Torque3D/Engine/lib/openal-soft/alc/effects/reverb.cpp

1834 lines
69 KiB
C++

/**
* Ambisonic reverb engine for the OpenAL cross platform audio library
* Copyright (C) 2008-2017 by Chris Robinson and Christopher Fitzgerald.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <functional>
#include <numeric>
#include "alc/effects/base.h"
#include "alnumbers.h"
#include "alnumeric.h"
#include "alspan.h"
#include "core/ambidefs.h"
#include "core/bufferline.h"
#include "core/context.h"
#include "core/cubic_tables.h"
#include "core/device.h"
#include "core/effects/base.h"
#include "core/effectslot.h"
#include "core/filters/biquad.h"
#include "core/filters/splitter.h"
#include "core/mixer.h"
#include "core/mixer/defs.h"
#include "intrusive_ptr.h"
#include "opthelpers.h"
#include "vector.h"
struct BufferStorage;
namespace {
using uint = unsigned int;
constexpr float MaxModulationTime{4.0f};
constexpr float DefaultModulationTime{0.25f};
#define MOD_FRACBITS 24
#define MOD_FRACONE (1<<MOD_FRACBITS)
#define MOD_FRACMASK (MOD_FRACONE-1)
/* Max samples per process iteration. Used to limit the size needed for
* temporary buffers. Must be a multiple of 4 for SIMD alignment.
*/
constexpr size_t MAX_UPDATE_SAMPLES{256};
/* The number of spatialized lines or channels to process. Four channels allows
* for a 3D A-Format response. NOTE: This can't be changed without taking care
* of the conversion matrices, and a few places where the length arrays are
* assumed to have 4 elements.
*/
constexpr size_t NUM_LINES{4u};
/* This coefficient is used to define the maximum frequency range controlled by
* the modulation depth. The current value of 0.05 will allow it to swing from
* 0.95x to 1.05x. This value must be below 1. At 1 it will cause the sampler
* to stall on the downswing, and above 1 it will cause it to sample backwards.
* The value 0.05 seems be nearest to Creative hardware behavior.
*/
constexpr float MODULATION_DEPTH_COEFF{0.05f};
/* The B-Format to (W-normalized) A-Format conversion matrix. This produces a
* tetrahedral array of discrete signals (boosted by a factor of sqrt(3), to
* reduce the error introduced in the conversion).
*/
alignas(16) constexpr std::array<std::array<float,NUM_LINES>,NUM_LINES> B2A{{
/* W Y Z X */
{{ 0.5f, 0.5f, 0.5f, 0.5f }}, /* A0 */
{{ 0.5f, -0.5f, -0.5f, 0.5f }}, /* A1 */
{{ 0.5f, 0.5f, -0.5f, -0.5f }}, /* A2 */
{{ 0.5f, -0.5f, 0.5f, -0.5f }} /* A3 */
}};
/* Converts (W-normalized) A-Format to B-Format for early reflections (scaled
* by 1/sqrt(3) to compensate for the boost in the B2A matrix).
*/
alignas(16) constexpr std::array<std::array<float,NUM_LINES>,NUM_LINES> EarlyA2B{{
/* A0 A1 A2 A3 */
{{ 0.5f, 0.5f, 0.5f, 0.5f }}, /* W */
{{ 0.5f, -0.5f, 0.5f, -0.5f }}, /* Y */
{{ 0.5f, -0.5f, -0.5f, 0.5f }}, /* Z */
{{ 0.5f, 0.5f, -0.5f, -0.5f }} /* X */
}};
/* Converts (W-normalized) A-Format to B-Format for late reverb (scaled
* by 1/sqrt(3) to compensate for the boost in the B2A matrix). The response
* is rotated around Z (ambisonic X) so that the front lines are placed
* horizontally in front, and the rear lines are placed vertically in back.
*/
constexpr auto InvSqrt2 = static_cast<float>(1.0/al::numbers::sqrt2);
alignas(16) constexpr std::array<std::array<float,NUM_LINES>,NUM_LINES> LateA2B{{
/* A0 A1 A2 A3 */
{{ 0.5f, 0.5f, 0.5f, 0.5f }}, /* W */
{{ InvSqrt2, -InvSqrt2, 0.0f, 0.0f }}, /* Y */
{{ 0.0f, 0.0f, -InvSqrt2, InvSqrt2 }}, /* Z */
{{ 0.5f, 0.5f, -0.5f, -0.5f }} /* X */
}};
/* The all-pass and delay lines have a variable length dependent on the
* effect's density parameter, which helps alter the perceived environment
* size. The size-to-density conversion is a cubed scale:
*
* density = min(1.0, pow(size, 3.0) / DENSITY_SCALE);
*
* The line lengths scale linearly with room size, so the inverse density
* conversion is needed, taking the cube root of the re-scaled density to
* calculate the line length multiplier:
*
* length_mult = max(5.0, cbrt(density*DENSITY_SCALE));
*
* The density scale below will result in a max line multiplier of 50, for an
* effective size range of 5m to 50m.
*/
constexpr float DENSITY_SCALE{125000.0f};
/* All delay line lengths are specified in seconds.
*
* To approximate early reflections, we break them up into primary (those
* arriving from the same direction as the source) and secondary (those
* arriving from the opposite direction).
*
* The early taps decorrelate the 4-channel signal to approximate an average
* room response for the primary reflections after the initial early delay.
*
* Given an average room dimension (d_a) and the speed of sound (c) we can
* calculate the average reflection delay (r_a) regardless of listener and
* source positions as:
*
* r_a = d_a / c
* c = 343.3
*
* This can extended to finding the average difference (r_d) between the
* maximum (r_1) and minimum (r_0) reflection delays:
*
* r_0 = 2 / 3 r_a
* = r_a - r_d / 2
* = r_d
* r_1 = 4 / 3 r_a
* = r_a + r_d / 2
* = 2 r_d
* r_d = 2 / 3 r_a
* = r_1 - r_0
*
* As can be determined by integrating the 1D model with a source (s) and
* listener (l) positioned across the dimension of length (d_a):
*
* r_d = int_(l=0)^d_a (int_(s=0)^d_a |2 d_a - 2 (l + s)| ds) dl / c
*
* The initial taps (T_(i=0)^N) are then specified by taking a power series
* that ranges between r_0 and half of r_1 less r_0:
*
* R_i = 2^(i / (2 N - 1)) r_d
* = r_0 + (2^(i / (2 N - 1)) - 1) r_d
* = r_0 + T_i
* T_i = R_i - r_0
* = (2^(i / (2 N - 1)) - 1) r_d
*
* Assuming an average of 1m, we get the following taps:
*/
constexpr std::array<float,NUM_LINES> EARLY_TAP_LENGTHS{{
0.0000000e+0f, 2.0213520e-4f, 4.2531060e-4f, 6.7171600e-4f
}};
/* The early all-pass filter lengths are based on the early tap lengths:
*
* A_i = R_i / a
*
* Where a is the approximate maximum all-pass cycle limit (20).
*/
constexpr std::array<float,NUM_LINES> EARLY_ALLPASS_LENGTHS{{
9.7096800e-5f, 1.0720356e-4f, 1.1836234e-4f, 1.3068260e-4f
}};
/* The early delay lines are used to transform the primary reflections into
* the secondary reflections. The A-format is arranged in such a way that
* the channels/lines are spatially opposite:
*
* C_i is opposite C_(N-i-1)
*
* The delays of the two opposing reflections (R_i and O_i) from a source
* anywhere along a particular dimension always sum to twice its full delay:
*
* 2 r_a = R_i + O_i
*
* With that in mind we can determine the delay between the two reflections
* and thus specify our early line lengths (L_(i=0)^N) using:
*
* O_i = 2 r_a - R_(N-i-1)
* L_i = O_i - R_(N-i-1)
* = 2 (r_a - R_(N-i-1))
* = 2 (r_a - T_(N-i-1) - r_0)
* = 2 r_a (1 - (2 / 3) 2^((N - i - 1) / (2 N - 1)))
*
* Using an average dimension of 1m, we get:
*/
constexpr std::array<float,NUM_LINES> EARLY_LINE_LENGTHS{{
0.0000000e+0f, 4.9281100e-4f, 9.3916180e-4f, 1.3434322e-3f
}};
/* The late all-pass filter lengths are based on the late line lengths:
*
* A_i = (5 / 3) L_i / r_1
*/
constexpr std::array<float,NUM_LINES> LATE_ALLPASS_LENGTHS{{
1.6182800e-4f, 2.0389060e-4f, 2.8159360e-4f, 3.2365600e-4f
}};
/* The late lines are used to approximate the decaying cycle of recursive
* late reflections.
