mirror of
https://github.com/TorqueGameEngines/Torque3D.git
synced 2026-01-23 06:04:44 +00:00
326 lines
12 KiB
C++
326 lines
12 KiB
C++
/**
|
|
* OpenAL cross platform audio library
|
|
* Copyright (C) 2018 by Raul Herraiz.
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <complex>
|
|
#include <cstdlib>
|
|
#include <variant>
|
|
|
|
#include "alc/effects/base.h"
|
|
#include "alnumbers.h"
|
|
#include "alnumeric.h"
|
|
#include "alspan.h"
|
|
#include "core/ambidefs.h"
|
|
#include "core/bufferline.h"
|
|
#include "core/device.h"
|
|
#include "core/effects/base.h"
|
|
#include "core/effectslot.h"
|
|
#include "core/mixer.h"
|
|
#include "core/mixer/defs.h"
|
|
#include "intrusive_ptr.h"
|
|
#include "pffft.h"
|
|
|
|
struct BufferStorage;
|
|
struct ContextBase;
|
|
|
|
|
|
namespace {
|
|
|
|
using uint = unsigned int;
|
|
using complex_f = std::complex<float>;
|
|
|
|
constexpr size_t StftSize{1024};
|
|
constexpr size_t StftHalfSize{StftSize >> 1};
|
|
constexpr size_t OversampleFactor{8};
|
|
|
|
static_assert(StftSize%OversampleFactor == 0, "Factor must be a clean divisor of the size");
|
|
constexpr size_t StftStep{StftSize / OversampleFactor};
|
|
|
|
/* Define a Hann window, used to filter the STFT input and output. */
|
|
struct Windower {
|
|
alignas(16) std::array<float,StftSize> mData{};
|
|
|
|
Windower()
|
|
{
|
|
/* Create lookup table of the Hann window for the desired size. */
|
|
for(size_t i{0};i < StftHalfSize;i++)
|
|
{
|
|
constexpr double scale{al::numbers::pi / double{StftSize}};
|
|
const double val{std::sin((static_cast<double>(i)+0.5) * scale)};
|
|
mData[i] = mData[StftSize-1-i] = static_cast<float>(val * val);
|
|
}
|
|
}
|
|
};
|
|
const Windower gWindow{};
|
|
|
|
|
|
struct FrequencyBin {
|
|
float Magnitude;
|
|
float FreqBin;
|
|
};
|
|
|
|
|
|
struct PshifterState final : public EffectState {
|
|
/* Effect parameters */
|
|
size_t mCount{};
|
|
size_t mPos{};
|
|
uint mPitchShiftI{};
|
|
float mPitchShift{};
|
|
|
|
/* Effects buffers */
|
|
std::array<float,StftSize> mFIFO{};
|
|
std::array<float,StftHalfSize+1> mLastPhase{};
|
|
std::array<float,StftHalfSize+1> mSumPhase{};
|
|
std::array<float,StftSize> mOutputAccum{};
|
|
|
|
PFFFTSetup mFft;
|
|
alignas(16) std::array<float,StftSize> mFftBuffer{};
|
|
alignas(16) std::array<float,StftSize> mFftWorkBuffer{};
|
|
|
|
std::array<FrequencyBin,StftHalfSize+1> mAnalysisBuffer{};
|
|
std::array<FrequencyBin,StftHalfSize+1> mSynthesisBuffer{};
|
|
|
|
alignas(16) FloatBufferLine mBufferOut{};
|
|
|
|
/* Effect gains for each output channel */
|
|
std::array<float,MaxAmbiChannels> mCurrentGains{};
|
|
std::array<float,MaxAmbiChannels> mTargetGains{};
|
|
|
|
|
|
void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override;
|
|
void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
|
|
const EffectTarget target) override;
|
|
void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
|
|
const al::span<FloatBufferLine> samplesOut) override;
|
|
};
|
|
|
|
void PshifterState::deviceUpdate(const DeviceBase*, const BufferStorage*)
|
|
{
|
|
/* (Re-)initializing parameters and clear the buffers. */
|
|
mCount = 0;
|
|
mPos = StftSize - StftStep;
|
|
mPitchShiftI = MixerFracOne;
|
|
mPitchShift = 1.0f;
|
|
|
|
mFIFO.fill(0.0f);
|
|
mLastPhase.fill(0.0f);
|
|
mSumPhase.fill(0.0f);
|
|
mOutputAccum.fill(0.0f);
|
|
mFftBuffer.fill(0.0f);
|
|
mAnalysisBuffer.fill(FrequencyBin{});
|
|
mSynthesisBuffer.fill(FrequencyBin{});
|
|
|
|
mCurrentGains.fill(0.0f);
|
|
mTargetGains.fill(0.0f);
|
|
|
|
if(!mFft)
|
|
mFft = PFFFTSetup{StftSize, PFFFT_REAL};
|
|
}
|
|
|
|
void PshifterState::update(const ContextBase*, const EffectSlot *slot,
|
|
const EffectProps *props_, const EffectTarget target)
|
|
{
|
|
auto &props = std::get<PshifterProps>(*props_);
|
|
const int tune{props.CoarseTune*100 + props.FineTune};
|
|
const float pitch{std::pow(2.0f, static_cast<float>(tune) / 1200.0f)};
|
|
mPitchShiftI = std::clamp(fastf2u(pitch*MixerFracOne), uint{MixerFracHalf},
|
|
uint{MixerFracOne}*2u);
|
|
mPitchShift = static_cast<float>(mPitchShiftI) * float{1.0f/MixerFracOne};
|
|
|
|
static constexpr auto coeffs = CalcDirectionCoeffs(std::array{0.0f, 0.0f, -1.0f});
|
|
|
|
mOutTarget = target.Main->Buffer;
|
|
ComputePanGains(target.Main, coeffs, slot->Gain, mTargetGains);
|
|
}
|
|
|
|
void PshifterState::process(const size_t samplesToDo,
|
|
const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
|
|
{
|
|
/* Pitch shifter engine based on the work of Stephan Bernsee.
