandelays);
}
}
constexpr auto GetAmbiScales(DevAmbiScaling scaletype) noexcept
{
if(scaletype == DevAmbiScaling::FuMa) return al::span{AmbiScale::FromFuMa};
if(scaletype == DevAmbiScaling::SN3D) return al::span{AmbiScale::FromSN3D};
return al::span{AmbiScale::FromN3D};
}
constexpr auto GetAmbiLayout(DevAmbiLayout layouttype) noexcept
{
if(layouttype == DevAmbiLayout::FuMa) return al::span{AmbiIndex::FromFuMa};
return al::span{AmbiIndex::FromACN};
}
auto MakeDecoderView(al::Device *device, const AmbDecConf *conf,
DecoderConfig<DualBand,MaxOutputChannels> &decoder) -> DecoderView
{
DecoderView ret{};
decoder.mOrder = (conf->ChanMask > Ambi3OrderMask) ? uint8_t{4} :
(conf->ChanMask > Ambi2OrderMask) ? uint8_t{3} :
(conf->ChanMask > Ambi1OrderMask) ? uint8_t{2} : uint8_t{1};
decoder.mIs3D = (conf->ChanMask&AmbiPeriphonicMask) != 0;
switch(conf->CoeffScale)
{
case AmbDecScale::Unset: ASSUME(false); break;
case AmbDecScale::N3D: decoder.mScaling = DevAmbiScaling::N3D; break;
case AmbDecScale::SN3D: decoder.mScaling = DevAmbiScaling::SN3D; break;
case AmbDecScale::FuMa: decoder.mScaling = DevAmbiScaling::FuMa; break;
}
const auto hfordermin = std::min(conf->HFOrderGain.size(), decoder.mOrderGain.size());
std::copy_n(conf->HFOrderGain.begin(), hfordermin, decoder.mOrderGain.begin());
const auto lfordermin = std::min(conf->LFOrderGain.size(), decoder.mOrderGainLF.size());
std::copy_n(conf->LFOrderGain.begin(), lfordermin, decoder.mOrderGainLF.begin());
const auto num_coeffs = decoder.mIs3D ? AmbiChannelsFromOrder(decoder.mOrder)
: Ambi2DChannelsFromOrder(decoder.mOrder);
const auto idx_map = decoder.mIs3D ? al::span<const uint8_t>{AmbiIndex::FromACN}
: al::span<const uint8_t>{AmbiIndex::FromACN2D};
const auto hfmatrix = conf->HFMatrix;
const auto lfmatrix = conf->LFMatrix;
uint chan_count{0};
for(auto &speaker : al::span{std::as_const(conf->Speakers)})
{
/* NOTE: AmbDec does not define any standard speaker names, however
* for this to work we have to by able to find the output channel
* the speaker definition corresponds to. Therefore, OpenAL Soft
* requires these channel labels to be recognized:
*
* LF = Front left
* RF = Front right
* LS = Side left
* RS = Side right
* LB = Back left
* RB = Back right
* CE = Front center
* CB = Back center
* LFT = Top front left
* RFT = Top front right
* LBT = Top back left
* RBT = Top back right
* LFB = Bottom front left
* RFB = Bottom front right
* LBB = Bottom back left
* RBB = Bottom back right
*
* Additionally, surround51 will acknowledge back speakers for side
* channels, to avoid issues with an ambdec expecting 5.1 to use the
* back channels.
*/
Channel ch{};
if(speaker.Name == "LF"sv)
ch = FrontLeft;
else if(speaker.Name == "RF"sv)
ch = FrontRight;
else if(speaker.Name == "CE"sv)
ch = FrontCenter;
else if(speaker.Name == "LS"sv)
ch = SideLeft;
else if(speaker.Name == "RS"sv)
ch = SideRight;
else if(speaker.Name == "LB"sv)
ch = (device->FmtChans == DevFmtX51) ? SideLeft : BackLeft;
else if(speaker.Name == "RB"sv)
ch = (device->FmtChans == DevFmtX51) ? SideRight : BackRight;
else if(speaker.Name == "CB"sv)
ch = BackCenter;
else if(speaker.Name == "LFT"sv)
ch = TopFrontLeft;
else if(speaker.Name == "RFT"sv)
ch = TopFrontRight;
else if(speaker.Name == "LBT"sv)
ch = TopBackLeft;
else if(speaker.Name == "RBT"sv)
ch = TopBackRight;
else if(speaker.Name == "LFB"sv)
ch = BottomFrontLeft;
else if(speaker.Name == "RFB"sv)
ch = BottomFrontRight;
else if(speaker.Name == "LBB"sv)
ch = BottomBackLeft;
else if(speaker.Name == "RBB"sv)
ch = BottomBackRight;
else
{
int idx{};
char c{};
/* NOLINTNEXTLINE(cert-err34-c,cppcoreguidelines-pro-type-vararg) */
if(sscanf(speaker.Name.c_str(), "AUX%d%c", &idx, &c) != 1 || idx < 0
|| idx >= MaxChannels-Aux0)
{
ERR("AmbDec speaker label \"{}\" not recognized", speaker.Name);
continue;
}
ch = static_cast<Channel>(Aux0+idx);
}
decoder.mChannels[chan_count] = ch;
for(size_t dst{0};dst < num_coeffs;++dst)
{
const size_t src{idx_map[dst]};
decoder.mCoeffs[chan_count][dst] = hfmatrix[chan_count][src];
}
if(conf->FreqBands > 1)
{
for(size_t dst{0};dst < num_coeffs;++dst)
{
const size_t src{idx_map[dst]};
decoder.mCoeffsLF[chan_count][dst] = lfmatrix[chan_count][src];
}
}
++chan_count;
}
if(chan_count > 0)
{
ret.mOrder = decoder.mOrder;
ret.mIs3D = decoder.mIs3D;
ret.mScaling = decoder.mScaling;
ret.mChannels = al::span{decoder.mChannels}.first(chan_count);
ret.mOrderGain = decoder.mOrderGain;
ret.mCoeffs = al::span{decoder.mCoeffs}.first(chan_count);
if(conf->FreqBands > 1)
{
ret.mOrderGainLF = decoder.mOrderGainLF;
ret.mCoeffsLF = al::span{decoder.mCoeffsLF}.first(chan_count);
}
}
return ret;
}
constexpr DecoderConfig<SingleBand, 1> MonoConfig{
0, false, {{FrontCenter}},
DevAmbiScaling::N3D,
{{1.0f}},
{{ {{1.0f}} }}
};
constexpr DecoderConfig<SingleBand, 2> StereoConfig{
1, false, {{FrontLeft, FrontRight}},
DevAmbiScaling::N3D,
{{1.0f, 1.0f}},
{{
{{5.00000000e-1f, 2.88675135e-1f, 5.52305643e-2f}},
{{5.00000000e-1f, -2.88675135e-1f, 5.52305643e-2f}},
}}
};
constexpr DecoderConfig<DualBand, 4> QuadConfig{