*
* Splitting the lines in half, we start with the shortest reflection paths
* (L_(i=0)^(N/2)):
*
* L_i = 2^(i / (N - 1)) r_d
*
* Then for the opposite (longest) reflection paths (L_(i=N/2)^N):
*
* L_i = 2 r_a - L_(i-N/2)
* = 2 r_a - 2^((i - N / 2) / (N - 1)) r_d
*
* For our 1m average room, we get:
*/
constexpr std::array<float,NUM_LINES> LATE_LINE_LENGTHS{{
1.9419362e-3f, 2.4466860e-3f, 3.3791220e-3f, 3.8838720e-3f
}};
using ReverbUpdateLine = std::array<float,MAX_UPDATE_SAMPLES>;
struct DelayLineI {
/* The delay lines use interleaved samples, with the lengths being powers
* of 2 to allow the use of bit-masking instead of a modulus for wrapping.
*/
al::span<float> mLine;
/* Given the allocated sample buffer, this function updates each delay line
* offset.
*/
void realizeLineOffset(al::span<float> sampleBuffer) noexcept
{ mLine = sampleBuffer; }
/* Calculate the length of a delay line and store its mask and offset. */
static
auto calcLineLength(const float length, const float frequency, const uint extra) -> size_t
{
/* All line lengths are powers of 2, calculated from their lengths in
* seconds, rounded up.
*/
uint samples{float2uint(std::ceil(length*frequency))};
samples = NextPowerOf2(samples + extra);
/* Return the sample count for accumulation. */
return samples*NUM_LINES;
}
};
struct DelayLineU {
al::span<float> mLine;
void realizeLineOffset(al::span<float> sampleBuffer) noexcept
{
assert(sampleBuffer.size() > 4 && !(sampleBuffer.size() & (sampleBuffer.size()-1)));
mLine = sampleBuffer;
}
static
auto calcLineLength(const float length, const float frequency, const uint extra) -> size_t
{
uint samples{float2uint(std::ceil(length*frequency))};
samples = NextPowerOf2(samples + extra);
return samples*NUM_LINES;
}
[[nodiscard]]
auto get(size_t chan) const noexcept
{
const size_t stride{mLine.size() / NUM_LINES};
return mLine.subspan(chan*stride, stride);
}
void write(size_t offset, const size_t c, al::span<const float> in) const noexcept
{
const size_t stride{mLine.size() / NUM_LINES};
const auto output = mLine.subspan(c*stride);
while(!in.empty())
{
offset &= stride-1;
const size_t td{std::min(stride - offset, in.size())};
std::copy_n(in.begin(), td, output.begin() + ptrdiff_t(offset));
offset += td;
in = in.subspan(td);
}
}
/* Writes the given input lines to the delay buffer, applying a geometric
* reflection. This effectively applies the matrix
*
* [ +1/2 -1/2 -1/2 -1/2 ]
* [ -1/2 +1/2 -1/2 -1/2 ]
* [ -1/2 -1/2 +1/2 -1/2 ]
* [ -1/2 -1/2 -1/2 +1/2 ]
*
* to the four input lines when writing to the delay buffer. The effect on
* the B-Format signal is negating W, applying a 180-degree phase shift and
* moving each response to its spatially opposite location.
*/
void writeReflected(size_t offset, const al::span<const ReverbUpdateLine,NUM_LINES> in,
const size_t count) const noexcept
{
const size_t stride{mLine.size() / NUM_LINES};
for(size_t i{0u};i < count;)
{
offset &= stride-1;
size_t td{std::min(stride - offset, count - i)};
do {
const std::array src{in[0][i], in[1][i], in[2][i], in[3][i]};
++i;
const std::array f{
(src[0] - src[1] - src[2] - src[3]) * 0.5f,
(src[1] - src[0] - src[2] - src[3]) * 0.5f,
(src[2] - src[0] - src[1] - src[3]) * 0.5f,
(src[3] - src[0] - src[1] - src[2] ) * 0.5f
};
mLine[0*stride + offset] = f[0];
mLine[1*stride + offset] = f[1];
mLine[2*stride + offset] = f[2];
mLine[3*stride + offset] = f[3];
++offset;
} while(--td);
}
}
};
struct VecAllpass {
DelayLineI Delay;
float Coeff{0.0f};
std::array<size_t,NUM_LINES> Offset{};
void process(const al::span<ReverbUpdateLine,NUM_LINES> samples, size_t offset,
const float xCoeff, const float yCoeff, const size_t todo) const noexcept;
};
struct Allpass4 {
DelayLineU Delay;
float Coeff{0.0f};
std::array<size_t,NUM_LINES> Offset{};
void process(const al::span<ReverbUpdateLine,NUM_LINES> samples, const size_t offset,
const size_t todo) const noexcept;
};
struct T60Filter {
/* Two filters are used to adjust the signal. One to control the low
* frequencies, and one to control the high frequencies.
*/
float MidGain{0.0f};
BiquadFilter HFFilter, LFFilter;
void calcCoeffs(const float length, const float lfDecayTime, const float mfDecayTime,
const float hfDecayTime, const float lf0norm, const float hf0norm);
/* Applies the two T60 damping filter sections. */
void process(const al::span<float> samples)
{ DualBiquad{HFFilter, LFFilter}.process(samples, samples); }
void clear() noexcept { HFFilter.clear(); LFFilter.clear(); }
};
struct EarlyReflections {
Allpass4 VecAp;
/* An echo line is used to complete the second half of the early
* reflections.
*/
DelayLineU Delay;
std::array<size_t,NUM_LINES> Offset{};
float Coeff{};
/* The gain for each output channel based on 3D panning. */
struct OutGains {
std::array<float,MaxAmbiChannels> Current{};
std::array<float,MaxAmbiChannels> Target{};
void clear() { Current.fill(0.0f); Target.fill(0.0); }
};
std::array<OutGains,NUM_LINES> Gains{};
void updateLines(const float density_mult, const float diffusion, const float decayTime,
const float frequency);
void clear()
{
std::for_each(Gains.begin(), Gains.end(), std::mem_fn(&OutGains::clear));
}
};
struct Modulation {
/* The vibrato time is tracked with an index over a (MOD_FRACONE)
* normalized range.
*/
uint Index{0u}, Step{1u};
/* The depth of frequency change, in samples. */
float Depth{0.0f};
std::array<uint,MAX_UPDATE_SAMPLES> ModDelays{};
void updateModulator(float modTime, float modDepth, float frequency);
auto calcDelays(size_t todo) -> al::span<const uint>;
void clear() noexcept
{
Index = 0u;
Step = 1u;
Depth = 0.0f;
}
};
struct LateReverb {
/* A recursive delay line is used fill in the reverb tail. */
DelayLineU Delay;
std::array<size_t,NUM_LINES> Offset{};
/* Attenuation to compensate for the modal density and decay rate of the
* late lines.
*/
float DensityGain{0.0f};
/* T60 decay filters are used to simulate absorption. */
std::array<T60Filter,NUM_LINES> T60;
Modulation Mod;
/* A Gerzon vector all-pass filter is used to simulate diffusion. */
VecAllpass VecAp;
/* The gain for each output channel based on 3D panning. */
struct OutGains {
std::array<float,MaxAmbiChannels> Current{};
std::array<float,MaxAmbiChannels> Target{};
void clear() { Current.fill(0.0f); Target.fill(0.0); }
};
std::array<OutGains,NUM_LINES> Gains{};
void updateLines(const float density_mult, const float diffusion, const float lfDecayTime,
const float mfDecayTime, const float hfDecayTime, const float lf0norm,
const float hf0norm, const float frequency);
void clear()
{
std::for_each(T60.begin(), T60.end(), std::mem_fn(&T60Filter::clear));
Mod.clear();
std::for_each(Gains.begin(), Gains.end(), std::mem_fn(&OutGains::clear));
}
};
struct ReverbPipeline {
/* Master effect filters */
struct FilterPair {
BiquadFilter Lp;
BiquadFilter Hp;
void clear() noexcept { Lp.clear(); Hp.clear(); }
};
std::array<FilterPair,NUM_LINES> mFilter;
/* Late reverb input delay line (early reflections feed this, and late
* reverb taps from it).