|
|
* http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft/
|
|
*/
|
|
|
|
/* Cycle offset per update expected of each frequency bin (bin 0 is none,
|
|
* bin 1 is x1, bin 2 is x2, etc).
|
|
*/
|
|
constexpr float expected_cycles{al::numbers::pi_v<float>*2.0f / OversampleFactor};
|
|
|
|
for(size_t base{0u};base < samplesToDo;)
|
|
{
|
|
const size_t todo{std::min(StftStep-mCount, samplesToDo-base)};
|
|
|
|
/* Retrieve the output samples from the FIFO and fill in the new input
|
|
* samples.
|
|
*/
|
|
auto fifo_iter = mFIFO.begin()+mPos + mCount;
|
|
std::copy_n(fifo_iter, todo, mBufferOut.begin()+base);
|
|
|
|
std::copy_n(samplesIn[0].begin()+base, todo, fifo_iter);
|
|
mCount += todo;
|
|
base += todo;
|
|
|
|
/* Check whether FIFO buffer is filled with new samples. */
|
|
if(mCount < StftStep) break;
|
|
mCount = 0;
|
|
mPos = (mPos+StftStep) & (mFIFO.size()-1);
|
|
|
|
/* Time-domain signal windowing, store in FftBuffer, and apply a
|
|
* forward FFT to get the frequency-domain signal.
|
|
*/
|
|
for(size_t src{mPos}, k{0u};src < StftSize;++src,++k)
|
|
mFftBuffer[k] = mFIFO[src] * gWindow.mData[k];
|
|
for(size_t src{0u}, k{StftSize-mPos};src < mPos;++src,++k)
|
|
mFftBuffer[k] = mFIFO[src] * gWindow.mData[k];
|
|
mFft.transform_ordered(mFftBuffer.data(), mFftBuffer.data(), mFftWorkBuffer.data(),
|
|
PFFFT_FORWARD);
|
|
|
|
/* Analyze the obtained data. Since the real FFT is symmetric, only
|
|
* StftHalfSize+1 samples are needed.
|
|
*/
|
|
for(size_t k{0u};k < StftHalfSize+1;++k)
|
|
{
|
|
const auto cplx = (k == 0) ? complex_f{mFftBuffer[0]} :
|
|
(k == StftHalfSize) ? complex_f{mFftBuffer[1]} :
|
|
complex_f{mFftBuffer[k*2], mFftBuffer[k*2 + 1]};
|
|
const float magnitude{std::abs(cplx)};
|
|
const float phase{std::arg(cplx)};
|
|
|
|
/* Compute the phase difference from the last update and subtract
|
|
* the expected phase difference for this bin.
|
|
*
|
|
* When oversampling, the expected per-update offset increments by
|
|
* 1/OversampleFactor for every frequency bin. So, the offset wraps
|
|
* every 'OversampleFactor' bin.
|
|
*/
|
|
const auto bin_offset = static_cast<float>(k % OversampleFactor);
|
|
float tmp{(phase - mLastPhase[k]) - bin_offset*expected_cycles};
|
|
/* Store the actual phase for the next update. */
|
|
mLastPhase[k] = phase;
|
|
|
|
/* Normalize from pi, and wrap the delta between -1 and +1. */
|
|
tmp *= al::numbers::inv_pi_v<float>;
|
|
int qpd{float2int(tmp)};
|
|
tmp -= static_cast<float>(qpd + (qpd%2));
|
|
|
|
/* Get deviation from bin frequency (-0.5 to +0.5), and account for
|
|
* oversampling.
|
|
*/
|
|
tmp *= 0.5f * OversampleFactor;
|
|
|
|
/* Compute the k-th partials' frequency bin target and store the
|
|
* magnitude and frequency bin in the analysis buffer. We don't
|
|
* need the "true frequency" since it's a linear relationship with
|
|
* the bin.
