Torque3D/Engine/lib/openal-soft/alc/alc.cpp

3699 lines
123 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include "config_backends.h"
#include "config_simd.h"
#include "version.h"
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#include <algorithm>
#include <array>
#include <atomic>
#include <bitset>
#include <cassert>
#include <cctype>
#include <chrono>
#include <climits>
#include <cmath>
#include <csignal>
#include <cstddef>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <exception>
#include <functional>
#include <iterator>
#include <limits>
#include <memory>
#include <mutex>
#include <new>
#include <optional>
#include <stdexcept>
#include <string>
#include <string_view>
#include <tuple>
#include <utility>
#include <vector>
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"
#include "AL/efx.h"
#include "al/auxeffectslot.h"
#include "al/buffer.h"
#include "al/debug.h"
#include "al/effect.h"
#include "al/filter.h"
#include "al/source.h"
#include "alc/events.h"
#include "albit.h"
#include "alconfig.h"
#include "almalloc.h"
#include "alnumbers.h"
#include "alnumeric.h"
#include "alspan.h"
#include "alstring.h"
#include "alu.h"
#include "atomic.h"
#include "context.h"
#include "core/ambidefs.h"
#include "core/bformatdec.h"
#include "core/bs2b.h"
#include "core/context.h"
#include "core/cpu_caps.h"
#include "core/devformat.h"
#include "core/device.h"
#include "core/effects/base.h"
#include "core/effectslot.h"
#include "core/filters/nfc.h"
#include "core/helpers.h"
#include "core/mastering.h"
#include "core/fpu_ctrl.h"
#include "core/logging.h"
#include "core/uhjfilter.h"
#include "core/voice.h"
#include "core/voice_change.h"
#include "device.h"
#include "effects/base.h"
#include "export_list.h"
#include "flexarray.h"
#include "fmt/core.h"
#include "inprogext.h"
#include "intrusive_ptr.h"
#include "opthelpers.h"
#include "strutils.h"
#include "backends/base.h"
#include "backends/null.h"
#include "backends/loopback.h"
#if HAVE_PIPEWIRE
#include "backends/pipewire.h"
#endif
#if HAVE_JACK
#include "backends/jack.h"
#endif
#if HAVE_PULSEAUDIO
#include "backends/pulseaudio.h"
#endif
#if HAVE_ALSA
#include "backends/alsa.h"
#endif
#if HAVE_WASAPI
#include "backends/wasapi.h"
#endif
#if HAVE_COREAUDIO
#include "backends/coreaudio.h"
#endif
#if HAVE_OPENSL
#include "backends/opensl.h"
#endif
#if HAVE_OBOE
#include "backends/oboe.h"
#endif
#if HAVE_SOLARIS
#include "backends/solaris.h"
#endif
#if HAVE_SNDIO
#include "backends/sndio.hpp"
#endif
#if HAVE_OSS
#include "backends/oss.h"
#endif
#if HAVE_DSOUND
#include "backends/dsound.h"
#endif
#if HAVE_WINMM
#include "backends/winmm.h"
#endif
#if HAVE_PORTAUDIO
#include "backends/portaudio.hpp"
#endif
#if HAVE_SDL3
#include "backends/sdl3.h"
#endif
#if HAVE_SDL2
#include "backends/sdl2.h"
#endif
#if HAVE_OTHERIO
#include "backends/otherio.h"
#endif
#if HAVE_WAVE
#include "backends/wave.h"
#endif
#if ALSOFT_EAX
#include "al/eax/api.h"
#include "al/eax/globals.h"
#endif
/************************************************
* Library initialization
************************************************/
#if defined(_WIN32) && !defined(AL_LIBTYPE_STATIC)
BOOL APIENTRY DllMain(HINSTANCE module, DWORD reason, LPVOID /*reserved*/)
{
switch(reason)
{
case DLL_PROCESS_ATTACH:
/* Pin the DLL so we won't get unloaded until the process terminates */
GetModuleHandleExW(GET_MODULE_HANDLE_EX_FLAG_PIN | GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS,
reinterpret_cast<WCHAR*>(module), &module);
break;
}
return TRUE;
}
#endif
namespace {
using namespace std::string_view_literals;
using std::chrono::seconds;
using std::chrono::nanoseconds;
using voidp = void*;
using float2 = std::array<float,2>;
auto gProcessRunning = true;
struct ProcessWatcher {
ProcessWatcher() = default;
ProcessWatcher(const ProcessWatcher&) = delete;
ProcessWatcher& operator=(const ProcessWatcher&) = delete;
~ProcessWatcher() { gProcessRunning = false; }
};
ProcessWatcher gProcessWatcher;
/************************************************
* Backends
************************************************/
struct BackendInfo {
const char *name;
BackendFactory& (*getFactory)();
};
std::array BackendList{
#if HAVE_PIPEWIRE
BackendInfo{"pipewire", PipeWireBackendFactory::getFactory},
#endif
#if HAVE_PULSEAUDIO
BackendInfo{"pulse", PulseBackendFactory::getFactory},
#endif
#if HAVE_WASAPI
BackendInfo{"wasapi", WasapiBackendFactory::getFactory},