*/
DelayLineU mLateDelayIn;
/* Tap points for early reflection input delay. */
std::array<std::array<size_t,2>,NUM_LINES> mEarlyDelayTap{};
std::array<float,2> mEarlyDelayCoeff{};
/* Tap points for late reverb feed and delay. */
std::array<std::array<size_t,2>,NUM_LINES> mLateDelayTap{};
/* Coefficients for the all-pass and line scattering matrices. */
float mMixX{1.0f};
float mMixY{0.0f};
EarlyReflections mEarly;
LateReverb mLate;
std::array<std::array<BandSplitter,NUM_LINES>,2> mAmbiSplitter;
size_t mFadeSampleCount{1};
void updateDelayLine(const float gain, const float earlyDelay, const float lateDelay,
const float density_mult, const float frequency);
void update3DPanning(const al::span<const float,3> ReflectionsPan,
const al::span<const float,3> LateReverbPan, const float earlyGain, const float lateGain,
const bool doUpmix, const MixParams *mainMix);
void processEarly(const DelayLineU &main_delay, size_t offset, const size_t samplesToDo,
const al::span<ReverbUpdateLine,NUM_LINES> tempSamples,
const al::span<FloatBufferLine,NUM_LINES> outSamples);
void processLate(size_t offset, const size_t samplesToDo,
const al::span<ReverbUpdateLine,NUM_LINES> tempSamples,
const al::span<FloatBufferLine,NUM_LINES> outSamples);
void clear() noexcept
{
std::for_each(mFilter.begin(), mFilter.end(), std::mem_fn(&FilterPair::clear));
mEarlyDelayTap = {};
mEarlyDelayCoeff = {};
mLateDelayTap = {};
mEarly.clear();
mLate.clear();
auto clear_filters = [](const al::span<BandSplitter,NUM_LINES> filters)
{ std::for_each(filters.begin(), filters.end(), std::mem_fn(&BandSplitter::clear)); };
std::for_each(mAmbiSplitter.begin(), mAmbiSplitter.end(), clear_filters);
}
};
struct ReverbState final : public EffectState {
/* All delay lines are allocated as a single buffer to reduce memory
* fragmentation and management code.
*/
al::vector<float,16> mSampleBuffer;
struct Params {
/* Calculated parameters which indicate if cross-fading is needed after
* an update.
*/
float Density{1.0f};
float Diffusion{1.0f};
float DecayTime{1.49f};
float HFDecayTime{0.83f * 1.49f};
float LFDecayTime{1.0f * 1.49f};
float ModulationTime{0.25f};
float ModulationDepth{0.0f};
float HFReference{5000.0f};
float LFReference{250.0f};
};
Params mParams;
enum PipelineState : uint8_t {
DeviceClear,
StartFade,
Fading,
Cleanup,
Normal,
};
PipelineState mPipelineState{DeviceClear};
bool mCurrentPipeline{false};
/* Core delay line (early reflections tap from this). */
DelayLineU mMainDelay;
std::array<ReverbPipeline,2> mPipelines;
/* The current write offset for all delay lines. */
size_t mOffset{};
/* Temporary storage used when processing. */
alignas(16) FloatBufferLine mTempLine{};
alignas(16) std::array<ReverbUpdateLine,NUM_LINES> mTempSamples{};
alignas(16) std::array<FloatBufferLine,NUM_LINES> mEarlySamples{};
alignas(16) std::array<FloatBufferLine,NUM_LINES> mLateSamples{};
std::array<float,MaxAmbiOrder+1> mOrderScales{};
bool mUpmixOutput{false};
void MixOutPlain(ReverbPipeline &pipeline, const al::span<FloatBufferLine> samplesOut,
const size_t todo) const
{
/* When not upsampling, the panning gains convert to B-Format and pan
* at the same time.
*/
auto inBuffer = mEarlySamples.cbegin();
for(auto &gains : pipeline.mEarly.Gains)
{
MixSamples(al::span{*inBuffer++}.first(todo), samplesOut, gains.Current, gains.Target,
todo, 0);
}
inBuffer = mLateSamples.cbegin();
for(auto &gains : pipeline.mLate.Gains)
{
MixSamples(al::span{*inBuffer++}.first(todo), samplesOut, gains.Current, gains.Target,
todo, 0);
}
}
void MixOutAmbiUp(ReverbPipeline &pipeline, const al::span<FloatBufferLine> samplesOut,
const size_t todo)
{
auto DoMixRow = [](const al::span<float> OutBuffer, const al::span<const float,4> Gains,
const al::span<const FloatBufferLine,4> InSamples)
{
auto inBuffer = InSamples.cbegin();
std::fill(OutBuffer.begin(), OutBuffer.end(), 0.0f);
for(const float gain : Gains)
{
if(std::fabs(gain) > GainSilenceThreshold)
{
auto mix_sample = [gain](const float sample, const float in) noexcept -> float
{ return sample + in*gain; };
std::transform(OutBuffer.begin(), OutBuffer.end(), inBuffer->cbegin(),
OutBuffer.begin(), mix_sample);
}
++inBuffer;
}
};
/* When upsampling, the B-Format conversion needs to be done separately
* so the proper HF scaling can be applied to each B-Format channel.
* The panning gains then pan and upsample the B-Format channels.
*/
const auto tmpspan = al::span{mTempLine}.first(todo);
auto hfscale = float{mOrderScales[0]};
auto splitter = pipeline.mAmbiSplitter[0].begin();
auto a2bcoeffs = EarlyA2B.cbegin();
for(auto &gains : pipeline.mEarly.Gains)
{
DoMixRow(tmpspan, *(a2bcoeffs++), mEarlySamples);
/* Apply scaling to the B-Format's HF response to "upsample" it to
* higher-order output.
*/
(splitter++)->processHfScale(tmpspan, hfscale);
hfscale = mOrderScales[1];
MixSamples(tmpspan, samplesOut, gains.Current, gains.Target, todo, 0);
}
hfscale = mOrderScales[0];
splitter = pipeline.mAmbiSplitter[1].begin();
a2bcoeffs = LateA2B.cbegin();
for(auto &gains : pipeline.mLate.Gains)
{
DoMixRow(tmpspan, *(a2bcoeffs++), mLateSamples);
(splitter++)->processHfScale(tmpspan, hfscale);
hfscale = mOrderScales[1];
MixSamples(tmpspan, samplesOut, gains.Current, gains.Target, todo, 0);
}
}
void mixOut(ReverbPipeline &pipeline, const al::span<FloatBufferLine> samplesOut, const size_t todo)
{
if(mUpmixOutput)
MixOutAmbiUp(pipeline, samplesOut, todo);
else
MixOutPlain(pipeline, samplesOut, todo);
}
void allocLines(const float frequency);
void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override;
void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
const EffectTarget target) override;
void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
const al::span<FloatBufferLine> samplesOut) override;
};
/**************************************
* Device Update *
**************************************/
inline float CalcDelayLengthMult(float density)
{ return std::max(5.0f, std::cbrt(density*DENSITY_SCALE)); }
/* Calculates the delay line metrics and allocates the shared sample buffer
* for all lines given the sample rate (frequency).
*/
void ReverbState::allocLines(const float frequency)
{
/* Multiplier for the maximum density value, i.e. density=1, which is
* actually the least density...
*/
const float multiplier{CalcDelayLengthMult(1.0f)};
/* The modulator's line length is calculated from the maximum modulation
* time and depth coefficient, and halfed for the low-to-high frequency
* swing.
*/
static constexpr float max_mod_delay{MaxModulationTime*MODULATION_DEPTH_COEFF / 2.0f};
std::array<size_t,11> linelengths{};
size_t oidx{0};
size_t totalSamples{0u};
/* The main delay length includes the maximum early reflection delay and
* the largest early tap width. It must also be extended by the update size
* (BufferLineSize) for block processing.
*/
float length{ReverbMaxReflectionsDelay + EARLY_TAP_LENGTHS.back()*multiplier};
size_t count{mMainDelay.calcLineLength(length, frequency, BufferLineSize)};
linelengths[oidx++] = count;
totalSamples += count;
for(auto &pipeline : mPipelines)
{
static constexpr float LateDiffAvg{(LATE_LINE_LENGTHS.back()-LATE_LINE_LENGTHS.front()) /
float{NUM_LINES}};
length = ReverbMaxLateReverbDelay + LateDiffAvg*multiplier;
count = pipeline.mLateDelayIn.calcLineLength(length, frequency, BufferLineSize);
linelengths[oidx++] = count;
totalSamples += count;
/* The early vector all-pass line. */
length = EARLY_ALLPASS_LENGTHS.back() * multiplier;
count = pipeline.mEarly.VecAp.Delay.calcLineLength(length, frequency, 0);
linelengths[oidx++] = count;
totalSamples += count;
/* The early reflection line. */
length = EARLY_LINE_LENGTHS.back() * multiplier;
count = pipeline.mEarly.Delay.calcLineLength(length, frequency, MAX_UPDATE_SAMPLES);
linelengths[oidx++] = count;
totalSamples += count;
/* The late vector all-pass line. */
length = LATE_ALLPASS_LENGTHS.back() * multiplier;
count = pipeline.mLate.VecAp.Delay.calcLineLength(length, frequency, 0);
linelengths[oidx++] = count;
totalSamples += count;
/* The late delay lines are calculated from the largest maximum density
* line length, and the maximum modulation delay. Four additional
* samples are needed for resampling the modulator delay.
