Torque3D/Engine/lib/openal-soft/alc/effects/chorus.cpp

329 lines
12 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 2013 by Mike Gorchak
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <algorithm>
#include <array>
#include <cmath>
#include <cstdlib>
#include <limits>
#include <variant>
#include <vector>
#include "alc/effects/base.h"
#include "alnumbers.h"
#include "alnumeric.h"
#include "alspan.h"
#include "core/ambidefs.h"
#include "core/bufferline.h"
#include "core/context.h"
#include "core/cubic_tables.h"
#include "core/device.h"
#include "core/effects/base.h"
#include "core/effectslot.h"
#include "core/mixer.h"
#include "core/mixer/defs.h"
#include "core/resampler_limits.h"
#include "intrusive_ptr.h"
#include "opthelpers.h"
struct BufferStorage;
namespace {
using uint = unsigned int;
constexpr auto inv_sqrt2 = static_cast<float>(1.0 / al::numbers::sqrt2);
constexpr auto lcoeffs_pw = CalcDirectionCoeffs(std::array{-1.0f, 0.0f, 0.0f});
constexpr auto rcoeffs_pw = CalcDirectionCoeffs(std::array{ 1.0f, 0.0f, 0.0f});
constexpr auto lcoeffs_nrml = CalcDirectionCoeffs(std::array{-inv_sqrt2, 0.0f, inv_sqrt2});
constexpr auto rcoeffs_nrml = CalcDirectionCoeffs(std::array{ inv_sqrt2, 0.0f, inv_sqrt2});
struct ChorusState final : public EffectState {
std::vector<float> mDelayBuffer;
uint mOffset{0};
uint mLfoOffset{0};
uint mLfoRange{1};
float mLfoScale{0.0f};
uint mLfoDisp{0};
/* Calculated delays to apply to the left and right outputs. */
std::array<std::array<uint,BufferLineSize>,2> mModDelays{};
/* Temp storage for the modulated left and right outputs. */
alignas(16) std::array<FloatBufferLine,2> mBuffer{};
/* Gains for left and right outputs. */
struct OutGains {
std::array<float,MaxAmbiChannels> Current{};
std::array<float,MaxAmbiChannels> Target{};
};
std::array<OutGains,2> mGains;
/* effect parameters */
ChorusWaveform mWaveform{};
int mDelay{0};
float mDepth{0.0f};
float mFeedback{0.0f};
void calcTriangleDelays(const size_t todo);
void calcSinusoidDelays(const size_t todo);
void deviceUpdate(const DeviceBase *device, const float MaxDelay);
void update(const ContextBase *context, const EffectSlot *slot, const ChorusWaveform waveform,
const float delay, const float depth, const float feedback, const float rate,
int phase, const EffectTarget target);
void deviceUpdate(const DeviceBase *device, const BufferStorage*) final;
void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props_,
const EffectTarget target) final;
void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
const al::span<FloatBufferLine> samplesOut) final;
};
void ChorusState::deviceUpdate(const DeviceBase *Device, const BufferStorage*)
{
constexpr auto MaxDelay = std::max(ChorusMaxDelay, FlangerMaxDelay);
const auto frequency = static_cast<float>(Device->mSampleRate);
const size_t maxlen{NextPowerOf2(float2uint(MaxDelay*2.0f*frequency) + 1u)};
if(maxlen != mDelayBuffer.size())
decltype(mDelayBuffer)(maxlen).swap(mDelayBuffer);
std::fill(mDelayBuffer.begin(), mDelayBuffer.end(), 0.0f);
for(auto &e : mGains)
{
e.Current.fill(0.0f);
e.Target.fill(0.0f);
}
}
void ChorusState::update(const ContextBase *context, const EffectSlot *slot,
const EffectProps *props_, const EffectTarget target)
{
static constexpr int mindelay{MaxResamplerEdge << gCubicTable.sTableBits};
auto &props = std::get<ChorusProps>(*props_);
/* The LFO depth is scaled to be relative to the sample delay. Clamp the
* delay and depth to allow enough padding for resampling.