#endif
#if HAVE_COREAUDIO
BackendInfo{"core", CoreAudioBackendFactory::getFactory},
#endif
#if HAVE_OBOE
BackendInfo{"oboe", OboeBackendFactory::getFactory},
#endif
#if HAVE_OPENSL
BackendInfo{"opensl", OSLBackendFactory::getFactory},
#endif
#if HAVE_ALSA
BackendInfo{"alsa", AlsaBackendFactory::getFactory},
#endif
#if HAVE_SOLARIS
BackendInfo{"solaris", SolarisBackendFactory::getFactory},
#endif
#if HAVE_SNDIO
BackendInfo{"sndio", SndIOBackendFactory::getFactory},
#endif
#if HAVE_OSS
BackendInfo{"oss", OSSBackendFactory::getFactory},
#endif
#if HAVE_DSOUND
BackendInfo{"dsound", DSoundBackendFactory::getFactory},
#endif
#if HAVE_WINMM
BackendInfo{"winmm", WinMMBackendFactory::getFactory},
#endif
#if HAVE_PORTAUDIO
BackendInfo{"port", PortBackendFactory::getFactory},
#endif
#if HAVE_SDL3
BackendInfo{"sdl3", SDL3BackendFactory::getFactory},
#endif
#if HAVE_SDL2
BackendInfo{"sdl2", SDL2BackendFactory::getFactory},
#endif
#if HAVE_JACK
BackendInfo{"jack", JackBackendFactory::getFactory},
#endif
#if HAVE_OTHERIO
BackendInfo{"otherio", OtherIOBackendFactory::getFactory},
#endif
BackendInfo{"null", NullBackendFactory::getFactory},
#if HAVE_WAVE
BackendInfo{"wave", WaveBackendFactory::getFactory},
#endif
};
BackendFactory *PlaybackFactory{};
BackendFactory *CaptureFactory{};
[[nodiscard]] constexpr auto GetNoErrorString() noexcept { return "No Error"; }
[[nodiscard]] constexpr auto GetInvalidDeviceString() noexcept { return "Invalid Device"; }
[[nodiscard]] constexpr auto GetInvalidContextString() noexcept { return "Invalid Context"; }
[[nodiscard]] constexpr auto GetInvalidEnumString() noexcept { return "Invalid Enum"; }
[[nodiscard]] constexpr auto GetInvalidValueString() noexcept { return "Invalid Value"; }
[[nodiscard]] constexpr auto GetOutOfMemoryString() noexcept { return "Out of Memory"; }
[[nodiscard]] constexpr auto GetDefaultName() noexcept { return "OpenAL Soft\0"; }
#ifdef _WIN32
[[nodiscard]] constexpr auto GetDevicePrefix() noexcept { return "OpenAL Soft on "sv; }
#else
[[nodiscard]] constexpr auto GetDevicePrefix() noexcept { return std::string_view{}; }
#endif
/************************************************
* Global variables
************************************************/
/* Enumerated device names */
std::vector<std::string> alcAllDevicesArray;
std::vector<std::string> alcCaptureDeviceArray;
std::string alcAllDevicesList;
std::string alcCaptureDeviceList;
/* Default is always the first in the list */
std::string alcDefaultAllDevicesSpecifier;
std::string alcCaptureDefaultDeviceSpecifier;
std::atomic<ALCenum> LastNullDeviceError{ALC_NO_ERROR};
/* Flag to trap ALC device errors */
bool TrapALCError{false};
/* One-time configuration init control */
std::once_flag alc_config_once{};
/* Flag to specify if alcSuspendContext/alcProcessContext should defer/process
* updates.
*/
bool SuspendDefers{true};
/* Initial seed for dithering. */
constexpr uint DitherRNGSeed{22222u};
/************************************************
* ALC information
************************************************/
[[nodiscard]] constexpr auto GetNoDeviceExtList() noexcept -> const char*
{
return "ALC_ENUMERATE_ALL_EXT "
"ALC_ENUMERATION_EXT "
"ALC_EXT_CAPTURE "
"ALC_EXT_direct_context "
"ALC_EXT_EFX "
"ALC_EXT_thread_local_context "
"ALC_SOFT_loopback "
"ALC_SOFT_loopback_bformat "
"ALC_SOFT_reopen_device "
"ALC_SOFT_system_events";
}
[[nodiscard]] constexpr auto GetExtensionList() noexcept -> const char*
{
return "ALC_ENUMERATE_ALL_EXT "
"ALC_ENUMERATION_EXT "
"ALC_EXT_CAPTURE "
"ALC_EXT_debug "
"ALC_EXT_DEDICATED "
"ALC_EXT_direct_context "
"ALC_EXT_disconnect "
"ALC_EXT_EFX "
"ALC_EXT_thread_local_context "
"ALC_SOFT_device_clock "
"ALC_SOFT_HRTF "
"ALC_SOFT_loopback "
"ALC_SOFT_loopback_bformat "
"ALC_SOFT_output_limiter "
"ALC_SOFT_output_mode "
"ALC_SOFT_pause_device "
"ALC_SOFT_reopen_device "
"ALC_SOFT_system_events";
}
constexpr int alcMajorVersion{1};
constexpr int alcMinorVersion{1};
constexpr int alcEFXMajorVersion{1};
constexpr int alcEFXMinorVersion{0};
using DeviceRef = al::intrusive_ptr<al::Device>;
/************************************************
* Device lists
************************************************/
std::vector<al::Device*> DeviceList;
std::vector<ALCcontext*> ContextList;
std::recursive_mutex ListLock;
void alc_initconfig()
{
if(auto loglevel = al::getenv("ALSOFT_LOGLEVEL"))
{