*/
length = LATE_LINE_LENGTHS.back()*multiplier + max_mod_delay;
count = pipeline.mLate.Delay.calcLineLength(length, frequency, 4);
linelengths[oidx++] = count;
totalSamples += count;
}
assert(oidx == linelengths.size());
if(totalSamples != mSampleBuffer.size())
decltype(mSampleBuffer)(totalSamples).swap(mSampleBuffer);
/* Clear the sample buffer. */
std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), 0.0f);
/* Update all delays to reflect the new sample buffer. */
auto bufferspan = al::span{mSampleBuffer};
oidx = 0;
mMainDelay.realizeLineOffset(bufferspan.first(linelengths[oidx]));
bufferspan = bufferspan.subspan(linelengths[oidx++]);
for(auto &pipeline : mPipelines)
{
pipeline.mLateDelayIn.realizeLineOffset(bufferspan.first(linelengths[oidx]));
bufferspan = bufferspan.subspan(linelengths[oidx++]);
pipeline.mEarly.VecAp.Delay.realizeLineOffset(bufferspan.first(linelengths[oidx]));
bufferspan = bufferspan.subspan(linelengths[oidx++]);
pipeline.mEarly.Delay.realizeLineOffset(bufferspan.first(linelengths[oidx]));
bufferspan = bufferspan.subspan(linelengths[oidx++]);
pipeline.mLate.VecAp.Delay.realizeLineOffset(bufferspan.first(linelengths[oidx]));
bufferspan = bufferspan.subspan(linelengths[oidx++]);
pipeline.mLate.Delay.realizeLineOffset(bufferspan.first(linelengths[oidx]));
bufferspan = bufferspan.subspan(linelengths[oidx++]);
}
assert(oidx == linelengths.size());
}
void ReverbState::deviceUpdate(const DeviceBase *device, const BufferStorage*)
{
const auto frequency = static_cast<float>(device->mSampleRate);
/* Allocate the delay lines. */
allocLines(frequency);
std::for_each(mPipelines.begin(), mPipelines.end(), std::mem_fn(&ReverbPipeline::clear));
mPipelineState = DeviceClear;
/* Reset offset base. */
mOffset = 0;
if(device->mAmbiOrder > 1)
{
mUpmixOutput = true;
mOrderScales = AmbiScale::GetHFOrderScales(1, device->mAmbiOrder, device->m2DMixing);
}
else
{
mUpmixOutput = false;
mOrderScales.fill(1.0f);
}
auto splitter = BandSplitter{device->mXOverFreq / frequency};
auto set_splitters = [&splitter](ReverbPipeline &pipeline)
{
std::fill(pipeline.mAmbiSplitter[0].begin(), pipeline.mAmbiSplitter[0].end(), splitter);
std::fill(pipeline.mAmbiSplitter[1].begin(), pipeline.mAmbiSplitter[1].end(), splitter);
};
std::for_each(mPipelines.begin(), mPipelines.end(), set_splitters);
}
/**************************************
* Effect Update *
**************************************/
/* Calculate a decay coefficient given the length of each cycle and the time
* until the decay reaches -60 dB.
*/
inline float CalcDecayCoeff(const float length, const float decayTime)
{ return std::pow(ReverbDecayGain, length/decayTime); }
/* Calculate a decay length from a coefficient and the time until the decay
* reaches -60 dB.
*/
inline float CalcDecayLength(const float coeff, const float decayTime)
{
constexpr float log10_decaygain{-3.0f/*std::log10(ReverbDecayGain)*/};
return std::log10(coeff) * decayTime / log10_decaygain;
}
/* Calculate an attenuation to be applied to the input of any echo models to
* compensate for modal density and decay time.
*/
inline float CalcDensityGain(const float a)
{
/* The energy of a signal can be obtained by finding the area under the
* squared signal. This takes the form of Sum(x_n^2), where x is the
* amplitude for the sample n.
*
* Decaying feedback matches exponential decay of the form Sum(a^n),
* where a is the attenuation coefficient, and n is the sample. The area
* under this decay curve can be calculated as: 1 / (1 - a).
*
* Modifying the above equation to find the area under the squared curve
* (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
* calculated by inverting the square root of this approximation,
* yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
*/
return std::sqrt(1.0f - a*a);
}
/* Calculate the scattering matrix coefficients given a diffusion factor. */
inline void CalcMatrixCoeffs(const float diffusion, float *x, float *y)
{
/* The matrix is of order 4, so n is sqrt(4 - 1). */
constexpr float n{al::numbers::sqrt3_v<float>};
const float t{diffusion * std::atan(n)};
/* Calculate the first mixing matrix coefficient. */
*x = std::cos(t);
/* Calculate the second mixing matrix coefficient. */
*y = std::sin(t) / n;
}
/* Calculate the limited HF ratio for use with the late reverb low-pass
* filters.
*/
float CalcLimitedHfRatio(const float hfRatio, const float airAbsorptionGainHF,
const float decayTime)
{
/* Find the attenuation due to air absorption in dB (converting delay
* time to meters using the speed of sound). Then reversing the decay
* equation, solve for HF ratio. The delay length is cancelled out of
* the equation, so it can be calculated once for all lines.
*/
float limitRatio{1.0f / SpeedOfSoundMetersPerSec /
CalcDecayLength(airAbsorptionGainHF, decayTime)};
/* Using the limit calculated above, apply the upper bound to the HF ratio. */
return std::min(limitRatio, hfRatio);
}
/* Calculates the 3-band T60 damping coefficients for a particular delay line
* of specified length, using a combination of two shelf filter sections given
* decay times for each band split at two reference frequencies.
*/
void T60Filter::calcCoeffs(const float length, const float lfDecayTime,
const float mfDecayTime, const float hfDecayTime, const float lf0norm,
const float hf0norm)
{
const float mfGain{CalcDecayCoeff(length, mfDecayTime)};
const float lfGain{CalcDecayCoeff(length, lfDecayTime) / mfGain};
const float hfGain{CalcDecayCoeff(length, hfDecayTime) / mfGain};
MidGain = mfGain;
LFFilter.setParamsFromSlope(BiquadType::LowShelf, lf0norm, lfGain, 1.0f);
HFFilter.setParamsFromSlope(BiquadType::HighShelf, hf0norm, hfGain, 1.0f);
}
/* Update the early reflection line lengths and gain coefficients. */
void EarlyReflections::updateLines(const float density_mult, const float diffusion,
const float decayTime, const float frequency)
{
/* Calculate the all-pass feed-back/forward coefficient. */
VecAp.Coeff = diffusion*diffusion * InvSqrt2;
for(size_t i{0u};i < NUM_LINES;i++)
{
/* Calculate the delay length of each all-pass line. */
float length{EARLY_ALLPASS_LENGTHS[i] * density_mult};
VecAp.Offset[i] = float2uint(length * frequency);
/* Calculate the delay length of each delay line. */
length = EARLY_LINE_LENGTHS[i] * density_mult;
Offset[i] = float2uint(length * frequency);
}
/* Calculate the gain (coefficient) for the secondary reflections based on
* the average delay and decay time.
*/
const auto length = std::reduce(EARLY_LINE_LENGTHS.begin(), EARLY_LINE_LENGTHS.end(), 0.0f)
/ float{EARLY_LINE_LENGTHS.size()} * density_mult;
Coeff = CalcDecayCoeff(length, decayTime);
}
/* Update the EAX modulation step and depth. Keep in mind that this kind of
* vibrato is additive and not multiplicative as one may expect. The downswing
* will sound stronger than the upswing.
*/
void Modulation::updateModulator(float modTime, float modDepth, float frequency)
{
/* Modulation is calculated in two parts.
*
* The modulation time effects the sinus rate, altering the speed of
* frequency changes. An index is incremented for each sample with an
* appropriate step size to generate an LFO, which will vary the feedback
* delay over time.
*/
Step = std::max(fastf2u(MOD_FRACONE / (frequency * modTime)), 1u);
/* The modulation depth effects the amount of frequency change over the
* range of the sinus. It needs to be scaled by the modulation time so that
* a given depth produces a consistent change in frequency over all ranges
* of time. Since the depth is applied to a sinus value, it needs to be
* halved once for the sinus range and again for the sinus swing in time
* (half of it is spent decreasing the frequency, half is spent increasing
* it).