*/
const DeviceBase *device{context->mDevice};
const auto frequency = static_cast<float>(device->mSampleRate);
mWaveform = props.Waveform;
const auto stepscale = float{frequency * gCubicTable.sTableSteps};
mDelay = std::max(float2int(std::round(props.Delay * stepscale)), mindelay);
mDepth = std::min(static_cast<float>(mDelay) * props.Depth,
static_cast<float>(mDelay - mindelay));
mFeedback = props.Feedback;
/* Gains for left and right sides */
const bool ispairwise{device->mRenderMode == RenderMode::Pairwise};
const auto lcoeffs = (!ispairwise) ? al::span{lcoeffs_nrml} : al::span{lcoeffs_pw};
const auto rcoeffs = (!ispairwise) ? al::span{rcoeffs_nrml} : al::span{rcoeffs_pw};
/* Attenuate the outputs by -3dB, since we duplicate a single mono input to
* separate left/right outputs.
*/
const auto gain = slot->Gain * (1.0f/al::numbers::sqrt2_v<float>);
mOutTarget = target.Main->Buffer;
ComputePanGains(target.Main, lcoeffs, gain, mGains[0].Target);
ComputePanGains(target.Main, rcoeffs, gain, mGains[1].Target);
if(!(props.Rate > 0.0f))
{
mLfoOffset = 0;
mLfoRange = 1;
mLfoScale = 0.0f;
mLfoDisp = 0;
}
else
{
/* Calculate LFO coefficient (number of samples per cycle). Limit the
* max range to avoid overflow when calculating the displacement.
*/
static constexpr int range_limit{std::numeric_limits<int>::max()/360 - 180};
const auto range = std::round(frequency / props.Rate);
const uint lfo_range{float2uint(std::min(range, float{range_limit}))};
mLfoOffset = mLfoOffset * lfo_range / mLfoRange;
mLfoRange = lfo_range;
switch(mWaveform)
{
case ChorusWaveform::Triangle:
mLfoScale = 4.0f / static_cast<float>(mLfoRange);
break;
case ChorusWaveform::Sinusoid:
mLfoScale = al::numbers::pi_v<float>*2.0f / static_cast<float>(mLfoRange);
break;
}
/* Calculate lfo phase displacement */
auto phase = props.Phase;
if(phase < 0) phase += 360;
mLfoDisp = (mLfoRange*static_cast<uint>(phase) + 180) / 360;
}
}
void ChorusState::calcTriangleDelays(const size_t todo)
{
const uint lfo_range{mLfoRange};
const float lfo_scale{mLfoScale};
const float depth{mDepth};
const int delay{mDelay};
auto gen_lfo = [lfo_scale,depth,delay](const uint offset) -> uint
{
const float offset_norm{static_cast<float>(offset) * lfo_scale};
return static_cast<uint>(fastf2i((1.0f-std::abs(2.0f-offset_norm)) * depth) + delay);
};
uint offset{mLfoOffset};
ASSUME(lfo_range > offset);
auto ldelays = mModDelays[0].begin();
for(size_t i{0};i < todo;)
{
const size_t rem{std::min(todo-i, size_t{lfo_range-offset})};
ldelays = std::generate_n(ldelays, rem, [&offset,gen_lfo] { return gen_lfo(offset++); });
if(offset == lfo_range) offset = 0;
i += rem;
}
offset = (mLfoOffset+mLfoDisp) % lfo_range;
auto rdelays = mModDelays[1].begin();
for(size_t i{0};i < todo;)
{
const size_t rem{std::min(todo-i, size_t{lfo_range-offset})};
rdelays = std::generate_n(rdelays, rem, [&offset,gen_lfo] { return gen_lfo(offset++); });
if(offset == lfo_range) offset = 0;
i += rem;
}
mLfoOffset = static_cast<uint>(mLfoOffset+todo) % lfo_range;
}
void ChorusState::calcSinusoidDelays(const size_t todo)
{
const uint lfo_range{mLfoRange};
const float lfo_scale{mLfoScale};
const float depth{mDepth};