1, false, {{BackLeft, FrontLeft, FrontRight, BackRight}},
DevAmbiScaling::N3D,
/*HF*/{{1.41421356e+0f, 1.00000000e+0f}},
{{
{{2.50000000e-1f, 2.04124145e-1f, -2.04124145e-1f}},
{{2.50000000e-1f, 2.04124145e-1f, 2.04124145e-1f}},
{{2.50000000e-1f, -2.04124145e-1f, 2.04124145e-1f}},
{{2.50000000e-1f, -2.04124145e-1f, -2.04124145e-1f}},
}},
/*LF*/{{1.00000000e+0f, 1.00000000e+0f}},
{{
{{2.50000000e-1f, 2.04124145e-1f, -2.04124145e-1f}},
{{2.50000000e-1f, 2.04124145e-1f, 2.04124145e-1f}},
{{2.50000000e-1f, -2.04124145e-1f, 2.04124145e-1f}},
{{2.50000000e-1f, -2.04124145e-1f, -2.04124145e-1f}},
}}
};
constexpr DecoderConfig<DualBand, 5> X51Config{
2, false, {{SideLeft, FrontLeft, FrontCenter, FrontRight, SideRight}},
DevAmbiScaling::FuMa,
/*HF*/{{1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f}},
{{
{{5.67316000e-1f, 4.22920000e-1f, -3.15495000e-1f, -6.34490000e-2f, -2.92380000e-2f}},
{{3.68584000e-1f, 2.72349000e-1f, 3.21616000e-1f, 1.92645000e-1f, 4.82600000e-2f}},
{{1.83579000e-1f, 0.00000000e+0f, 1.99588000e-1f, 0.00000000e+0f, 9.62820000e-2f}},
{{3.68584000e-1f, -2.72349000e-1f, 3.21616000e-1f, -1.92645000e-1f, 4.82600000e-2f}},
{{5.67316000e-1f, -4.22920000e-1f, -3.15495000e-1f, 6.34490000e-2f, -2.92380000e-2f}},
}},
/*LF*/{{1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f}},
{{
{{4.90109850e-1f, 3.77305010e-1f, -3.73106990e-1f, -1.25914530e-1f, 1.45133000e-2f}},
{{1.49085730e-1f, 3.03561680e-1f, 1.53290060e-1f, 2.45112480e-1f, -1.50753130e-1f}},
{{1.37654920e-1f, 0.00000000e+0f, 4.49417940e-1f, 0.00000000e+0f, 2.57844070e-1f}},
{{1.49085730e-1f, -3.03561680e-1f, 1.53290060e-1f, -2.45112480e-1f, -1.50753130e-1f}},
{{4.90109850e-1f, -3.77305010e-1f, -3.73106990e-1f, 1.25914530e-1f, 1.45133000e-2f}},
}}
};
constexpr DecoderConfig<SingleBand, 5> X61Config{
2, false, {{SideLeft, FrontLeft, FrontRight, SideRight, BackCenter}},
DevAmbiScaling::N3D,
{{1.0f, 1.0f, 1.0f}},
{{
{{2.04460341e-1f, 2.17177926e-1f, -4.39996780e-2f, -2.60790269e-2f, -6.87239792e-2f}},
{{1.58923161e-1f, 9.21772680e-2f, 1.59658796e-1f, 6.66278083e-2f, 3.84686854e-2f}},
{{1.58923161e-1f, -9.21772680e-2f, 1.59658796e-1f, -6.66278083e-2f, 3.84686854e-2f}},
{{2.04460341e-1f, -2.17177926e-1f, -4.39996780e-2f, 2.60790269e-2f, -6.87239792e-2f}},
{{2.50001688e-1f, 0.00000000e+0f, -2.50000094e-1f, 0.00000000e+0f, 6.05133395e-2f}},
}}
};
constexpr DecoderConfig<DualBand, 6> X71Config{
2, false, {{BackLeft, SideLeft, FrontLeft, FrontRight, SideRight, BackRight}},
DevAmbiScaling::N3D,
/*HF*/{{1.41421356e+0f, 1.22474487e+0f, 7.07106781e-1f}},
{{
{{1.66666667e-1f, 9.62250449e-2f, -1.66666667e-1f, -1.49071198e-1f, 8.60662966e-2f}},
{{1.66666667e-1f, 1.92450090e-1f, 0.00000000e+0f, 0.00000000e+0f, -1.72132593e-1f}},
{{1.66666667e-1f, 9.62250449e-2f, 1.66666667e-1f, 1.49071198e-1f, 8.60662966e-2f}},
{{1.66666667e-1f, -9.62250449e-2f, 1.66666667e-1f, -1.49071198e-1f, 8.60662966e-2f}},
{{1.66666667e-1f, -1.92450090e-1f, 0.00000000e+0f, 0.00000000e+0f, -1.72132593e-1f}},
{{1.66666667e-1f, -9.62250449e-2f, -1.66666667e-1f, 1.49071198e-1f, 8.60662966e-2f}},
}},
/*LF*/{{1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f}},
{{
{{1.66666667e-1f, 9.62250449e-2f, -1.66666667e-1f, -1.49071198e-1f, 8.60662966e-2f}},
{{1.66666667e-1f, 1.92450090e-1f, 0.00000000e+0f, 0.00000000e+0f, -1.72132593e-1f}},
{{1.66666667e-1f, 9.62250449e-2f, 1.66666667e-1f, 1.49071198e-1f, 8.60662966e-2f}},
{{1.66666667e-1f, -9.62250449e-2f, 1.66666667e-1f, -1.49071198e-1f, 8.60662966e-2f}},
{{1.66666667e-1f, -1.92450090e-1f, 0.00000000e+0f, 0.00000000e+0f, -1.72132593e-1f}},
{{1.66666667e-1f, -9.62250449e-2f, -1.66666667e-1f, 1.49071198e-1f, 8.60662966e-2f}},
}}
};
constexpr DecoderConfig<DualBand, 6> X3D71Config{
1, true, {{Aux0, SideLeft, FrontLeft, FrontRight, SideRight, Aux1}},
DevAmbiScaling::N3D,
/*HF*/{{1.73205081e+0f, 1.00000000e+0f}},
{{
{{1.666666667e-01f, 0.000000000e+00f, 2.356640879e-01f, -1.667265410e-01f}},
{{1.666666667e-01f, 2.033043281e-01f, -1.175581508e-01f, -1.678904388e-01f}},
{{1.666666667e-01f, 2.033043281e-01f, 1.175581508e-01f, 1.678904388e-01f}},
{{1.666666667e-01f, -2.033043281e-01f, 1.175581508e-01f, 1.678904388e-01f}},
{{1.666666667e-01f, -2.033043281e-01f, -1.175581508e-01f, -1.678904388e-01f}},
{{1.666666667e-01f, 0.000000000e+00f, -2.356640879e-01f, 1.667265410e-01f}},
}},
/*LF*/{{1.00000000e+0f, 1.00000000e+0f}},
{{
{{1.666666667e-01f, 0.000000000e+00f, 2.356640879e-01f, -1.667265410e-01f}},
{{1.666666667e-01f, 2.033043281e-01f, -1.175581508e-01f, -1.678904388e-01f}},
{{1.666666667e-01f, 2.033043281e-01f, 1.175581508e-01f, 1.678904388e-01f}},
{{1.666666667e-01f, -2.033043281e-01f, 1.175581508e-01f, 1.678904388e-01f}},
{{1.666666667e-01f, -2.033043281e-01f, -1.175581508e-01f, -1.678904388e-01f}},
{{1.666666667e-01f, 0.000000000e+00f, -2.356640879e-01f, 1.667265410e-01f}},
}}
};
constexpr DecoderConfig<SingleBand, 10> X714Config{
1, true, {{FrontLeft, FrontRight, SideLeft, SideRight, BackLeft, BackRight, TopFrontLeft, TopFrontRight, TopBackLeft, TopBackRight }},
DevAmbiScaling::N3D,