*/
if(modTime >= DefaultModulationTime)
{
/* To cancel the effects of a long period modulation on the late
* reverberation, the amount of pitch should be varied (decreased)
* according to the modulation time. The natural form is varying
* inversely, in fact resulting in an invariant.
*/
Depth = MODULATION_DEPTH_COEFF / 4.0f * DefaultModulationTime * modDepth * frequency;
}
else
Depth = MODULATION_DEPTH_COEFF / 4.0f * modTime * modDepth * frequency;
}
/* Update the late reverb line lengths and T60 coefficients. */
void LateReverb::updateLines(const float density_mult, const float diffusion,
const float lfDecayTime, const float mfDecayTime, const float hfDecayTime,
const float lf0norm, const float hf0norm, const float frequency)
{
/* Scaling factor to convert the normalized reference frequencies from
* representing 0...freq to 0...max_reference.
*/
constexpr float MaxHFReference{20000.0f};
const float norm_weight_factor{frequency / MaxHFReference};
const float late_allpass_avg{
std::accumulate(LATE_ALLPASS_LENGTHS.begin(), LATE_ALLPASS_LENGTHS.end(), 0.0f) /
float{NUM_LINES}};
/* To compensate for changes in modal density and decay time of the late
* reverb signal, the input is attenuated based on the maximal energy of
* the outgoing signal. This approximation is used to keep the apparent
* energy of the signal equal for all ranges of density and decay time.
*
* The average length of the delay lines is used to calculate the
* attenuation coefficient.
*/
float length{std::accumulate(LATE_LINE_LENGTHS.begin(), LATE_LINE_LENGTHS.end(), 0.0f) /
float{NUM_LINES} + late_allpass_avg};
length *= density_mult;
/* The density gain calculation uses an average decay time weighted by
* approximate bandwidth. This attempts to compensate for losses of energy
* that reduce decay time due to scattering into highly attenuated bands.
*/
const float decayTimeWeighted{
lf0norm*norm_weight_factor*lfDecayTime +
(hf0norm - lf0norm)*norm_weight_factor*mfDecayTime +
(1.0f - hf0norm*norm_weight_factor)*hfDecayTime};
DensityGain = CalcDensityGain(CalcDecayCoeff(length, decayTimeWeighted));
/* Calculate the all-pass feed-back/forward coefficient. */
VecAp.Coeff = diffusion*diffusion * InvSqrt2;
for(size_t i{0u};i < NUM_LINES;i++)
{
/* Calculate the delay length of each all-pass line. */
length = LATE_ALLPASS_LENGTHS[i] * density_mult;
VecAp.Offset[i] = float2uint(length * frequency);
/* Calculate the delay length of each feedback delay line. A cubic
* resampler is used for modulation on the feedback delay, which
* includes one sample of delay. Reduce by one to compensate.
*/
length = LATE_LINE_LENGTHS[i] * density_mult;
Offset[i] = std::max(float2uint(length*frequency + 0.5f), 1u) - 1u;
/* Approximate the absorption that the vector all-pass would exhibit
* given the current diffusion so we don't have to process a full T60
* filter for each of its four lines. Also include the average
* modulation delay (depth is half the max delay in samples).
*/
length += lerpf(LATE_ALLPASS_LENGTHS[i], late_allpass_avg, diffusion)*density_mult +
Mod.Depth/frequency;
/* Calculate the T60 damping coefficients for each line. */
T60[i].calcCoeffs(length, lfDecayTime, mfDecayTime, hfDecayTime, lf0norm, hf0norm);
}
}
/* Update the offsets for the main effect delay line. */
void ReverbPipeline::updateDelayLine(const float gain, const float earlyDelay,
const float lateDelay, const float density_mult, const float frequency)
{
/* Early reflection taps are decorrelated by means of an average room
* reflection approximation described above the definition of the taps.
* This approximation is linear and so the above density multiplier can
* be applied to adjust the width of the taps. A single-band decay
* coefficient is applied to simulate initial attenuation and absorption.
*
* Late reverb taps are based on the late line lengths to allow a zero-
* delay path and offsets that would continue the propagation naturally
* into the late lines.
*/
mEarlyDelayCoeff[1] = gain;
for(size_t i{0u};i < NUM_LINES;i++)
{
float length{EARLY_TAP_LENGTHS[i]*density_mult};
mEarlyDelayTap[i][1] = float2uint((earlyDelay+length) * frequency);
/* Reduce the late delay tap by the shortest early delay line length to
* compensate for the late line input being fed by the delayed early
* output.
*/
length = (LATE_LINE_LENGTHS[i] - LATE_LINE_LENGTHS.front())/float{NUM_LINES}*density_mult +
lateDelay;
mLateDelayTap[i][1] = float2uint(length * frequency);
}
}
/* Creates a transform matrix given a reverb vector. The vector pans the reverb
* reflections toward the given direction, using its magnitude (up to 1) as a
* focal strength. This function results in a B-Format transformation matrix
* that spatially focuses the signal in the desired direction.
*/
std::array<std::array<float,4>,4> GetTransformFromVector(const al::span<const float,3> vec)
{
/* Normalize the panning vector according to the N3D scale, which has an
* extra sqrt(3) term on the directional components. Converting from OpenAL
* to B-Format also requires negating X (ACN 1) and Z (ACN 3). Note however
* that the reverb panning vectors use left-handed coordinates, unlike the
* rest of OpenAL which use right-handed. This is fixed by negating Z,
* which cancels out with the B-Format Z negation.
*/
std::array<float,3> norm{{vec[0], vec[1], vec[2]}};
float mag{std::sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2])};
if(mag > 1.0f)
{
const float scale{al::numbers::sqrt3_v<float> / mag};
norm[0] *= -scale;
norm[1] *= scale;
norm[2] *= scale;
mag = 1.0f;
}
else
{
/* If the magnitude is less than or equal to 1, just apply the sqrt(3)
* term. There's no need to renormalize the magnitude since it would
* just be reapplied in the matrix.
*/
norm[0] *= -al::numbers::sqrt3_v<float>;
norm[1] *= al::numbers::sqrt3_v<float>;
norm[2] *= al::numbers::sqrt3_v<float>;
}
return std::array<std::array<float,4>,4>{{
{{1.0f, 0.0f, 0.0f, 0.0f}},
{{norm[0], 1.0f-mag, 0.0f, 0.0f}},
{{norm[1], 0.0f, 1.0f-mag, 0.0f}},
{{norm[2], 0.0f, 0.0f, 1.0f-mag}}
}};
}
/* Update the early and late 3D panning gains. */
void ReverbPipeline::update3DPanning(const al::span<const float,3> ReflectionsPan,
const al::span<const float,3> LateReverbPan, const float earlyGain, const float lateGain,
const bool doUpmix, const MixParams *mainMix)
{
/* Create matrices that transform a B-Format signal according to the
* panning vectors.
*/
const auto earlymat = GetTransformFromVector(ReflectionsPan);
const auto latemat = GetTransformFromVector(LateReverbPan);
const auto get_coeffs = [&]
{
if(doUpmix)
{
/* When upsampling, combine the early and late transforms with the
* first-order upsample matrix. This results in panning gains that
* apply the panning transform to first-order B-Format, which is
* then upsampled.
*/
auto mult_matrix = [](const al::span<const std::array<float,4>,4> mtx1)
{
std::array<std::array<float,MaxAmbiChannels>,NUM_LINES> res{};
const auto mtx2 = al::span{AmbiScale::FirstOrderUp};
for(size_t i{0};i < mtx1[0].size();++i)
{
const al::span dst{res[i]};
static_assert(dst.size() >= std::tuple_size_v<decltype(mtx2)::element_type>);
for(size_t k{0};k < mtx1.size();++k)
{
const float a{mtx1[k][i]};
std::transform(mtx2[k].begin(), mtx2[k].end(), dst.begin(), dst.begin(),
[a](const float in, const float out) noexcept -> float
{ return a*in + out; });
}
}
return res;
};
return std::array{mult_matrix(earlymat), mult_matrix(latemat)};
}
/* When not upsampling, combine the early and late A-to-B-Format
* conversions with their respective transform. This results panning
* gains that convert A-Format to B-Format, which is then panned.