long lvl = strtol(loglevel->c_str(), nullptr, 0);
if(lvl >= static_cast<long>(LogLevel::Trace))
gLogLevel = LogLevel::Trace;
else if(lvl <= static_cast<long>(LogLevel::Disable))
gLogLevel = LogLevel::Disable;
else
gLogLevel = static_cast<LogLevel>(lvl);
}
#ifdef _WIN32
if(const auto logfile = al::getenv(L"ALSOFT_LOGFILE"))
{
FILE *logf{_wfopen(logfile->c_str(), L"wt")};
if(logf) gLogFile = logf;
else
{
auto u8name = wstr_to_utf8(*logfile);
ERR("Failed to open log file '{}'", u8name);
}
}
#else
if(const auto logfile = al::getenv("ALSOFT_LOGFILE"))
{
FILE *logf{fopen(logfile->c_str(), "wt")};
if(logf) gLogFile = logf;
else ERR("Failed to open log file '{}'", *logfile);
}
#endif
TRACE("Initializing library v{}-{} {}", ALSOFT_VERSION, ALSOFT_GIT_COMMIT_HASH,
ALSOFT_GIT_BRANCH);
{
std::string names;
if(std::size(BackendList) < 1)
names = "(none)";
else
{
const al::span<const BackendInfo> infos{BackendList};
names = infos[0].name;
for(const auto &backend : infos.subspan<1>())
{
names += ", ";
names += backend.name;
}
}
TRACE("Supported backends: {}", names);
}
ReadALConfig();
if(auto suspendmode = al::getenv("__ALSOFT_SUSPEND_CONTEXT"))
{
if(al::case_compare(*suspendmode, "ignore"sv) == 0)
{
SuspendDefers = false;
TRACE("Selected context suspend behavior, \"ignore\"");
}
else
ERR("Unhandled context suspend behavior setting: \"{}\"", *suspendmode);
}
int capfilter{0};
#if HAVE_SSE4_1
capfilter |= CPU_CAP_SSE | CPU_CAP_SSE2 | CPU_CAP_SSE3 | CPU_CAP_SSE4_1;
#elif HAVE_SSE3
capfilter |= CPU_CAP_SSE | CPU_CAP_SSE2 | CPU_CAP_SSE3;
#elif HAVE_SSE2
capfilter |= CPU_CAP_SSE | CPU_CAP_SSE2;
#elif HAVE_SSE
capfilter |= CPU_CAP_SSE;
#endif
#if HAVE_NEON
capfilter |= CPU_CAP_NEON;
#endif
if(auto cpuopt = ConfigValueStr({}, {}, "disable-cpu-exts"sv))
{
std::string_view cpulist{*cpuopt};
if(al::case_compare(cpulist, "all"sv) == 0)
capfilter = 0;
else while(!cpulist.empty())
{
auto nextpos = std::min(cpulist.find(','), cpulist.size());
auto entry = cpulist.substr(0, nextpos);
while(nextpos < cpulist.size() && cpulist[nextpos] == ',')
++nextpos;
cpulist.remove_prefix(nextpos);
while(!entry.empty() && std::isspace(entry.front()))
entry.remove_prefix(1);
while(!entry.empty() && std::isspace(entry.back()))
entry.remove_suffix(1);
if(entry.empty())
continue;
if(al::case_compare(entry, "sse"sv) == 0)
capfilter &= ~CPU_CAP_SSE;
else if(al::case_compare(entry, "sse2"sv) == 0)
capfilter &= ~CPU_CAP_SSE2;
else if(al::case_compare(entry, "sse3"sv) == 0)
capfilter &= ~CPU_CAP_SSE3;
else if(al::case_compare(entry, "sse4.1"sv) == 0)
capfilter &= ~CPU_CAP_SSE4_1;
else if(al::case_compare(entry, "neon"sv) == 0)
capfilter &= ~CPU_CAP_NEON;
else
WARN("Invalid CPU extension \"{}\"", entry);
}
}
if(auto cpuopt = GetCPUInfo())
{
if(!cpuopt->mVendor.empty() || !cpuopt->mName.empty())
{
TRACE("Vendor ID: \"{}\"", cpuopt->mVendor);
TRACE("Name: \"{}\"", cpuopt->mName);
}
const int caps{cpuopt->mCaps};
TRACE("Extensions:{}{}{}{}{}{}",
((capfilter&CPU_CAP_SSE) ?(caps&CPU_CAP_SSE) ?" +SSE"sv : " -SSE"sv : ""sv),
((capfilter&CPU_CAP_SSE2) ?(caps&CPU_CAP_SSE2) ?" +SSE2"sv : " -SSE2"sv : ""sv),
((capfilter&CPU_CAP_SSE3) ?(caps&CPU_CAP_SSE3) ?" +SSE3"sv : " -SSE3"sv : ""sv),
((capfilter&CPU_CAP_SSE4_1)?(caps&CPU_CAP_SSE4_1)?" +SSE4.1"sv : " -SSE4.1"sv : ""sv),
((capfilter&CPU_CAP_NEON) ?(caps&CPU_CAP_NEON) ?" +NEON"sv : " -NEON"sv : ""sv),
(!capfilter) ? " -none-"sv : ""sv);
CPUCapFlags = caps & capfilter;
}
if(auto priopt = ConfigValueInt({}, {}, "rt-prio"sv))
RTPrioLevel = *priopt;
if(auto limopt = ConfigValueBool({}, {}, "rt-time-limit"sv))
AllowRTTimeLimit = *limopt;
{
CompatFlagBitset compatflags{};
auto checkflag = [](const char *envname, const std::string_view optname) -> bool
{
if(auto optval = al::getenv(envname))
{
return al::case_compare(*optval, "true"sv) == 0
|| strtol(optval->c_str(), nullptr, 0) == 1;
}
return GetConfigValueBool({}, "game_compat", optname, false);
};
sBufferSubDataCompat = checkflag("__ALSOFT_ENABLE_SUB_DATA_EXT", "enable-sub-data-ext"sv);
compatflags.set(CompatFlags::ReverseX, checkflag("__ALSOFT_REVERSE_X", "reverse-x"sv));
compatflags.set(CompatFlags::ReverseY, checkflag("__ALSOFT_REVERSE_Y", "reverse-y"sv));
compatflags.set(CompatFlags::ReverseZ, checkflag("__ALSOFT_REVERSE_Z", "reverse-z"sv));
aluInit(compatflags, ConfigValueFloat({}, "game_compat"sv, "nfc-scale"sv).value_or(1.0f));
}
Voice::InitMixer(ConfigValueStr({}, {}, "resampler"sv));