{{1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f}},
{{
{{1.27149251e-01f, 7.63047539e-02f, -3.64373750e-02f, 1.59700680e-01f}},
{{1.07005418e-01f, -7.67638760e-02f, -4.92129762e-02f, 1.29012797e-01f}},
{{1.26400196e-01f, 1.77494694e-01f, -3.71203389e-02f, 0.00000000e+00f}},
{{1.26396516e-01f, -1.77488059e-01f, -3.71297878e-02f, 0.00000000e+00f}},
{{1.06996956e-01f, 7.67615256e-02f, -4.92166307e-02f, -1.29001640e-01f}},
{{1.27145671e-01f, -7.63003471e-02f, -3.64353304e-02f, -1.59697510e-01f}},
{{8.80919747e-02f, 7.48940670e-02f, 9.08786244e-02f, 6.22527183e-02f}},
{{1.57880745e-01f, -7.28755272e-02f, 1.82364187e-01f, 8.74240284e-02f}},
{{1.57892225e-01f, 7.28944768e-02f, 1.82363474e-01f, -8.74301086e-02f}},
{{8.80892603e-02f, -7.48948724e-02f, 9.08779842e-02f, -6.22480443e-02f}},
}}
};
constexpr DecoderConfig<DualBand, 14> X7144Config{
1, true, {{BackLeft, SideLeft, FrontLeft, FrontRight, SideRight, BackRight, TopBackLeft, TopFrontLeft, TopFrontRight, TopBackRight, BottomBackLeft, BottomFrontLeft, BottomFrontRight, BottomBackRight}},
DevAmbiScaling::N3D,
/*HF*/{{2.64575131e+0f, 1.52752523e+0f}},
{{
{{7.14285714e-02f, 5.09426708e-02f, 0.00000000e+00f, -8.82352941e-02f}},
{{7.14285714e-02f, 1.01885342e-01f, 0.00000000e+00f, 0.00000000e+00f}},
{{7.14285714e-02f, 5.09426708e-02f, 0.00000000e+00f, 8.82352941e-02f}},
{{7.14285714e-02f, -5.09426708e-02f, 0.00000000e+00f, 8.82352941e-02f}},
{{7.14285714e-02f, -1.01885342e-01f, 0.00000000e+00f, 0.00000000e+00f}},
{{7.14285714e-02f, -5.09426708e-02f, 0.00000000e+00f, -8.82352941e-02f}},
{{7.14285714e-02f, 5.88235294e-02f, 1.25000000e-01f, -5.88235294e-02f}},
{{7.14285714e-02f, 5.88235294e-02f, 1.25000000e-01f, 5.88235294e-02f}},
{{7.14285714e-02f, -5.88235294e-02f, 1.25000000e-01f, 5.88235294e-02f}},
{{7.14285714e-02f, -5.88235294e-02f, 1.25000000e-01f, -5.88235294e-02f}},
{{7.14285714e-02f, 5.88235294e-02f, -1.25000000e-01f, -5.88235294e-02f}},
{{7.14285714e-02f, 5.88235294e-02f, -1.25000000e-01f, 5.88235294e-02f}},
{{7.14285714e-02f, -5.88235294e-02f, -1.25000000e-01f, 5.88235294e-02f}},
{{7.14285714e-02f, -5.88235294e-02f, -1.25000000e-01f, -5.88235294e-02f}},
}},
/*LF*/{{1.00000000e+0f, 1.00000000e+0f}},
{{
{{7.14285714e-02f, 5.09426708e-02f, 0.00000000e+00f, -8.82352941e-02f}},
{{7.14285714e-02f, 1.01885342e-01f, 0.00000000e+00f, 0.00000000e+00f}},
{{7.14285714e-02f, 5.09426708e-02f, 0.00000000e+00f, 8.82352941e-02f}},
{{7.14285714e-02f, -5.09426708e-02f, 0.00000000e+00f, 8.82352941e-02f}},
{{7.14285714e-02f, -1.01885342e-01f, 0.00000000e+00f, 0.00000000e+00f}},
{{7.14285714e-02f, -5.09426708e-02f, 0.00000000e+00f, -8.82352941e-02f}},
{{7.14285714e-02f, 5.88235294e-02f, 1.25000000e-01f, -5.88235294e-02f}},
{{7.14285714e-02f, 5.88235294e-02f, 1.25000000e-01f, 5.88235294e-02f}},
{{7.14285714e-02f, -5.88235294e-02f, 1.25000000e-01f, 5.88235294e-02f}},
{{7.14285714e-02f, -5.88235294e-02f, 1.25000000e-01f, -5.88235294e-02f}},
{{7.14285714e-02f, 5.88235294e-02f, -1.25000000e-01f, -5.88235294e-02f}},
{{7.14285714e-02f, 5.88235294e-02f, -1.25000000e-01f, 5.88235294e-02f}},
{{7.14285714e-02f, -5.88235294e-02f, -1.25000000e-01f, 5.88235294e-02f}},
{{7.14285714e-02f, -5.88235294e-02f, -1.25000000e-01f, -5.88235294e-02f}},
}}
};
void InitPanning(al::Device *device, const bool hqdec=false, const bool stablize=false,
DecoderView decoder={})
{
if(!decoder)
{
switch(device->FmtChans)
{
case DevFmtMono: decoder = MonoConfig; break;
case DevFmtStereo: decoder = StereoConfig; break;
case DevFmtQuad: decoder = QuadConfig; break;
case DevFmtX51: decoder = X51Config; break;
case DevFmtX61: decoder = X61Config; break;
case DevFmtX71: decoder = X71Config; break;
case DevFmtX714: decoder = X714Config; break;
case DevFmtX7144: decoder = X7144Config; break;
case DevFmtX3D71: decoder = X3D71Config; break;
case DevFmtAmbi3D:
/* For DevFmtAmbi3D, the ambisonic order is already set. */
const size_t count{AmbiChannelsFromOrder(device->mAmbiOrder)};
const auto acnmap = GetAmbiLayout(device->mAmbiLayout).first(count);
const auto n3dscale = GetAmbiScales(device->mAmbiScale);
std::transform(acnmap.cbegin(), acnmap.cend(), device->Dry.AmbiMap.begin(),
[n3dscale](const uint8_t &acn) noexcept -> BFChannelConfig
{ return BFChannelConfig{1.0f/n3dscale[acn], acn}; });
AllocChannels(device, count, 0);
device->m2DMixing = false;
float avg_dist{};
if(auto distopt = device->configValue<float>("decoder", "speaker-dist"))
avg_dist = *distopt;
else if(auto delayopt = device->configValue<float>("decoder", "nfc-ref-delay"))
{
WARN("nfc-ref-delay is deprecated, use speaker-dist instead");
avg_dist = *delayopt * SpeedOfSoundMetersPerSec;
}
TRACE("{}{} order ambisonic output ({} layout, {} scaling)", device->mAmbiOrder,
GetCounterSuffix(device->mAmbiOrder), GetLayoutName(device->mAmbiLayout),
GetScalingName(device->mAmbiScale));
InitNearFieldCtrl(device, avg_dist, device->mAmbiOrder, true);
return;
}
}
const size_t ambicount{decoder.mIs3D ? AmbiChannelsFromOrder(decoder.mOrder) :
Ambi2DChannelsFromOrder(decoder.mOrder)};
const bool dual_band{hqdec && !decoder.mCoeffsLF.empty()};