*/
auto mult_matrix = [](const al::span<const std::array<float,NUM_LINES>,4> mtx1,
const al::span<const std::array<float,4>,4> mtx2)
{
std::array<std::array<float,MaxAmbiChannels>,NUM_LINES> res{};
for(size_t i{0};i < mtx1[0].size();++i)
{
const al::span dst{res[i]};
static_assert(dst.size() >= std::tuple_size_v<decltype(mtx2)::element_type>);
for(size_t k{0};k < mtx1.size();++k)
{
const float a{mtx1[k][i]};
std::transform(mtx2[k].begin(), mtx2[k].end(), dst.begin(), dst.begin(),
[a](const float in, const float out) noexcept -> float
{ return a*in + out; });
}
}
return res;
};
return std::array{mult_matrix(EarlyA2B, earlymat), mult_matrix(LateA2B, latemat)};
};
const auto [earlycoeffs, latecoeffs] = get_coeffs();
auto earlygains = mEarly.Gains.begin();
for(auto &coeffs : earlycoeffs)
ComputePanGains(mainMix, coeffs, earlyGain, (earlygains++)->Target);
auto lategains = mLate.Gains.begin();
for(auto &coeffs : latecoeffs)
ComputePanGains(mainMix, coeffs, lateGain, (lategains++)->Target);
}
void ReverbState::update(const ContextBase *Context, const EffectSlot *Slot,
const EffectProps *props_, const EffectTarget target)
{
auto &props = std::get<ReverbProps>(*props_);
const DeviceBase *Device{Context->mDevice};
const auto frequency = static_cast<float>(Device->mSampleRate);
/* If the HF limit parameter is flagged, calculate an appropriate limit
* based on the air absorption parameter.
*/
float hfRatio{props.DecayHFRatio};
if(props.DecayHFLimit && props.AirAbsorptionGainHF < 1.0f)
hfRatio = CalcLimitedHfRatio(hfRatio, props.AirAbsorptionGainHF, props.DecayTime);
/* Calculate the LF/HF decay times. */
constexpr float MinDecayTime{0.1f}, MaxDecayTime{20.0f};
const float lfDecayTime{std::clamp(props.DecayTime*props.DecayLFRatio, MinDecayTime,
MaxDecayTime)};
const float hfDecayTime{std::clamp(props.DecayTime*hfRatio, MinDecayTime, MaxDecayTime)};
/* Determine if a full update is required. */
const bool fullUpdate{mPipelineState == DeviceClear ||
/* Density is essentially a master control for the feedback delays, so
* changes the offsets of many delay lines.
*/
mParams.Density != props.Density ||
/* Diffusion and decay times influences the decay rate (gain) of the
* late reverb T60 filter.
*/
mParams.Diffusion != props.Diffusion ||
mParams.DecayTime != props.DecayTime ||
mParams.HFDecayTime != hfDecayTime ||
mParams.LFDecayTime != lfDecayTime ||
/* Modulation time and depth both require fading the modulation delay. */
mParams.ModulationTime != props.ModulationTime ||
mParams.ModulationDepth != props.ModulationDepth ||
/* HF/LF References control the weighting used to calculate the density
* gain.
*/
mParams.HFReference != props.HFReference ||
mParams.LFReference != props.LFReference};
if(fullUpdate)
{
mParams.Density = props.Density;
mParams.Diffusion = props.Diffusion;
mParams.DecayTime = props.DecayTime;
mParams.HFDecayTime = hfDecayTime;
mParams.LFDecayTime = lfDecayTime;
mParams.ModulationTime = props.ModulationTime;
mParams.ModulationDepth = props.ModulationDepth;
mParams.HFReference = props.HFReference;
mParams.LFReference = props.LFReference;
mPipelineState = (mPipelineState != DeviceClear) ? StartFade : Normal;
mCurrentPipeline = !mCurrentPipeline;
auto &oldpipeline = mPipelines[!mCurrentPipeline];
oldpipeline.mEarlyDelayCoeff[1] = 0.0f;
}
auto &pipeline = mPipelines[mCurrentPipeline];
/* The density-based room size (delay length) multiplier. */
const float density_mult{CalcDelayLengthMult(props.Density)};
/* Update the main effect delay and associated taps. */
pipeline.updateDelayLine(props.Gain, props.ReflectionsDelay, props.LateReverbDelay,
density_mult, frequency);
/* Update early and late 3D panning. */
mOutTarget = target.Main->Buffer;
const float gain{Slot->Gain * ReverbBoost};
pipeline.update3DPanning(props.ReflectionsPan, props.LateReverbPan, props.ReflectionsGain*gain,
props.LateReverbGain*gain, mUpmixOutput, target.Main);
/* Calculate the master filters */
float hf0norm{std::min(props.HFReference/frequency, 0.49f)};
pipeline.mFilter[0].Lp.setParamsFromSlope(BiquadType::HighShelf, hf0norm, props.GainHF, 1.0f);
float lf0norm{std::min(props.LFReference/frequency, 0.49f)};
pipeline.mFilter[0].Hp.setParamsFromSlope(BiquadType::LowShelf, lf0norm, props.GainLF, 1.0f);
for(size_t i{1u};i < NUM_LINES;i++)
{
pipeline.mFilter[i].Lp.copyParamsFrom(pipeline.mFilter[0].Lp);
pipeline.mFilter[i].Hp.copyParamsFrom(pipeline.mFilter[0].Hp);
}
if(fullUpdate)
{
/* Update the early lines. */
pipeline.mEarly.updateLines(density_mult, props.Diffusion, props.DecayTime, frequency);
/* Get the mixing matrix coefficients. */
CalcMatrixCoeffs(props.Diffusion, &pipeline.mMixX, &pipeline.mMixY);
/* Update the modulator rate and depth. */
pipeline.mLate.Mod.updateModulator(props.ModulationTime, props.ModulationDepth, frequency);
/* Update the late lines. */
pipeline.mLate.updateLines(density_mult, props.Diffusion, lfDecayTime, props.DecayTime,
hfDecayTime, lf0norm, hf0norm, frequency);
}
/* Calculate the gain at the start of the late reverb stage, and the gain
* difference from the decay target (0.001, or -60dB).
*/
const float decayBase{props.ReflectionsGain * props.LateReverbGain};
const float decayDiff{ReverbDecayGain / decayBase};
/* Given the DecayTime (the amount of time for the late reverb to decay by
* -60dB), calculate the time to decay to -60dB from the start of the late
* reverb.
*
* Otherwise, if the late reverb already starts at -60dB or less, only
* include the time to get to the late reverb.
*/
const float diffTime{!(decayDiff < 1.0f) ? 0.0f
: (std::log10(decayDiff)*(20.0f / -60.0f) * props.DecayTime)};
const float decaySamples{(props.ReflectionsDelay+props.LateReverbDelay+diffTime)
* frequency};
/* Limit to 100,000 samples (a touch over 2 seconds at 48khz) to avoid
* excessive double-processing.
*/
pipeline.mFadeSampleCount = static_cast<size_t>(std::min(decaySamples, 100'000.0f));
}
/**************************************
* Effect Processing *
**************************************/
/* Applies a scattering matrix to the 4-line (vector) input. This is used
* for both the below vector all-pass model and to perform modal feed-back
* delay network (FDN) mixing.
*
* The matrix is derived from a skew-symmetric matrix to form a 4D rotation
* matrix with a single unitary rotational parameter:
*
* [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
* [ -a, d, c, -b ]
* [ -b, -c, d, a ]
* [ -c, b, -a, d ]
*
* The rotation is constructed from the effect's diffusion parameter,
* yielding:
*
* 1 = x^2 + 3 y^2
*
* Where a, b, and c are the coefficient y with differing signs, and d is the
* coefficient x. The final matrix is thus:
*
* [ x, y, -y, y ] n = sqrt(matrix_order - 1)
* [ -y, x, y, y ] t = diffusion_parameter * atan(n)
* [ y, -y, x, y ] x = cos(t)
* [ -y, -y, -y, x ] y = sin(t) / n
*
* Any square orthogonal matrix with an order that is a power of two will
* work (where ^T is transpose, ^-1 is inverse):
*
* M^T = M^-1
*
* Using that knowledge, finding an appropriate matrix can be accomplished
* naively by searching all combinations of:
*
* M = D + S - S^T
*
* Where D is a diagonal matrix (of x), and S is a triangular matrix (of y)
* whose combination of signs are being iterated.
*/
inline auto VectorPartialScatter(const std::array<float,NUM_LINES> &in, const float xCoeff,
const float yCoeff) noexcept -> std::array<float,NUM_LINES>
{
return std::array{
xCoeff*in[0] + yCoeff*( in[1] + -in[2] + in[3]),
xCoeff*in[1] + yCoeff*(-in[0] + in[2] + in[3]),
xCoeff*in[2] + yCoeff*( in[0] + -in[1] + in[3]),
xCoeff*in[3] + yCoeff*(-in[0] + -in[1] + -in[2] )
};
}
/* Utilizes the above, but also applies a line-based reflection on the input
* channels (swapping 0<->3 and 1<->2).