if(auto uhjfiltopt = ConfigValueStr({}, "uhj"sv, "decode-filter"sv))
{
if(al::case_compare(*uhjfiltopt, "fir256"sv) == 0)
UhjDecodeQuality = UhjQualityType::FIR256;
else if(al::case_compare(*uhjfiltopt, "fir512"sv) == 0)
UhjDecodeQuality = UhjQualityType::FIR512;
else if(al::case_compare(*uhjfiltopt, "iir"sv) == 0)
UhjDecodeQuality = UhjQualityType::IIR;
else
WARN("Unsupported uhj/decode-filter: {}", *uhjfiltopt);
}
if(auto uhjfiltopt = ConfigValueStr({}, "uhj"sv, "encode-filter"sv))
{
if(al::case_compare(*uhjfiltopt, "fir256"sv) == 0)
UhjEncodeQuality = UhjQualityType::FIR256;
else if(al::case_compare(*uhjfiltopt, "fir512"sv) == 0)
UhjEncodeQuality = UhjQualityType::FIR512;
else if(al::case_compare(*uhjfiltopt, "iir"sv) == 0)
UhjEncodeQuality = UhjQualityType::IIR;
else
WARN("Unsupported uhj/encode-filter: {}", *uhjfiltopt);
}
if(auto traperr = al::getenv("ALSOFT_TRAP_ERROR"); traperr
&& (al::case_compare(*traperr, "true"sv) == 0
|| std::strtol(traperr->c_str(), nullptr, 0) == 1))
{
TrapALError = true;
TrapALCError = true;
}
else
{
traperr = al::getenv("ALSOFT_TRAP_AL_ERROR");
if(traperr)
TrapALError = al::case_compare(*traperr, "true"sv) == 0
|| strtol(traperr->c_str(), nullptr, 0) == 1;
else
TrapALError = GetConfigValueBool({}, {}, "trap-al-error"sv, false);
traperr = al::getenv("ALSOFT_TRAP_ALC_ERROR");
if(traperr)
TrapALCError = al::case_compare(*traperr, "true"sv) == 0
|| strtol(traperr->c_str(), nullptr, 0) == 1;
else
TrapALCError = GetConfigValueBool({}, {}, "trap-alc-error"sv, false);
}
if(auto boostopt = ConfigValueFloat({}, "reverb"sv, "boost"sv))
{
const float valf{std::isfinite(*boostopt) ? std::clamp(*boostopt, -24.0f, 24.0f) : 0.0f};
ReverbBoost *= std::pow(10.0f, valf / 20.0f);
}
auto BackendListEnd = BackendList.end();
auto devopt = al::getenv("ALSOFT_DRIVERS");
if(!devopt) devopt = ConfigValueStr({}, {}, "drivers"sv);
if(devopt)
{
auto backendlist_cur = BackendList.begin();
bool endlist{true};
std::string_view drvlist{*devopt};
while(!drvlist.empty())
{
auto nextpos = std::min(drvlist.find(','), drvlist.size());
auto entry = drvlist.substr(0, nextpos);
endlist = true;
if(nextpos < drvlist.size())
{
endlist = false;
while(nextpos < drvlist.size() && drvlist[nextpos] == ',')
++nextpos;
}
drvlist.remove_prefix(nextpos);
while(!entry.empty() && std::isspace(entry.front()))
entry.remove_prefix(1);
const bool delitem{!entry.empty() && entry.front() == '-'};
if(delitem) entry.remove_prefix(1);
while(!entry.empty() && std::isspace(entry.back()))
entry.remove_suffix(1);
if(entry.empty())
continue;
#ifdef HAVE_WASAPI
/* HACK: For backwards compatibility, convert backend references of
* mmdevapi to wasapi. This should eventually be removed.
*/
if(entry == "mmdevapi"sv)
entry = "wasapi"sv;
#endif
auto find_backend = [entry](const BackendInfo &backend) -> bool
{ return entry == backend.name; };
auto this_backend = std::find_if(BackendList.begin(), BackendListEnd, find_backend);
if(this_backend == BackendListEnd)
continue;
if(delitem)
BackendListEnd = std::move(this_backend+1, BackendListEnd, this_backend);
else
backendlist_cur = std::rotate(backendlist_cur, this_backend, this_backend+1);
}
if(endlist)
BackendListEnd = backendlist_cur;
}
else
{
/* Exclude the null and wave writer backends from being considered by
* default. This ensures there will be no available devices if none of
* the normal backends are usable, rather than pretending there is a
* device but outputs nowhere.
*/
while(BackendListEnd != BackendList.begin())
{
--BackendListEnd;
if(BackendListEnd->name == "null"sv)
break;
}
}
auto init_backend = [](BackendInfo &backend) -> void
{
if(PlaybackFactory && CaptureFactory)
return;
BackendFactory &factory = backend.getFactory();
if(!factory.init())
{
WARN("Failed to initialize backend \"{}\"", backend.name);
return;
}
TRACE("Initialized backend \"{}\"", backend.name);
if(!PlaybackFactory && factory.querySupport(BackendType::Playback))
{
PlaybackFactory = &factory;
TRACE("Added \"{}\" for playback", backend.name);
}
if(!CaptureFactory && factory.querySupport(BackendType::Capture))
{
CaptureFactory = &factory;
TRACE("Added \"{}\" for capture", backend.name);
}
};
std::for_each(BackendList.begin(), BackendListEnd, init_backend);
LoopbackBackendFactory::getFactory().init();
if(!PlaybackFactory)
WARN("No playback backend available!");
if(!CaptureFactory)
WARN("No capture backend available!");
if(auto exclopt = ConfigValueStr({}, {}, "excludefx"sv))