std::vector<ChannelDec> chancoeffs, chancoeffslf;
for(size_t i{0u};i < decoder.mChannels.size();++i)
{
const size_t idx{device->channelIdxByName(decoder.mChannels[i])};
if(idx == InvalidChannelIndex)
{
ERR("Failed to find {} channel in device",
GetLabelFromChannel(decoder.mChannels[i]));
continue;
}
auto ordermap = decoder.mIs3D ? al::span<const uint8_t>{AmbiIndex::OrderFromChannel}
: al::span<const uint8_t>{AmbiIndex::OrderFrom2DChannel};
chancoeffs.resize(std::max(chancoeffs.size(), idx+1_zu), ChannelDec{});
al::span<const float,MaxAmbiChannels> src{decoder.mCoeffs[i]};
al::span<float,MaxAmbiChannels> dst{chancoeffs[idx]};
for(size_t ambichan{0};ambichan < ambicount;++ambichan)
dst[ambichan] = src[ambichan] * decoder.mOrderGain[ordermap[ambichan]];
if(!dual_band)
continue;
chancoeffslf.resize(std::max(chancoeffslf.size(), idx+1_zu), ChannelDec{});
src = decoder.mCoeffsLF[i];
dst = chancoeffslf[idx];
for(size_t ambichan{0};ambichan < ambicount;++ambichan)
dst[ambichan] = src[ambichan] * decoder.mOrderGainLF[ordermap[ambichan]];
}
/* For non-DevFmtAmbi3D, set the ambisonic order. */
device->mAmbiOrder = decoder.mOrder;
device->m2DMixing = !decoder.mIs3D;
const auto acnmap = decoder.mIs3D ? al::span{AmbiIndex::FromACN}.first(ambicount)
: al::span{AmbiIndex::FromACN2D}.first(ambicount);
const auto coeffscale = GetAmbiScales(decoder.mScaling);
std::transform(acnmap.begin(), acnmap.end(), device->Dry.AmbiMap.begin(),
[coeffscale](const uint8_t &acn) noexcept
{ return BFChannelConfig{1.0f/coeffscale[acn], acn}; });
AllocChannels(device, ambicount, device->channelsFromFmt());
std::unique_ptr<FrontStablizer> stablizer;
if(stablize)
{
/* Only enable the stablizer if the decoder does not output to the
* front-center channel.
*/
const size_t cidx{device->RealOut.ChannelIndex[FrontCenter]};
bool hasfc{false};
if(cidx < chancoeffs.size())
{
for(const auto &coeff : chancoeffs[cidx])
hasfc |= coeff != 0.0f;
}
if(!hasfc && cidx < chancoeffslf.size())
{
for(const auto &coeff : chancoeffslf[cidx])
hasfc |= coeff != 0.0f;
}
if(!hasfc)
{
stablizer = CreateStablizer(device->channelsFromFmt(), device->mSampleRate);
TRACE("Front stablizer enabled");
}
}
TRACE("Enabling {}-band {}-order{} ambisonic decoder", !dual_band ? "single" : "dual",
(decoder.mOrder > 3) ? "fourth" :
(decoder.mOrder > 2) ? "third" :
(decoder.mOrder > 1) ? "second" : "first",
decoder.mIs3D ? " periphonic" : "");
device->AmbiDecoder = BFormatDec::Create(ambicount, chancoeffs, chancoeffslf,
device->mXOverFreq/static_cast<float>(device->mSampleRate), std::move(stablizer));
}
void InitHrtfPanning(al::Device *device)
{
static constexpr float Deg180{al::numbers::pi_v<float>};
static constexpr float Deg_90{Deg180 / 2.0f /* 90 degrees*/};
static constexpr float Deg_45{Deg_90 / 2.0f /* 45 degrees*/};
static constexpr float Deg135{Deg_45 * 3.0f /*135 degrees*/};
static constexpr float Deg_21{3.648638281e-01f /* 20~ 21 degrees*/};
static constexpr float Deg_32{5.535743589e-01f /* 31~ 32 degrees*/};
static constexpr float Deg_35{6.154797087e-01f /* 35~ 36 degrees*/};
static constexpr float Deg_58{1.017221968e+00f /* 58~ 59 degrees*/};
static constexpr float Deg_69{1.205932499e+00f /* 69~ 70 degrees*/};
static constexpr float Deg111{1.935660155e+00f /*110~111 degrees*/};
static constexpr float Deg122{2.124370686e+00f /*121~122 degrees*/};
static constexpr std::array AmbiPoints1O{
AngularPoint{EvRadians{ Deg_35}, AzRadians{-Deg_45}},
AngularPoint{EvRadians{ Deg_35}, AzRadians{-Deg135}},
AngularPoint{EvRadians{ Deg_35}, AzRadians{ Deg_45}},
AngularPoint{EvRadians{ Deg_35}, AzRadians{ Deg135}},
AngularPoint{EvRadians{-Deg_35}, AzRadians{-Deg_45}},
AngularPoint{EvRadians{-Deg_35}, AzRadians{-Deg135}},
AngularPoint{EvRadians{-Deg_35}, AzRadians{ Deg_45}},
AngularPoint{EvRadians{-Deg_35}, AzRadians{ Deg135}},
};
static constexpr std::array AmbiPoints2O{
AngularPoint{EvRadians{-Deg_32}, AzRadians{ 0.0f}},
AngularPoint{EvRadians{ 0.0f}, AzRadians{ Deg_58}},
AngularPoint{EvRadians{ Deg_58}, AzRadians{ Deg_90}},
AngularPoint{EvRadians{ Deg_32}, AzRadians{ 0.0f}},
AngularPoint{EvRadians{ 0.0f}, AzRadians{ Deg122}},
AngularPoint{EvRadians{-Deg_58}, AzRadians{-Deg_90}},
AngularPoint{EvRadians{-Deg_32}, AzRadians{ Deg180}},
AngularPoint{EvRadians{ 0.0f}, AzRadians{-Deg122}},
AngularPoint{EvRadians{ Deg_58}, AzRadians{-Deg_90}},
AngularPoint{EvRadians{ Deg_32}, AzRadians{ Deg180}},
AngularPoint{EvRadians{ 0.0f}, AzRadians{-Deg_58}},
AngularPoint{EvRadians{-Deg_58}, AzRadians{ Deg_90}},
};
static constexpr std::array AmbiPoints3O{
AngularPoint{EvRadians{ Deg_69}, AzRadians{-Deg_90}},
AngularPoint{EvRadians{ Deg_69}, AzRadians{ Deg_90}},
AngularPoint{EvRadians{-Deg_69}, AzRadians{-Deg_90}},
AngularPoint{EvRadians{-Deg_69}, AzRadians{ Deg_90}},
AngularPoint{EvRadians{ 0.0f}, AzRadians{-Deg_69}},
AngularPoint{EvRadians{ 0.0f}, AzRadians{-Deg111}},
AngularPoint{EvRadians{ 0.0f}, AzRadians{ Deg_69}},
AngularPoint{EvRadians{ 0.0f}, AzRadians{ Deg111}},
AngularPoint{EvRadians{ Deg_21}, AzRadians{ 0.0f}},
AngularPoint{EvRadians{ Deg_21}, AzRadians{ Deg180}},