const int delay{mDelay};
auto gen_lfo = [lfo_scale,depth,delay](const uint offset) -> uint
{
const float offset_norm{static_cast<float>(offset) * lfo_scale};
return static_cast<uint>(fastf2i(std::sin(offset_norm)*depth) + delay);
};
uint offset{mLfoOffset};
ASSUME(lfo_range > offset);
auto ldelays = mModDelays[0].begin();
for(size_t i{0};i < todo;)
{
const size_t rem{std::min(todo-i, size_t{lfo_range-offset})};
ldelays = std::generate_n(ldelays, rem, [&offset,gen_lfo] { return gen_lfo(offset++); });
if(offset == lfo_range) offset = 0;
i += rem;
}
offset = (mLfoOffset+mLfoDisp) % lfo_range;
auto rdelays = mModDelays[1].begin();
for(size_t i{0};i < todo;)
{
const size_t rem{std::min(todo-i, size_t{lfo_range-offset})};
rdelays = std::generate_n(rdelays, rem, [&offset,gen_lfo] { return gen_lfo(offset++); });
if(offset == lfo_range) offset = 0;
i += rem;
}
mLfoOffset = static_cast<uint>(mLfoOffset+todo) % lfo_range;
}
void ChorusState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
{
const auto delaybuf = al::span{mDelayBuffer};
const size_t bufmask{delaybuf.size()-1};
const float feedback{mFeedback};
const uint avgdelay{(static_cast<uint>(mDelay) + MixerFracHalf) >> MixerFracBits};
uint offset{mOffset};
if(mWaveform == ChorusWaveform::Sinusoid)
calcSinusoidDelays(samplesToDo);
else /*if(mWaveform == ChorusWaveform::Triangle)*/
calcTriangleDelays(samplesToDo);
const auto ldelays = al::span{mModDelays[0]};
const auto rdelays = al::span{mModDelays[1]};
const auto lbuffer = al::span{mBuffer[0]};
const auto rbuffer = al::span{mBuffer[1]};
for(size_t i{0u};i < samplesToDo;++i)
{
// Feed the buffer's input first (necessary for delays < 1).
delaybuf[offset&bufmask] = samplesIn[0][i];
// Tap for the left output.
size_t delay{offset - (ldelays[i] >> gCubicTable.sTableBits)};
size_t phase{ldelays[i] & gCubicTable.sTableMask};
lbuffer[i] = delaybuf[(delay+1) & bufmask]*gCubicTable.getCoeff0(phase) +
delaybuf[(delay ) & bufmask]*gCubicTable.getCoeff1(phase) +
delaybuf[(delay-1) & bufmask]*gCubicTable.getCoeff2(phase) +
delaybuf[(delay-2) & bufmask]*gCubicTable.getCoeff3(phase);
// Tap for the right output.
delay = offset - (rdelays[i] >> gCubicTable.sTableBits);
phase = rdelays[i] & gCubicTable.sTableMask;
rbuffer[i] = delaybuf[(delay+1) & bufmask]*gCubicTable.getCoeff0(phase) +
delaybuf[(delay ) & bufmask]*gCubicTable.getCoeff1(phase) +
delaybuf[(delay-1) & bufmask]*gCubicTable.getCoeff2(phase) +
delaybuf[(delay-2) & bufmask]*gCubicTable.getCoeff3(phase);
// Accumulate feedback from the average delay of the taps.
delaybuf[offset&bufmask] += delaybuf[(offset-avgdelay) & bufmask] * feedback;
++offset;
}
MixSamples(lbuffer.first(samplesToDo), samplesOut, mGains[0].Current, mGains[0].Target,
samplesToDo, 0);
MixSamples(rbuffer.first(samplesToDo), samplesOut, mGains[1].Current, mGains[1].Target,
samplesToDo, 0);
mOffset = offset;
}
struct ChorusStateFactory final : public EffectStateFactory {
al::intrusive_ptr<EffectState> create() override
{ return al::intrusive_ptr<EffectState>{new ChorusState{}}; }
};
} // namespace
EffectStateFactory *ChorusStateFactory_getFactory()
{
static ChorusStateFactory ChorusFactory{};
return &ChorusFactory;
}