*/
void VectorScatterRev(const float xCoeff, const float yCoeff,
const al::span<ReverbUpdateLine,NUM_LINES> samples, const size_t count) noexcept
{
ASSUME(count > 0);
for(size_t i{0u};i < count;++i)
{
std::array src{samples[0][i], samples[1][i], samples[2][i], samples[3][i]};
src = VectorPartialScatter(std::array{src[3], src[2], src[1], src[0]}, xCoeff, yCoeff);
samples[0][i] = src[0];
samples[1][i] = src[1];
samples[2][i] = src[2];
samples[3][i] = src[3];
}
}
/* This applies a Gerzon multiple-in/multiple-out (MIMO) vector all-pass
* filter to the 4-line input.
*
* It works by vectorizing a regular all-pass filter and replacing the delay
* element with a scattering matrix (like the one above) and a diagonal
* matrix of delay elements.
*/
void VecAllpass::process(const al::span<ReverbUpdateLine,NUM_LINES> samples, size_t main_offset,
const float xCoeff, const float yCoeff, const size_t todo) const noexcept
{
const auto linelen = size_t{Delay.mLine.size()/NUM_LINES};
const float feedCoeff{Coeff};
ASSUME(todo > 0);
for(size_t i{0u};i < todo;)
{
std::array<size_t,NUM_LINES> vap_offset{};
std::transform(Offset.cbegin(), Offset.cend(), vap_offset.begin(),
[main_offset,mask=linelen-1](const size_t delay) noexcept -> size_t
{ return (main_offset-delay) & mask; });
main_offset &= linelen-1;
const auto maxoff = std::accumulate(vap_offset.cbegin(), vap_offset.cend(), main_offset,
[](const size_t offset, const size_t apoffset) { return std::max(offset, apoffset); });
size_t td{std::min(linelen - maxoff, todo - i)};
auto delayIn = Delay.mLine.begin();
auto delayOut = Delay.mLine.begin() + ptrdiff_t(main_offset*NUM_LINES);
main_offset += td;
do {
std::array<float,NUM_LINES> f{};
for(size_t j{0u};j < NUM_LINES;j++)
{
const float input{samples[j][i]};
const float out{delayIn[vap_offset[j]*NUM_LINES + j] - feedCoeff*input};
f[j] = input + feedCoeff*out;
samples[j][i] = out;
}
delayIn += NUM_LINES;
++i;
f = VectorPartialScatter(f, xCoeff, yCoeff);
delayOut = std::copy_n(f.cbegin(), f.size(), delayOut);
} while(--td);
}
}
/* This applies a more typical all-pass to each line, without the scattering
* matrix.
*/
void Allpass4::process(const al::span<ReverbUpdateLine,NUM_LINES> samples, const size_t offset,
const size_t todo) const noexcept
{
const DelayLineU delay{Delay};
const float feedCoeff{Coeff};
ASSUME(todo > 0);
for(size_t j{0u};j < NUM_LINES;j++)
{
auto smpiter = samples[j].begin();
const auto buffer = delay.get(j);
size_t dstoffset{offset};
size_t vap_offset{offset - Offset[j]};
for(size_t i{0u};i < todo;)
{
vap_offset &= buffer.size()-1;
dstoffset &= buffer.size()-1;
const size_t maxoff{std::max(dstoffset, vap_offset)};
const size_t td{std::min(buffer.size() - maxoff, todo - i)};
auto proc_sample = [buffer,feedCoeff,&vap_offset,&dstoffset](const float x) -> float
{
const float y{buffer[vap_offset++] - feedCoeff*x};
buffer[dstoffset++] = x + feedCoeff*y;
return y;
};
smpiter = std::transform(smpiter, smpiter+td, smpiter, proc_sample);
i += td;
}
}
}
/* This generates early reflections.
*
* This is done by obtaining the primary reflections (those arriving from the
* same direction as the source) from the main delay line. These are
* attenuated and all-pass filtered (based on the diffusion parameter).
*
* The early lines are then reflected about the origin to create the secondary
* reflections (those arriving from the opposite direction as the source).
*
* The early response is then completed by combining the primary reflections
* with the delayed and attenuated output from the early lines.
*
* Finally, the early response is reflected, scattered (based on diffusion),
* and fed into the late reverb section of the main delay line.
*/
void ReverbPipeline::processEarly(const DelayLineU &main_delay, size_t offset,
const size_t samplesToDo, const al::span<ReverbUpdateLine, NUM_LINES> tempSamples,
const al::span<FloatBufferLine, NUM_LINES> outSamples)
{
const DelayLineU early_delay{mEarly.Delay};
const DelayLineU in_delay{main_delay};
const float mixX{mMixX};
const float mixY{mMixY};
ASSUME(samplesToDo <= BufferLineSize);
for(size_t base{0};base < samplesToDo;)
{
const size_t todo{std::min(samplesToDo-base, MAX_UPDATE_SAMPLES)};
/* First, load decorrelated samples from the main delay line as the
* primary reflections.
*/
const auto fadeStep = 1.0f / static_cast<float>(todo);
const auto earlycoeff0 = float{mEarlyDelayCoeff[0]};
const auto earlycoeff1 = float{mEarlyDelayCoeff[1]};
mEarlyDelayCoeff[0] = mEarlyDelayCoeff[1];
for(size_t j{0_uz};j < NUM_LINES;j++)
{
const auto input = in_delay.get(j);
auto early_delay_tap0 = size_t{offset - mEarlyDelayTap[j][0]};
auto early_delay_tap1 = size_t{offset - mEarlyDelayTap[j][1]};
mEarlyDelayTap[j][0] = mEarlyDelayTap[j][1];
auto fadeCount = 0.0f;
auto tmp = tempSamples[j].begin();
for(size_t i{0_uz};i < todo;)
{
early_delay_tap0 &= input.size()-1;
early_delay_tap1 &= input.size()-1;
const auto max_tap = size_t{std::max(early_delay_tap0, early_delay_tap1)};
const auto td = size_t{std::min(input.size()-max_tap, todo-i)};
const auto intap0 = input.subspan(early_delay_tap0, td);
const auto intap1 = input.subspan(early_delay_tap1, td);
auto do_blend = [earlycoeff0,earlycoeff1,fadeStep,&fadeCount](const float in0,
const float in1) noexcept -> float
{
const auto ret = lerpf(in0*earlycoeff0, in1*earlycoeff1, fadeStep*fadeCount);
fadeCount += 1.0f;
return ret;
};
tmp = std::transform(intap0.begin(), intap0.end(), intap1.begin(), tmp, do_blend);
early_delay_tap0 += td;
early_delay_tap1 += td;
i += td;
}
/* Band-pass the incoming samples. */
auto&& filter = DualBiquad{mFilter[j].Lp, mFilter[j].Hp};
filter.process(al::span{tempSamples[j]}.first(todo), tempSamples[j]);
}
/* Apply an all-pass, to help color the initial reflections. */
mEarly.VecAp.process(tempSamples, offset, todo);
/* Apply a delay and bounce to generate secondary reflections. */
early_delay.writeReflected(offset, tempSamples, todo);
const auto feedb_coeff = mEarly.Coeff;
for(size_t j{0_uz};j < NUM_LINES;j++)
{
const auto input = early_delay.get(j);
auto feedb_tap = size_t{offset - mEarly.Offset[j]};
auto out = outSamples[j].begin() + base;
auto tmp = tempSamples[j].begin();
for(size_t i{0_uz};i < todo;)
{
feedb_tap &= input.size()-1;
const auto td = size_t{std::min(input.size() - feedb_tap, todo - i)};
const auto delaySrc = input.subspan(feedb_tap, td);
/* Combine the main input with the attenuated delayed echo for
* the early output.
*/
out = std::transform(delaySrc.begin(), delaySrc.end(), tmp, out,
[feedb_coeff](const float delayspl, const float mainspl) noexcept -> float
{ return delayspl*feedb_coeff + mainspl; });
/* Move the (non-attenuated) delayed echo to the temp buffer
* for feeding the late reverb.
*/
tmp = std::copy_n(delaySrc.begin(), delaySrc.size(), tmp);
feedb_tap += td;
i += td;
}
}
/* Finally, apply a scatter and bounce to improve the initial diffusion
* in the late reverb, writing the result to the late delay line input.
*/
VectorScatterRev(mixX, mixY, tempSamples, todo);
for(size_t j{0_uz};j < NUM_LINES;j++)
mLateDelayIn.write(offset, j, al::span{tempSamples[j]}.first(todo));
base += todo;
offset += todo;
}
}
auto Modulation::calcDelays(size_t todo) -> al::span<const uint>
{
auto idx = Index;
const auto step = Step;
const auto depth = Depth * float{gCubicTable.sTableSteps};
const auto delays = al::span{ModDelays}.first(todo);
std::generate(delays.begin(), delays.end(), [step,depth,&idx]
{
idx += step;
const auto x = static_cast<float>(idx&MOD_FRACMASK) * (1.0f/MOD_FRACONE);
/* Approximate sin(x*2pi). As long as it roughly fits a sinusoid shape
* and stays within [-1...+1], it needn't be perfect.