{
std::string_view exclude{*exclopt};
while(!exclude.empty())
{
const auto nextpos = exclude.find(',');
const auto entry = exclude.substr(0, nextpos);
exclude.remove_prefix((nextpos < exclude.size()) ? nextpos+1 : exclude.size());
std::for_each(gEffectList.cbegin(), gEffectList.cend(),
[entry](const EffectList &effectitem) noexcept
{
if(entry == std::data(effectitem.name))
DisabledEffects.set(effectitem.type);
});
}
}
InitEffect(&ALCcontext::sDefaultEffect);
auto defrevopt = al::getenv("ALSOFT_DEFAULT_REVERB");
if(!defrevopt) defrevopt = ConfigValueStr({}, {}, "default-reverb"sv);
if(defrevopt) LoadReverbPreset(*defrevopt, &ALCcontext::sDefaultEffect);
#if ALSOFT_EAX
if(const auto eax_enable_opt = ConfigValueBool({}, "eax", "enable"))
{
eax_g_is_enabled = *eax_enable_opt;
if(!eax_g_is_enabled)
TRACE("EAX disabled by a configuration.");
}
else
eax_g_is_enabled = true;
if((DisabledEffects.test(EAXREVERB_EFFECT) || DisabledEffects.test(CHORUS_EFFECT))
&& eax_g_is_enabled)
{
eax_g_is_enabled = false;
TRACE("EAX disabled because {} disabled.",
(DisabledEffects.test(EAXREVERB_EFFECT) && DisabledEffects.test(CHORUS_EFFECT))
? "EAXReverb and Chorus are"sv :
DisabledEffects.test(EAXREVERB_EFFECT) ? "EAXReverb is"sv :
DisabledEffects.test(CHORUS_EFFECT) ? "Chorus is"sv : ""sv);
}
if(eax_g_is_enabled)
{
if(auto optval = al::getenv("ALSOFT_EAX_TRACE_COMMITS"))
{
EaxTraceCommits = al::case_compare(*optval, "true"sv) == 0
|| strtol(optval->c_str(), nullptr, 0) == 1;
}
else
EaxTraceCommits = GetConfigValueBool({}, "eax"sv, "trace-commits"sv, false);
}
#endif // ALSOFT_EAX
}
inline void InitConfig()
{ std::call_once(alc_config_once, [](){alc_initconfig();}); }
/************************************************
* Device enumeration
************************************************/
void ProbeAllDevicesList()
{
InitConfig();
std::lock_guard<std::recursive_mutex> listlock{ListLock};
if(!PlaybackFactory)
{
decltype(alcAllDevicesArray){}.swap(alcAllDevicesArray);
decltype(alcAllDevicesList){}.swap(alcAllDevicesList);
}
else
{
alcAllDevicesArray = PlaybackFactory->enumerate(BackendType::Playback);
if(const auto prefix = GetDevicePrefix(); !prefix.empty())
std::for_each(alcAllDevicesArray.begin(), alcAllDevicesArray.end(),
[prefix](std::string &name) { name.insert(0, prefix); });
decltype(alcAllDevicesList){}.swap(alcAllDevicesList);
if(alcAllDevicesArray.empty())
alcAllDevicesList += '\0';
else for(auto &devname : alcAllDevicesArray)
alcAllDevicesList.append(devname) += '\0';
}
}
void ProbeCaptureDeviceList()
{
InitConfig();
std::lock_guard<std::recursive_mutex> listlock{ListLock};
if(!CaptureFactory)
{
decltype(alcCaptureDeviceArray){}.swap(alcCaptureDeviceArray);
decltype(alcCaptureDeviceList){}.swap(alcCaptureDeviceList);
}
else
{
alcCaptureDeviceArray = CaptureFactory->enumerate(BackendType::Capture);
if(const auto prefix = GetDevicePrefix(); !prefix.empty())
std::for_each(alcCaptureDeviceArray.begin(), alcCaptureDeviceArray.end(),
[prefix](std::string &name) { name.insert(0, prefix); });
decltype(alcCaptureDeviceList){}.swap(alcCaptureDeviceList);
if(alcCaptureDeviceArray.empty())
alcCaptureDeviceList += '\0';
else for(auto &devname : alcCaptureDeviceArray)
alcCaptureDeviceList.append(devname) += '\0';
}
}
al::span<const ALCint> SpanFromAttributeList(const ALCint *attribs) noexcept
{
al::span<const ALCint> attrSpan;
if(attribs)
{
const ALCint *attrEnd{attribs};
while(*attrEnd != 0)
attrEnd += 2; /* NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic) */
attrSpan = {attribs, attrEnd};
}
return attrSpan;
}
struct DevFmtPair { DevFmtChannels chans; DevFmtType type; };
std::optional<DevFmtPair> DecomposeDevFormat(ALenum format)
{
struct FormatType {
ALenum format;
DevFmtChannels channels;
DevFmtType type;
};
static constexpr std::array list{
FormatType{AL_FORMAT_MONO8, DevFmtMono, DevFmtUByte},
FormatType{AL_FORMAT_MONO16, DevFmtMono, DevFmtShort},
FormatType{AL_FORMAT_MONO_I32, DevFmtMono, DevFmtInt},
FormatType{AL_FORMAT_MONO_FLOAT32, DevFmtMono, DevFmtFloat},
FormatType{AL_FORMAT_STEREO8, DevFmtStereo, DevFmtUByte},
FormatType{AL_FORMAT_STEREO16, DevFmtStereo, DevFmtShort},
FormatType{AL_FORMAT_STEREO_I32, DevFmtStereo, DevFmtInt},
FormatType{AL_FORMAT_STEREO_FLOAT32, DevFmtStereo, DevFmtFloat},
FormatType{AL_FORMAT_QUAD8, DevFmtQuad, DevFmtUByte},
FormatType{AL_FORMAT_QUAD16, DevFmtQuad, DevFmtShort},