AngularPoint{EvRadians{-Deg_21}, AzRadians{ 0.0f}},
AngularPoint{EvRadians{-Deg_21}, AzRadians{ Deg180}},
AngularPoint{EvRadians{ Deg_35}, AzRadians{-Deg_45}},
AngularPoint{EvRadians{ Deg_35}, AzRadians{-Deg135}},
AngularPoint{EvRadians{ Deg_35}, AzRadians{ Deg_45}},
AngularPoint{EvRadians{ Deg_35}, AzRadians{ Deg135}},
AngularPoint{EvRadians{-Deg_35}, AzRadians{-Deg_45}},
AngularPoint{EvRadians{-Deg_35}, AzRadians{-Deg135}},
AngularPoint{EvRadians{-Deg_35}, AzRadians{ Deg_45}},
AngularPoint{EvRadians{-Deg_35}, AzRadians{ Deg135}},
};
static constexpr std::array AmbiMatrix1O{
ChannelCoeffs{1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f},
ChannelCoeffs{1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f},
ChannelCoeffs{1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f},
ChannelCoeffs{1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f},
ChannelCoeffs{1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f},
ChannelCoeffs{1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f},
ChannelCoeffs{1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f},
ChannelCoeffs{1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f},
};
static constexpr std::array AmbiMatrix2O{
ChannelCoeffs{8.333333333e-02f, 0.000000000e+00f, -7.588274978e-02f, 1.227808683e-01f, 0.000000000e+00f, 0.000000000e+00f, -1.591525047e-02f, -1.443375673e-01f, 1.167715449e-01f},
ChannelCoeffs{8.333333333e-02f, -1.227808683e-01f, 0.000000000e+00f, 7.588274978e-02f, -1.443375673e-01f, 0.000000000e+00f, -9.316949906e-02f, 0.000000000e+00f, -7.216878365e-02f},
ChannelCoeffs{8.333333333e-02f, -7.588274978e-02f, 1.227808683e-01f, 0.000000000e+00f, 0.000000000e+00f, -1.443375673e-01f, 1.090847495e-01f, 0.000000000e+00f, -4.460276122e-02f},
ChannelCoeffs{8.333333333e-02f, 0.000000000e+00f, 7.588274978e-02f, 1.227808683e-01f, 0.000000000e+00f, 0.000000000e+00f, -1.591525047e-02f, 1.443375673e-01f, 1.167715449e-01f},
ChannelCoeffs{8.333333333e-02f, -1.227808683e-01f, 0.000000000e+00f, -7.588274978e-02f, 1.443375673e-01f, 0.000000000e+00f, -9.316949906e-02f, 0.000000000e+00f, -7.216878365e-02f},
ChannelCoeffs{8.333333333e-02f, 7.588274978e-02f, -1.227808683e-01f, 0.000000000e+00f, 0.000000000e+00f, -1.443375673e-01f, 1.090847495e-01f, 0.000000000e+00f, -4.460276122e-02f},
ChannelCoeffs{8.333333333e-02f, 0.000000000e+00f, -7.588274978e-02f, -1.227808683e-01f, 0.000000000e+00f, 0.000000000e+00f, -1.591525047e-02f, 1.443375673e-01f, 1.167715449e-01f},
ChannelCoeffs{8.333333333e-02f, 1.227808683e-01f, 0.000000000e+00f, -7.588274978e-02f, -1.443375673e-01f, 0.000000000e+00f, -9.316949906e-02f, 0.000000000e+00f, -7.216878365e-02f},
ChannelCoeffs{8.333333333e-02f, 7.588274978e-02f, 1.227808683e-01f, 0.000000000e+00f, 0.000000000e+00f, 1.443375673e-01f, 1.090847495e-01f, 0.000000000e+00f, -4.460276122e-02f},
ChannelCoeffs{8.333333333e-02f, 0.000000000e+00f, 7.588274978e-02f, -1.227808683e-01f, 0.000000000e+00f, 0.000000000e+00f, -1.591525047e-02f, -1.443375673e-01f, 1.167715449e-01f},
ChannelCoeffs{8.333333333e-02f, 1.227808683e-01f, 0.000000000e+00f, 7.588274978e-02f, 1.443375673e-01f, 0.000000000e+00f, -9.316949906e-02f, 0.000000000e+00f, -7.216878365e-02f},
ChannelCoeffs{8.333333333e-02f, -7.588274978e-02f, -1.227808683e-01f, 0.000000000e+00f, 0.000000000e+00f, 1.443375673e-01f, 1.090847495e-01f, 0.000000000e+00f, -4.460276122e-02f},
};
static constexpr std::array AmbiMatrix3O{
ChannelCoeffs{5.000000000e-02f, 3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, 6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f, -1.256118221e-01f, 0.000000000e+00f, 1.126112056e-01f, 7.944389175e-02f, 0.000000000e+00f, 2.421151497e-02f, 0.000000000e+00f},
ChannelCoeffs{5.000000000e-02f, -3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f, 1.256118221e-01f, 0.000000000e+00f, -1.126112056e-01f, 7.944389175e-02f, 0.000000000e+00f, 2.421151497e-02f, 0.000000000e+00f},
ChannelCoeffs{5.000000000e-02f, 3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f, -1.256118221e-01f, 0.000000000e+00f, 1.126112056e-01f, -7.944389175e-02f, 0.000000000e+00f, -2.421151497e-02f, 0.000000000e+00f},
ChannelCoeffs{5.000000000e-02f, -3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, 6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f, 1.256118221e-01f, 0.000000000e+00f, -1.126112056e-01f, -7.944389175e-02f, 0.000000000e+00f, -2.421151497e-02f, 0.000000000e+00f},
ChannelCoeffs{5.000000000e-02f, 8.090169944e-02f, 0.000000000e+00f, 3.090169944e-02f, 6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f, -7.763237543e-02f, 0.000000000e+00f, -2.950836627e-02f, 0.000000000e+00f, -1.497759251e-01f, 0.000000000e+00f, -7.763237543e-02f},
ChannelCoeffs{5.000000000e-02f, 8.090169944e-02f, 0.000000000e+00f, -3.090169944e-02f, -6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f, -7.763237543e-02f, 0.000000000e+00f, -2.950836627e-02f, 0.000000000e+00f, 1.497759251e-01f, 0.000000000e+00f, 7.763237543e-02f},