*/
const auto lfo = !(idx&(MOD_FRACONE>>1))
? ((-16.0f * x * x) + (8.0f * x))
: ((16.0f * x * x) + (-8.0f * x) + (-16.0f * x) + 8.0f);
return float2uint((lfo+1.0f) * depth);
});
Index = idx;
return delays;
}
/* This generates the reverb tail using a modified feed-back delay network
* (FDN).
*
* Results from the early reflections are mixed with the output from the
* modulated late delay lines.
*
* The late response is then completed by T60 and all-pass filtering the mix.
*
* Finally, the lines are reversed (so they feed their opposite directions)
* and scattered with the FDN matrix before re-feeding the delay lines.
*/
void ReverbPipeline::processLate(size_t offset, const size_t samplesToDo,
const al::span<ReverbUpdateLine, NUM_LINES> tempSamples,
const al::span<FloatBufferLine, NUM_LINES> outSamples)
{
const DelayLineU late_delay{mLate.Delay};
const DelayLineU in_delay{mLateDelayIn};
const float mixX{mMixX};
const float mixY{mMixY};
ASSUME(samplesToDo <= BufferLineSize);
for(size_t base{0};base < samplesToDo;)
{
const size_t todo{std::min(std::min(mLate.Offset[0], MAX_UPDATE_SAMPLES),
samplesToDo-base)};
ASSUME(todo > 0);
/* First, calculate the modulated delays for the late feedback. */
const auto delays = mLate.Mod.calcDelays(todo);
/* Now load samples from the feedback delay lines. Filter the signal to
* apply its frequency-dependent decay.
*/
for(size_t j{0_uz};j < NUM_LINES;++j)
{
const auto input = late_delay.get(j);
const auto midGain = mLate.T60[j].MidGain;
auto late_feedb_tap = size_t{offset - mLate.Offset[j]};
auto proc_sample = [input,midGain,&late_feedb_tap](const size_t idelay) -> float
{
/* Calculate the read sample offset and sub-sample offset
* between it and the next sample.
*/
const auto delay = late_feedb_tap - (idelay>>gCubicTable.sTableBits);
const auto delayoffset = size_t{idelay & gCubicTable.sTableMask};
++late_feedb_tap;
/* Get the samples around the delayed offset, interpolated for
* output.
*/
const auto out0 = float{input[(delay ) & (input.size()-1)]};
const auto out1 = float{input[(delay-1) & (input.size()-1)]};
const auto out2 = float{input[(delay-2) & (input.size()-1)]};
const auto out3 = float{input[(delay-3) & (input.size()-1)]};
const auto out = out0*gCubicTable.getCoeff0(delayoffset)
+ out1*gCubicTable.getCoeff1(delayoffset)
+ out2*gCubicTable.getCoeff2(delayoffset)
+ out3*gCubicTable.getCoeff3(delayoffset);
return out * midGain;
};
std::transform(delays.begin(), delays.end(), tempSamples[j].begin(), proc_sample);
mLate.T60[j].process(al::span{tempSamples[j]}.first(todo));
}
/* Next load decorrelated samples from the main delay lines. */
const float fadeStep{1.0f / static_cast<float>(todo)};
for(size_t j{0_uz};j < NUM_LINES;++j)
{
const auto input = in_delay.get(j);
auto late_delay_tap0 = size_t{offset - mLateDelayTap[j][0]};
auto late_delay_tap1 = size_t{offset - mLateDelayTap[j][1]};
mLateDelayTap[j][0] = mLateDelayTap[j][1];
const auto densityGain = mLate.DensityGain;
const auto densityStep = late_delay_tap0 != late_delay_tap1
? densityGain*fadeStep : 0.0f;
auto fadeCount = 0.0f;
auto samples = tempSamples[j].begin();
for(size_t i{0u};i < todo;)
{
late_delay_tap0 &= input.size()-1;
late_delay_tap1 &= input.size()-1;
const auto td = size_t{std::min(todo - i,
input.size() - std::max(late_delay_tap0, late_delay_tap1))};
auto proc_sample = [input,densityGain,densityStep,&late_delay_tap0,
&late_delay_tap1,&fadeCount](const float sample) noexcept -> float
{
const auto fade0 = float{densityGain - densityStep*fadeCount};
const auto fade1 = float{densityStep*fadeCount};
fadeCount += 1.0f;
return input[late_delay_tap0++]*fade0 + input[late_delay_tap1++]*fade1
+ sample;
};
samples = std::transform(samples, samples+ptrdiff_t(td), samples, proc_sample);
i += td;
}
}
/* Apply a vector all-pass to improve micro-surface diffusion, and
* write out the results for mixing.
*/
mLate.VecAp.process(tempSamples, offset, mixX, mixY, todo);
for(size_t j{0_uz};j < NUM_LINES;++j)
std::copy_n(tempSamples[j].begin(), todo, outSamples[j].begin()+base);
/* Finally, scatter and bounce the results to refeed the feedback buffer. */
VectorScatterRev(mixX, mixY, tempSamples, todo);
for(size_t j{0_uz};j < NUM_LINES;++j)
late_delay.write(offset, j, al::span{tempSamples[j]}.first(todo));
base += todo;
offset += todo;
}
}
void ReverbState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
{
const size_t offset{mOffset};
ASSUME(samplesToDo <= BufferLineSize);
auto &oldpipeline = mPipelines[!mCurrentPipeline];
auto &pipeline = mPipelines[mCurrentPipeline];
/* Convert B-Format to A-Format for processing. */
const size_t numInput{std::min(samplesIn.size(), NUM_LINES)};
const al::span<float> tmpspan{al::assume_aligned<16>(mTempLine.data()), samplesToDo};
for(size_t c{0u};c < NUM_LINES;++c)
{
std::fill(tmpspan.begin(), tmpspan.end(), 0.0f);
for(size_t i{0};i < numInput;++i)
{
const float gain{B2A[c][i]};
auto mix_sample = [gain](const float sample, const float in) noexcept -> float
{ return sample + in*gain; };
std::transform(tmpspan.begin(), tmpspan.end(), samplesIn[i].begin(), tmpspan.begin(),
mix_sample);
}
mMainDelay.write(offset, c, tmpspan);
}
mPipelineState = std::max(Fading, mPipelineState);
/* Process reverb for these samples. and mix them to the output. */
pipeline.processEarly(mMainDelay, offset, samplesToDo, mTempSamples, mEarlySamples);
pipeline.processLate(offset, samplesToDo, mTempSamples, mLateSamples);
mixOut(pipeline, samplesOut, samplesToDo);
if(mPipelineState != Normal)
{
if(mPipelineState == Cleanup)
{
size_t numSamples{mSampleBuffer.size()/2};
const auto bufferspan = al::span{mSampleBuffer}.subspan(numSamples * !mCurrentPipeline,
numSamples);
std::fill_n(bufferspan.begin(), bufferspan.size(), 0.0f);
oldpipeline.clear();
mPipelineState = Normal;
}
else
{
/* If this is the final mix for this old pipeline, set the target
* gains to 0 to ensure a complete fade out, and set the state to
* Cleanup so the next invocation cleans up the delay buffers and
* filters.
*/
if(samplesToDo >= oldpipeline.mFadeSampleCount)
{
for(auto &gains : oldpipeline.mEarly.Gains)
std::fill(gains.Target.begin(), gains.Target.end(), 0.0f);
for(auto &gains : oldpipeline.mLate.Gains)
std::fill(gains.Target.begin(), gains.Target.end(), 0.0f);
oldpipeline.mFadeSampleCount = 0;
mPipelineState = Cleanup;
}
else
oldpipeline.mFadeSampleCount -= samplesToDo;
/* Process the old reverb for these samples. */
oldpipeline.processEarly(mMainDelay, offset, samplesToDo, mTempSamples, mEarlySamples);
oldpipeline.processLate(offset, samplesToDo, mTempSamples, mLateSamples);
mixOut(oldpipeline, samplesOut, samplesToDo);
}
}
mOffset = offset + samplesToDo;
}
struct ReverbStateFactory final : public EffectStateFactory {
al::intrusive_ptr<EffectState> create() override
{ return al::intrusive_ptr<EffectState>{new ReverbState{}}; }
};
} // namespace
EffectStateFactory *ReverbStateFactory_getFactory()
{
static ReverbStateFactory ReverbFactory{};
return &ReverbFactory;
}