FormatType{AL_FORMAT_QUAD32, DevFmtQuad, DevFmtFloat},
FormatType{AL_FORMAT_QUAD_I32, DevFmtQuad, DevFmtInt},
FormatType{AL_FORMAT_QUAD_FLOAT32, DevFmtQuad, DevFmtFloat},
FormatType{AL_FORMAT_51CHN8, DevFmtX51, DevFmtUByte},
FormatType{AL_FORMAT_51CHN16, DevFmtX51, DevFmtShort},
FormatType{AL_FORMAT_51CHN32, DevFmtX51, DevFmtFloat},
FormatType{AL_FORMAT_51CHN_I32, DevFmtX51, DevFmtInt},
FormatType{AL_FORMAT_51CHN_FLOAT32, DevFmtX51, DevFmtFloat},
FormatType{AL_FORMAT_61CHN8, DevFmtX61, DevFmtUByte},
FormatType{AL_FORMAT_61CHN16, DevFmtX61, DevFmtShort},
FormatType{AL_FORMAT_61CHN32, DevFmtX61, DevFmtFloat},
FormatType{AL_FORMAT_61CHN_I32, DevFmtX61, DevFmtInt},
FormatType{AL_FORMAT_61CHN_FLOAT32, DevFmtX61, DevFmtFloat},
FormatType{AL_FORMAT_71CHN8, DevFmtX71, DevFmtUByte},
FormatType{AL_FORMAT_71CHN16, DevFmtX71, DevFmtShort},
FormatType{AL_FORMAT_71CHN32, DevFmtX71, DevFmtFloat},
FormatType{AL_FORMAT_71CHN_I32, DevFmtX71, DevFmtInt},
FormatType{AL_FORMAT_71CHN_FLOAT32, DevFmtX71, DevFmtFloat},
};
for(const auto &item : list)
{
if(item.format == format)
return DevFmtPair{item.channels, item.type};
}
return std::nullopt;
}
std::optional<DevFmtType> DevFmtTypeFromEnum(ALCenum type)
{
switch(type)
{
case ALC_BYTE_SOFT: return DevFmtByte;
case ALC_UNSIGNED_BYTE_SOFT: return DevFmtUByte;
case ALC_SHORT_SOFT: return DevFmtShort;
case ALC_UNSIGNED_SHORT_SOFT: return DevFmtUShort;
case ALC_INT_SOFT: return DevFmtInt;
case ALC_UNSIGNED_INT_SOFT: return DevFmtUInt;
case ALC_FLOAT_SOFT: return DevFmtFloat;
}
WARN("Unsupported format type: {:#04x}", as_unsigned(type));
return std::nullopt;
}
ALCenum EnumFromDevFmt(DevFmtType type)
{
switch(type)
{
case DevFmtByte: return ALC_BYTE_SOFT;
case DevFmtUByte: return ALC_UNSIGNED_BYTE_SOFT;
case DevFmtShort: return ALC_SHORT_SOFT;
case DevFmtUShort: return ALC_UNSIGNED_SHORT_SOFT;
case DevFmtInt: return ALC_INT_SOFT;
case DevFmtUInt: return ALC_UNSIGNED_INT_SOFT;
case DevFmtFloat: return ALC_FLOAT_SOFT;
}
throw std::runtime_error{fmt::format("Invalid DevFmtType: {}", int{al::to_underlying(type)})};
}
std::optional<DevFmtChannels> DevFmtChannelsFromEnum(ALCenum channels)
{
switch(channels)
{
case ALC_MONO_SOFT: return DevFmtMono;
case ALC_STEREO_SOFT: return DevFmtStereo;
case ALC_QUAD_SOFT: return DevFmtQuad;
case ALC_5POINT1_SOFT: return DevFmtX51;
case ALC_6POINT1_SOFT: return DevFmtX61;
case ALC_7POINT1_SOFT: return DevFmtX71;
case ALC_BFORMAT3D_SOFT: return DevFmtAmbi3D;
}
WARN("Unsupported format channels: {:#04x}", as_unsigned(channels));
return std::nullopt;
}
ALCenum EnumFromDevFmt(DevFmtChannels channels)
{
switch(channels)
{
case DevFmtMono: return ALC_MONO_SOFT;
case DevFmtStereo: return ALC_STEREO_SOFT;
case DevFmtQuad: return ALC_QUAD_SOFT;
case DevFmtX51: return ALC_5POINT1_SOFT;
case DevFmtX61: return ALC_6POINT1_SOFT;
case DevFmtX71: return ALC_7POINT1_SOFT;
case DevFmtAmbi3D: return ALC_BFORMAT3D_SOFT;
/* FIXME: Shouldn't happen. */
case DevFmtX714:
case DevFmtX7144:
case DevFmtX3D71: break;
}
throw std::runtime_error{fmt::format("Invalid DevFmtChannels: {}",
int{al::to_underlying(channels)})};
}
std::optional<DevAmbiLayout> DevAmbiLayoutFromEnum(ALCenum layout)
{
switch(layout)
{
case ALC_FUMA_SOFT: return DevAmbiLayout::FuMa;
case ALC_ACN_SOFT: return DevAmbiLayout::ACN;
}
WARN("Unsupported ambisonic layout: {:#04x}", as_unsigned(layout));
return std::nullopt;
}
ALCenum EnumFromDevAmbi(DevAmbiLayout layout)
{
switch(layout)
{
case DevAmbiLayout::FuMa: return ALC_FUMA_SOFT;
case DevAmbiLayout::ACN: return ALC_ACN_SOFT;
}
throw std::runtime_error{fmt::format("Invalid DevAmbiLayout: {}",
int{al::to_underlying(layout)})};
}
std::optional<DevAmbiScaling> DevAmbiScalingFromEnum(ALCenum scaling)
{
switch(scaling)
{
case ALC_FUMA_SOFT: return DevAmbiScaling::FuMa;
case ALC_SN3D_SOFT: return DevAmbiScaling::SN3D;
case ALC_N3D_SOFT: return DevAmbiScaling::N3D;
}
WARN("Unsupported ambisonic scaling: {:#04x}", as_unsigned(scaling));
return std::nullopt;
}
ALCenum EnumFromDevAmbi(DevAmbiScaling scaling)
{
switch(scaling)
{
case DevAmbiScaling::FuMa: return ALC_FUMA_SOFT;
case DevAmbiScaling::SN3D: return ALC_SN3D_SOFT;
case DevAmbiScaling::N3D: return ALC_N3D_SOFT;
}
throw std::runtime_error{fmt::format("Invalid DevAmbiScaling: {}",
int{al::to_underlying(scaling)})};
}
/* Downmixing channel arrays, to map a device format's missing channels to
* existing ones. Based on what PipeWire does, though simplified.