ChannelCoeffs{5.000000000e-02f, -8.090169944e-02f, 0.000000000e+00f, 3.090169944e-02f, -6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f, 7.763237543e-02f, 0.000000000e+00f, 2.950836627e-02f, 0.000000000e+00f, -1.497759251e-01f, 0.000000000e+00f, -7.763237543e-02f},
ChannelCoeffs{5.000000000e-02f, -8.090169944e-02f, 0.000000000e+00f, -3.090169944e-02f, 6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f, 7.763237543e-02f, 0.000000000e+00f, 2.950836627e-02f, 0.000000000e+00f, 1.497759251e-01f, 0.000000000e+00f, 7.763237543e-02f},
ChannelCoeffs{5.000000000e-02f, 0.000000000e+00f, 3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, 6.454972244e-02f, 8.449668365e-02f, 0.000000000e+00f, 0.000000000e+00f, 0.000000000e+00f, 3.034486645e-02f, -6.779013272e-02f, 1.659481923e-01f, 4.797944664e-02f},
ChannelCoeffs{5.000000000e-02f, 0.000000000e+00f, 3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, -6.454972244e-02f, 8.449668365e-02f, 0.000000000e+00f, 0.000000000e+00f, 0.000000000e+00f, 3.034486645e-02f, 6.779013272e-02f, 1.659481923e-01f, -4.797944664e-02f},
ChannelCoeffs{5.000000000e-02f, 0.000000000e+00f, -3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, -6.454972244e-02f, 8.449668365e-02f, 0.000000000e+00f, 0.000000000e+00f, 0.000000000e+00f, -3.034486645e-02f, -6.779013272e-02f, -1.659481923e-01f, 4.797944664e-02f},
ChannelCoeffs{5.000000000e-02f, 0.000000000e+00f, -3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, 6.454972244e-02f, 8.449668365e-02f, 0.000000000e+00f, 0.000000000e+00f, 0.000000000e+00f, -3.034486645e-02f, 6.779013272e-02f, -1.659481923e-01f, -4.797944664e-02f},
ChannelCoeffs{5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, 6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f, 1.016220987e-01f, 6.338656910e-02f, -1.092600649e-02f, -7.364853795e-02f, 1.011266756e-01f, -7.086833869e-02f, -1.482646439e-02f},
ChannelCoeffs{5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, -6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f, 1.016220987e-01f, -6.338656910e-02f, -1.092600649e-02f, -7.364853795e-02f, -1.011266756e-01f, -7.086833869e-02f, 1.482646439e-02f},
ChannelCoeffs{5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, -6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f, -1.016220987e-01f, -6.338656910e-02f, 1.092600649e-02f, -7.364853795e-02f, 1.011266756e-01f, -7.086833869e-02f, -1.482646439e-02f},
ChannelCoeffs{5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, 6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f, -1.016220987e-01f, 6.338656910e-02f, 1.092600649e-02f, -7.364853795e-02f, -1.011266756e-01f, -7.086833869e-02f, 1.482646439e-02f},
ChannelCoeffs{5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, 6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f, 1.016220987e-01f, -6.338656910e-02f, -1.092600649e-02f, 7.364853795e-02f, 1.011266756e-01f, 7.086833869e-02f, -1.482646439e-02f},
ChannelCoeffs{5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, -6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f, 1.016220987e-01f, 6.338656910e-02f, -1.092600649e-02f, 7.364853795e-02f, -1.011266756e-01f, 7.086833869e-02f, 1.482646439e-02f},
ChannelCoeffs{5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, -6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f, -1.016220987e-01f, 6.338656910e-02f, 1.092600649e-02f, 7.364853795e-02f, 1.011266756e-01f, 7.086833869e-02f, -1.482646439e-02f},
ChannelCoeffs{5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, 6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f, -1.016220987e-01f, -6.338656910e-02f, 1.092600649e-02f, 7.364853795e-02f, -1.011266756e-01f, 7.086833869e-02f, 1.482646439e-02f},
};
static constexpr std::array<float,MaxAmbiOrder+1> AmbiOrderHFGain1O{
/*ENRGY*/ 2.000000000e+00f, 1.154700538e+00f
};
static constexpr std::array<float,MaxAmbiOrder+1> AmbiOrderHFGain2O{
/*ENRGY*/ 1.825741858e+00f, 1.414213562e+00f, 7.302967433e-01f
/*AMP 1.000000000e+00f, 7.745966692e-01f, 4.000000000e-01f*/
/*RMS 9.128709292e-01f, 7.071067812e-01f, 3.651483717e-01f*/
};
static constexpr std::array<float,MaxAmbiOrder+1> AmbiOrderHFGain3O{
/*ENRGY 1.865086714e+00f, 1.606093894e+00f, 1.142055301e+00f, 5.683795528e-01f*/
/*AMP*/ 1.000000000e+00f, 8.611363116e-01f, 6.123336207e-01f, 3.047469850e-01f
/*RMS 8.340921354e-01f, 7.182670250e-01f, 5.107426573e-01f, 2.541870634e-01f*/
};
static_assert(AmbiPoints1O.size() == AmbiMatrix1O.size(), "First-Order Ambisonic HRTF mismatch");
static_assert(AmbiPoints2O.size() == AmbiMatrix2O.size(), "Second-Order Ambisonic HRTF mismatch");
static_assert(AmbiPoints3O.size() == AmbiMatrix3O.size(), "Third-Order Ambisonic HRTF mismatch");
/* A 700hz crossover frequency provides tighter sound imaging at the sweet
* spot with ambisonic decoding, as the distance between the ears is closer
* to half this frequency wavelength, which is the optimal point where the
* response should change between optimizing phase vs volume. Normally this
* tighter imaging is at the cost of a smaller sweet spot, but since the
* listener is fixed in the center of the HRTF responses for the decoder,
* we don't have to worry about ever being out of the sweet spot.