|
|
*/
|
|
mAnalysisBuffer[k].Magnitude = magnitude;
|
|
mAnalysisBuffer[k].FreqBin = static_cast<float>(k) + tmp;
|
|
}
|
|
|
|
/* Shift the frequency bins according to the pitch adjustment,
|
|
* accumulating the magnitudes of overlapping frequency bins.
|
|
*/
|
|
std::fill(mSynthesisBuffer.begin(), mSynthesisBuffer.end(), FrequencyBin{});
|
|
|
|
static constexpr size_t bin_limit{((StftHalfSize+1)<<MixerFracBits) - MixerFracHalf - 1};
|
|
const size_t bin_count{std::min(StftHalfSize+1, bin_limit/mPitchShiftI + 1)};
|
|
for(size_t k{0u};k < bin_count;k++)
|
|
{
|
|
const size_t j{(k*mPitchShiftI + MixerFracHalf) >> MixerFracBits};
|
|
|
|
/* If more than two bins end up together, use the target frequency
|
|
* bin for the one with the dominant magnitude. There might be a
|
|
* better way to handle this, but it's better than last-index-wins.
|
|
*/
|
|
if(mAnalysisBuffer[k].Magnitude > mSynthesisBuffer[j].Magnitude)
|
|
mSynthesisBuffer[j].FreqBin = mAnalysisBuffer[k].FreqBin * mPitchShift;
|
|
mSynthesisBuffer[j].Magnitude += mAnalysisBuffer[k].Magnitude;
|
|
}
|
|
|
|
/* Reconstruct the frequency-domain signal from the adjusted frequency
|
|
* bins.
|
|
*/
|
|
for(size_t k{0u};k < StftHalfSize+1;k++)
|
|
{
|
|
/* Calculate the actual delta phase for this bin's target frequency
|
|
* bin, and accumulate it to get the actual bin phase.
|
|
*/
|
|
float tmp{mSumPhase[k] + mSynthesisBuffer[k].FreqBin*expected_cycles};
|
|
|
|
/* Wrap between -pi and +pi for the sum. If mSumPhase is left to
|
|
* grow indefinitely, it will lose precision and produce less exact
|
|
* phase over time.
|
|
*/
|
|
tmp *= al::numbers::inv_pi_v<float>;
|
|
int qpd{float2int(tmp)};
|
|
tmp -= static_cast<float>(qpd + (qpd%2));
|
|
mSumPhase[k] = tmp * al::numbers::pi_v<float>;
|
|
|
|
const complex_f cplx{std::polar(mSynthesisBuffer[k].Magnitude, mSumPhase[k])};
|
|
if(k == 0)
|
|
mFftBuffer[0] = cplx.real();
|
|
else if(k == StftHalfSize)
|
|
mFftBuffer[1] = cplx.real();
|
|
else
|
|
{
|
|
mFftBuffer[k*2 + 0] = cplx.real();
|
|
mFftBuffer[k*2 + 1] = cplx.imag();
|
|
}
|
|
}
|
|
|
|
/* Apply an inverse FFT to get the time-domain signal, and accumulate
|
|
* for the output with windowing.
|
|
*/
|
|
mFft.transform_ordered(mFftBuffer.data(), mFftBuffer.data(), mFftWorkBuffer.data(),
|
|
PFFFT_BACKWARD);
|
|
|
|
static constexpr float scale{3.0f / OversampleFactor / StftSize};
|
|
for(size_t dst{mPos}, k{0u};dst < StftSize;++dst,++k)
|
|
mOutputAccum[dst] += gWindow.mData[k]*mFftBuffer[k] * scale;
|
|
for(size_t dst{0u}, k{StftSize-mPos};dst < mPos;++dst,++k)
|
|
mOutputAccum[dst] += gWindow.mData[k]*mFftBuffer[k] * scale;
|
|
|
|
/* Copy out the accumulated result, then clear for the next iteration. */
|
|
std::copy_n(mOutputAccum.begin() + mPos, StftStep, mFIFO.begin() + mPos);
|
|
std::fill_n(mOutputAccum.begin() + mPos, StftStep, 0.0f);
|
|
}
|
|
|
|
/* Now, mix the processed sound data to the output. */
|
|
MixSamples(al::span{mBufferOut}.first(samplesToDo), samplesOut, mCurrentGains, mTargetGains,
|
|
std::max(samplesToDo, 512_uz), 0);
|
|
}
|
|
|
|
|
|
struct PshifterStateFactory final : public EffectStateFactory {
|
|
al::intrusive_ptr<EffectState> create() override
|
|
{ return al::intrusive_ptr<EffectState>{new PshifterState{}}; }
|
|
};
|
|
|
|
} // namespace
|
|
|
|
EffectStateFactory *PshifterStateFactory_getFactory()
|
|
{
|
|
static PshifterStateFactory PshifterFactory{};
|
|
return &PshifterFactory;
|
|
}
|