*/
constexpr float inv_sqrt2f{static_cast<float>(1.0 / al::numbers::sqrt2)};
constexpr std::array FrontStereo3dB{
InputRemixMap::TargetMix{FrontLeft, inv_sqrt2f},
InputRemixMap::TargetMix{FrontRight, inv_sqrt2f}
};
constexpr std::array FrontStereo6dB{
InputRemixMap::TargetMix{FrontLeft, 0.5f},
InputRemixMap::TargetMix{FrontRight, 0.5f}
};
constexpr std::array SideStereo3dB{
InputRemixMap::TargetMix{SideLeft, inv_sqrt2f},
InputRemixMap::TargetMix{SideRight, inv_sqrt2f}
};
constexpr std::array BackStereo3dB{
InputRemixMap::TargetMix{BackLeft, inv_sqrt2f},
InputRemixMap::TargetMix{BackRight, inv_sqrt2f}
};
constexpr std::array FrontLeft3dB{InputRemixMap::TargetMix{FrontLeft, inv_sqrt2f}};
constexpr std::array FrontRight3dB{InputRemixMap::TargetMix{FrontRight, inv_sqrt2f}};
constexpr std::array SideLeft0dB{InputRemixMap::TargetMix{SideLeft, 1.0f}};
constexpr std::array SideRight0dB{InputRemixMap::TargetMix{SideRight, 1.0f}};
constexpr std::array BackLeft0dB{InputRemixMap::TargetMix{BackLeft, 1.0f}};
constexpr std::array BackRight0dB{InputRemixMap::TargetMix{BackRight, 1.0f}};
constexpr std::array BackCenter3dB{InputRemixMap::TargetMix{BackCenter, inv_sqrt2f}};
constexpr std::array StereoDownmix{
InputRemixMap{FrontCenter, FrontStereo3dB},
InputRemixMap{SideLeft, FrontLeft3dB},
InputRemixMap{SideRight, FrontRight3dB},
InputRemixMap{BackLeft, FrontLeft3dB},
InputRemixMap{BackRight, FrontRight3dB},
InputRemixMap{BackCenter, FrontStereo6dB},
};
constexpr std::array QuadDownmix{
InputRemixMap{FrontCenter, FrontStereo3dB},
InputRemixMap{SideLeft, BackLeft0dB},
InputRemixMap{SideRight, BackRight0dB},
InputRemixMap{BackCenter, BackStereo3dB},
};
constexpr std::array X51Downmix{
InputRemixMap{BackLeft, SideLeft0dB},
InputRemixMap{BackRight, SideRight0dB},
InputRemixMap{BackCenter, SideStereo3dB},
};
constexpr std::array X61Downmix{
InputRemixMap{BackLeft, BackCenter3dB},
InputRemixMap{BackRight, BackCenter3dB},
};
constexpr std::array X71Downmix{
InputRemixMap{BackCenter, BackStereo3dB},
};
auto CreateDeviceLimiter(const al::Device *device, const float threshold)
-> std::unique_ptr<Compressor>
{
static constexpr float LookAheadTime{0.001f};
static constexpr float HoldTime{0.002f};
static constexpr float PreGainDb{0.0f};
static constexpr float PostGainDb{0.0f};
static constexpr float Ratio{std::numeric_limits<float>::infinity()};
static constexpr float KneeDb{0.0f};
static constexpr float AttackTime{0.02f};
static constexpr float ReleaseTime{0.2f};
const auto flags = Compressor::FlagBits{}.set(Compressor::AutoKnee).set(Compressor::AutoAttack)
.set(Compressor::AutoRelease).set(Compressor::AutoPostGain).set(Compressor::AutoDeclip);
return Compressor::Create(device->RealOut.Buffer.size(),
static_cast<float>(device->mSampleRate), flags, LookAheadTime, HoldTime, PreGainDb,
PostGainDb, threshold, Ratio, KneeDb, AttackTime, ReleaseTime);
}
/**
* Updates the device's base clock time with however many samples have been
* done. This is used so frequency changes on the device don't cause the time
* to jump forward or back. Must not be called while the device is running/
* mixing.
*/
inline void UpdateClockBase(al::Device *device)
{
using std::chrono::duration_cast;
const auto mixLock = device->getWriteMixLock();
auto clockBaseSec = device->mClockBaseSec.load(std::memory_order_relaxed);
auto clockBaseNSec = nanoseconds{device->mClockBaseNSec.load(std::memory_order_relaxed)};
clockBaseNSec += nanoseconds{seconds{device->mSamplesDone.load(std::memory_order_relaxed)}}
/ device->mSampleRate;
clockBaseSec += duration_cast<DeviceBase::seconds32>(clockBaseNSec);
clockBaseNSec %= seconds{1};
device->mClockBaseSec.store(clockBaseSec, std::memory_order_relaxed);
device->mClockBaseNSec.store(duration_cast<DeviceBase::nanoseconds32>(clockBaseNSec),
std::memory_order_relaxed);
device->mSamplesDone.store(0, std::memory_order_relaxed);
}
/**
* Updates device parameters according to the attribute list (caller is
* responsible for holding the list lock).