*
* A better option here may be to have the head radius as part of the HRTF
* data set and calculate the optimal crossover frequency from that.
*/
device->mXOverFreq = 700.0f;
/* Don't bother with HOA when using full HRTF rendering. Nothing needs it,
* and it eases the CPU/memory load.
*/
device->mRenderMode = RenderMode::Hrtf;
uint ambi_order{1};
if(auto modeopt = device->configValue<std::string>({}, "hrtf-mode"))
{
struct HrtfModeEntry {
std::string_view name;
RenderMode mode;
uint order;
};
constexpr std::array hrtf_modes{
HrtfModeEntry{"full"sv, RenderMode::Hrtf, 1},
HrtfModeEntry{"ambi1"sv, RenderMode::Normal, 1},
HrtfModeEntry{"ambi2"sv, RenderMode::Normal, 2},
HrtfModeEntry{"ambi3"sv, RenderMode::Normal, 3},
};
std::string_view mode{*modeopt};
if(al::case_compare(mode, "basic"sv) == 0)
{
ERR("HRTF mode \"{}\" deprecated, substituting \"{}\"", *modeopt, "ambi2");
mode = "ambi2";
}
auto match_entry = [mode](const HrtfModeEntry &entry) -> bool
{ return al::case_compare(mode, entry.name) == 0; };
auto iter = std::find_if(hrtf_modes.begin(), hrtf_modes.end(), match_entry);
if(iter == hrtf_modes.end())
ERR("Unexpected hrtf-mode: {}", *modeopt);
else
{
device->mRenderMode = iter->mode;
ambi_order = iter->order;
}
}
TRACE("{}{} order {}HRTF rendering enabled, using \"{}\"", ambi_order,
GetCounterSuffix(ambi_order), (device->mRenderMode == RenderMode::Hrtf) ? "+ Full " : "",
device->mHrtfName);
bool perHrirMin{false};
auto AmbiPoints = al::span{AmbiPoints1O}.subspan(0);
auto AmbiMatrix = al::span{AmbiMatrix1O}.subspan(0);
auto AmbiOrderHFGain = al::span{AmbiOrderHFGain1O};
if(ambi_order >= 3)
{
perHrirMin = true;
AmbiPoints = AmbiPoints3O;
AmbiMatrix = AmbiMatrix3O;
AmbiOrderHFGain = AmbiOrderHFGain3O;
}
else if(ambi_order == 2)
{
AmbiPoints = AmbiPoints2O;
AmbiMatrix = AmbiMatrix2O;
AmbiOrderHFGain = AmbiOrderHFGain2O;
}
device->mAmbiOrder = ambi_order;
device->m2DMixing = false;
const size_t count{AmbiChannelsFromOrder(ambi_order)};
const auto acnmap = al::span{AmbiIndex::FromACN}.first(count);
std::transform(acnmap.begin(), acnmap.end(), device->Dry.AmbiMap.begin(),
[](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; });
AllocChannels(device, count, device->channelsFromFmt());
HrtfStore *Hrtf{device->mHrtf.get()};
auto hrtfstate = DirectHrtfState::Create(count);
hrtfstate->build(Hrtf, device->mIrSize, perHrirMin, AmbiPoints, AmbiMatrix, device->mXOverFreq,
AmbiOrderHFGain);
device->mHrtfState = std::move(hrtfstate);
InitNearFieldCtrl(device, Hrtf->mFields[0].distance, ambi_order, true);
}
void InitUhjPanning(al::Device *device)
{
/* UHJ is always 2D first-order. */
static constexpr size_t count{Ambi2DChannelsFromOrder(1)};
device->mAmbiOrder = 1;
device->m2DMixing = true;
const auto acnmap = al::span{AmbiIndex::FromFuMa2D}.first<count>();
std::transform(acnmap.cbegin(), acnmap.cend(), device->Dry.AmbiMap.begin(),
[](const uint8_t &acn) noexcept -> BFChannelConfig
{ return BFChannelConfig{1.0f/AmbiScale::FromUHJ[acn], acn}; });
AllocChannels(device, count, device->channelsFromFmt());
/* TODO: Should this default to something else? This is simply a regular
* (first-order) B-Format mixing which just happens to be UHJ-encoded. As I
* understand it, a proper first-order B-Format signal essentially has an
* infinite control distance, which we can't really do. However, from what
* I've read, 2 meters or so should be sufficient as the near-field
* reference becomes inconsequential beyond that.
*/
const auto spkr_dist = ConfigValueFloat({}, "uhj"sv, "distance-ref"sv).value_or(2.0f);
InitNearFieldCtrl(device, spkr_dist, device->mAmbiOrder, !device->m2DMixing);
}
} // namespace
void aluInitRenderer(al::Device *device, int hrtf_id, std::optional<StereoEncoding> stereomode)
{
/* Hold the HRTF the device last used, in case it's used again. */
HrtfStorePtr old_hrtf{std::move(device->mHrtf)};
device->mHrtfState = nullptr;
device->mHrtf = nullptr;
device->mIrSize = 0;
device->mHrtfName.clear();
device->mXOverFreq = 400.0f;
device->m2DMixing = false;
device->mRenderMode = RenderMode::Normal;
if(device->FmtChans != DevFmtStereo)
{
old_hrtf = nullptr;
if(stereomode && *stereomode == StereoEncoding::Hrtf)
device->mHrtfStatus = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT;
const char *layout{nullptr};
switch(device->FmtChans)
{
case DevFmtQuad: layout = "quad"; break;
case DevFmtX51: layout = "surround51"; break;
case DevFmtX61: layout = "surround61"; break;
case DevFmtX71: layout = "surround71"; break;
case DevFmtX714: layout = "surround714"; break;
case DevFmtX7144: layout = "surround7144"; break;
case DevFmtX3D71: layout = "surround3d71"; break;
/* Mono, Stereo, and Ambisonics output don't use custom decoders. */
case DevFmtMono:
case DevFmtStereo:
case DevFmtAmbi3D:
break;
}
std::unique_ptr<DecoderConfig<DualBand,MaxOutputChannels>> decoder_store;
DecoderView decoder{};
std::array<float,MaxOutputChannels> speakerdists{};
auto load_config = [device,&decoder_store,&decoder,&speakerdists](const char *config)
{
AmbDecConf conf{};
if(auto err = conf.load(config))
{
ERR("Failed to load layout file {}", config);
ERR(" {}", *err);
return false;
}
if(conf.Speakers.size() > MaxOutputChannels)
{
ERR("Unsupported decoder speaker count {} (max {})", conf.Speakers.size(),
MaxOutputChannels);
return false;
}
if(conf.ChanMask > Ambi3OrderMask)
{
ERR("Unsupported decoder channel mask {:#x} (max {:#x})", conf.ChanMask,
Ambi3OrderMask);
return false;
}
TRACE("Using {} decoder: \"{}\"", DevFmtChannelsString(device->FmtChans),
conf.Description);
device->mXOverFreq = std::clamp(conf.XOverFreq, 100.0f, 1000.0f);
decoder_store = std::make_unique<DecoderConfig<DualBand,MaxOutputChannels>>();
decoder = MakeDecoderView(device, &conf, *decoder_store);
const auto confspeakers = al::span{std::as_const(conf.Speakers)}
.first(decoder.mChannels.size());
std::transform(confspeakers.cbegin(), confspeakers.cend(), speakerdists.begin(),
std::mem_fn(&AmbDecConf::SpeakerConf::Distance));
return true;
};
bool usingCustom{false};
if(layout)
{
if(auto decopt = device->configValue<std::string>("decoder", layout))
usingCustom = load_config(decopt->c_str());
}
if(!usingCustom && device->FmtChans != DevFmtAmbi3D)
TRACE("Using built-in {} decoder", DevFmtChannelsString(device->FmtChans));
/* Enable the stablizer only for formats that have front-left, front-
* right, and front-center outputs.
*/
const bool stablize{device->RealOut.ChannelIndex[FrontCenter] != InvalidChannelIndex
&& device->RealOut.ChannelIndex[FrontLeft] != InvalidChannelIndex
&& device->RealOut.ChannelIndex[FrontRight] != InvalidChannelIndex
&& device->getConfigValueBool({}, "front-stablizer", false)};
const bool hqdec{device->getConfigValueBool("decoder", "hq-mode", true)};
InitPanning(device, hqdec, stablize, decoder);
if(decoder)
{
float accum_dist{0.0f}, spkr_count{0.0f};
for(auto dist : speakerdists)
{
if(dist > 0.0f)
{
accum_dist += dist;
spkr_count += 1.0f;
}
}
const float avg_dist{(accum_dist > 0.0f && spkr_count > 0) ? accum_dist/spkr_count :
device->configValue<float>("decoder", "speaker-dist").value_or(1.0f)};
InitNearFieldCtrl(device, avg_dist, decoder.mOrder, decoder.mIs3D);
if(spkr_count > 0)
InitDistanceComp(device, decoder.mChannels, speakerdists);
}
if(auto *ambidec{device->AmbiDecoder.get()})
{
device->PostProcess = ambidec->hasStablizer() ? &al::Device::ProcessAmbiDecStablized
: &al::Device::ProcessAmbiDec;
}
return;
}
/* If HRTF is explicitly requested, or if there's no explicit request and
* the device is headphones, try to enable it.
*/
if(stereomode.value_or(StereoEncoding::Default) == StereoEncoding::Hrtf
|| (!stereomode && device->Flags.test(DirectEar)))
{
if(device->mHrtfList.empty())
device->enumerateHrtfs();
if(hrtf_id >= 0 && static_cast<uint>(hrtf_id) < device->mHrtfList.size())
{
const std::string_view hrtfname{device->mHrtfList[static_cast<uint>(hrtf_id)]};
if(HrtfStorePtr hrtf{GetLoadedHrtf(hrtfname, device->mSampleRate)})
{
device->mHrtf = std::move(hrtf);
device->mHrtfName = hrtfname;
}
}
if(!device->mHrtf)
{
for(const std::string_view hrtfname : device->mHrtfList)
{
if(HrtfStorePtr hrtf{GetLoadedHrtf(hrtfname, device->mSampleRate)})
{
device->mHrtf = std::move(hrtf);
device->mHrtfName = hrtfname;
break;
}
}
}
if(device->mHrtf)
{
old_hrtf = nullptr;
HrtfStore *hrtf{device->mHrtf.get()};
device->mIrSize = hrtf->mIrSize;
if(auto hrtfsizeopt = device->configValue<uint>({}, "hrtf-size"))
{
if(*hrtfsizeopt > 0 && *hrtfsizeopt < device->mIrSize)
device->mIrSize = std::max(*hrtfsizeopt, MinIrLength);
}
InitHrtfPanning(device);
device->PostProcess = &al::Device::ProcessHrtf;
device->mHrtfStatus = ALC_HRTF_ENABLED_SOFT;
return;
}
}
old_hrtf = nullptr;
if(stereomode.value_or(StereoEncoding::Default) == StereoEncoding::Uhj)
{
auto ftype = std::string_view{};
switch(UhjEncodeQuality)
{
case UhjQualityType::IIR:
device->mUhjEncoder = std::make_unique<UhjEncoderIIR>();
ftype = "IIR"sv;
break;
case UhjQualityType::FIR256:
device->mUhjEncoder = std::make_unique<UhjEncoder<UhjLength256>>();
ftype = "FIR-256"sv;
break;
case UhjQualityType::FIR512:
device->mUhjEncoder = std::make_unique<UhjEncoder<UhjLength512>>();
ftype = "FIR-512"sv;
break;
}
assert(device->mUhjEncoder != nullptr);
TRACE("UHJ enabled ({} encoder)", ftype);
InitUhjPanning(device);
device->PostProcess = &al::Device::ProcessUhj;
return;
}
device->mRenderMode = RenderMode::Pairwise;
if(device->Type != DeviceType::Loopback)
{
if(auto cflevopt = device->configValue<int>({}, "cf_level"))
{
if(*cflevopt > 0 && *cflevopt <= 6)
{
auto bs2b = std::make_unique<Bs2b::bs2b>();
bs2b->set_params(*cflevopt, static_cast<int>(device->mSampleRate));
device->Bs2b = std::move(bs2b);
TRACE("BS2B enabled");
InitPanning(device);
device->PostProcess = &al::Device::ProcessBs2b;
return;
}
}
}
TRACE("Stereo rendering");
InitPanning(device);
device->PostProcess = &al::Device::ProcessAmbiDec;
}
void aluInitEffectPanning(EffectSlot *slot, ALCcontext *context)
{
DeviceBase *device{context->mDevice};
const size_t count{AmbiChannelsFromOrder(device->mAmbiOrder)};
slot->mWetBuffer.resize(count);
const auto acnmap = al::span{AmbiIndex::FromACN}.first(count);
const auto iter = std::transform(acnmap.cbegin(), acnmap.cend(), slot->Wet.AmbiMap.begin(),
[](const uint8_t &acn) noexcept -> BFChannelConfig { return BFChannelConfig{1.0f, acn}; });
std::fill(iter, slot->Wet.AmbiMap.end(), BFChannelConfig{});
slot->Wet.Buffer = slot->mWetBuffer;
}