*/
auto UpdateDeviceParams(al::Device *device, const al::span<const int> attrList) -> ALCenum
{
if(attrList.empty() && device->Type == DeviceType::Loopback)
{
WARN("Missing attributes for loopback device");
return ALC_INVALID_VALUE;
}
uint numMono{device->NumMonoSources};
uint numStereo{device->NumStereoSources};
uint numSends{device->NumAuxSends};
std::optional<StereoEncoding> stereomode;
std::optional<bool> optlimit;
std::optional<uint> optsrate;
std::optional<DevFmtChannels> optchans;
std::optional<DevFmtType> opttype;
std::optional<DevAmbiLayout> optlayout;
std::optional<DevAmbiScaling> optscale;
uint period_size{DefaultUpdateSize};
uint buffer_size{DefaultUpdateSize * DefaultNumUpdates};
int hrtf_id{-1};
uint aorder{0u};
if(device->Type != DeviceType::Loopback)
{
/* Get default settings from the user configuration */
if(auto freqopt = device->configValue<uint>({}, "frequency"))
{
optsrate = std::clamp<uint>(*freqopt, MinOutputRate, MaxOutputRate);
const double scale{static_cast<double>(*optsrate) / double{DefaultOutputRate}};
period_size = static_cast<uint>(std::lround(period_size * scale));
}
if(auto persizeopt = device->configValue<uint>({}, "period_size"))
period_size = std::clamp(*persizeopt, 64u, 8192u);
if(auto numperopt = device->configValue<uint>({}, "periods"))
buffer_size = std::clamp(*numperopt, 2u, 16u) * period_size;
else
buffer_size = period_size * uint{DefaultNumUpdates};
if(auto typeopt = device->configValue<std::string>({}, "sample-type"))
{
struct TypeMap {
std::string_view name;
DevFmtType type;
};
constexpr std::array typelist{
TypeMap{"int8"sv, DevFmtByte },
TypeMap{"uint8"sv, DevFmtUByte },
TypeMap{"int16"sv, DevFmtShort },
TypeMap{"uint16"sv, DevFmtUShort},
TypeMap{"int32"sv, DevFmtInt },
TypeMap{"uint32"sv, DevFmtUInt },
TypeMap{"float32"sv, DevFmtFloat },
};
auto iter = std::find_if(typelist.begin(), typelist.end(),
[svfmt=std::string_view{*typeopt}](const TypeMap &entry) -> bool
{ return al::case_compare(entry.name, svfmt) == 0; });
if(iter == typelist.end())
ERR("Unsupported sample-type: {}", *typeopt);
else
opttype = iter->type;
}
if(auto chanopt = device->configValue<std::string>({}, "channels"))
{
struct ChannelMap {
std::string_view name;
DevFmtChannels chans;
uint8_t order;
};
constexpr std::array chanlist{
ChannelMap{"mono"sv, DevFmtMono, 0},
ChannelMap{"stereo"sv, DevFmtStereo, 0},
ChannelMap{"quad"sv, DevFmtQuad, 0},
ChannelMap{"surround51"sv, DevFmtX51, 0},
ChannelMap{"surround61"sv, DevFmtX61, 0},
ChannelMap{"surround71"sv, DevFmtX71, 0},
ChannelMap{"surround714"sv, DevFmtX714, 0},
ChannelMap{"surround7144"sv, DevFmtX7144, 0},
ChannelMap{"surround3d71"sv, DevFmtX3D71, 0},
ChannelMap{"surround51rear"sv, DevFmtX51, 0},
ChannelMap{"ambi1"sv, DevFmtAmbi3D, 1},
ChannelMap{"ambi2"sv, DevFmtAmbi3D, 2},
ChannelMap{"ambi3"sv, DevFmtAmbi3D, 3},
};
auto iter = std::find_if(chanlist.begin(), chanlist.end(),
[svfmt=std::string_view{*chanopt}](const ChannelMap &entry) -> bool
{ return al::case_compare(entry.name, svfmt) == 0; });
if(iter == chanlist.end())
ERR("Unsupported channels: {}", *chanopt);
else
{
optchans = iter->chans;
aorder = iter->order;
}
}
if(auto ambiopt = device->configValue<std::string>({}, "ambi-format"sv))
{
if(al::case_compare(*ambiopt, "fuma"sv) == 0)
{
optlayout = DevAmbiLayout::FuMa;
optscale = DevAmbiScaling::FuMa;
}
else if(al::case_compare(*ambiopt, "acn+fuma"sv) == 0)
{
optlayout = DevAmbiLayout::ACN;
optscale = DevAmbiScaling::FuMa;
}
else if(al::case_compare(*ambiopt, "ambix"sv) == 0
|| al::case_compare(*ambiopt, "acn+sn3d"sv) == 0)
{
optlayout = DevAmbiLayout::ACN;
optscale = DevAmbiScaling::SN3D;
}
else if(al::case_compare(*ambiopt, "acn+n3d"sv) == 0)
{
optlayout = DevAmbiLayout::ACN;
optscale = DevAmbiScaling::N3D;
}
else
ERR("Unsupported ambi-format: {}", *ambiopt);
}
if(auto hrtfopt = device->configValue<std::string>({}, "hrtf"sv))
{
WARN("general/hrtf is deprecated, please use stereo-encoding instead");
if(al::case_compare(*hrtfopt, "true"sv) == 0)
stereomode = StereoEncoding::Hrtf;
else if(al::case_compare(*hrtfopt, "false"sv) == 0)
{
if(!stereomode || *stereomode == StereoEncoding::Hrtf)
stereomode = StereoEncoding::Default;
}
else if(al::case_compare(*hrtfopt, "auto"sv) != 0)
ERR("Unexpected hrtf value: {}", *hrtfopt);
}
}
if(auto encopt = device->configValue<std::string>({}, "stereo-encoding"sv))
{
if(al::case_compare(*encopt, "basic"sv) == 0 || al::case_compare(*encopt, "panpot"sv) == 0)
stereomode = StereoEncoding::Basic;
else if(al::case_compare(*encopt, "uhj") == 0)
stereomode = StereoEncoding::Uhj;
else if(al::case_compare(*encopt, "hrtf") == 0)
stereomode = StereoEncoding::Hrtf;
else
ERR("Unexpected stereo-encoding: {}", *encopt);
}
// Check for app-specified attributes
if(!attrList.empty())
{
ALenum outmode{ALC_ANY_SOFT};
std::optional<bool> opthrtf;
int freqAttr{};
#define ATTRIBUTE(a) a: TRACE("{} = {}", #a, attrList[attrIdx + 1]);
#define ATTRIBUTE_HEX(a) a: TRACE("{} = {:#x}", #a, as_unsigned(attrList[attrIdx + 1]));
for(size_t attrIdx{0};attrIdx < attrList.size();attrIdx+=2)
{
switch(attrList[attrIdx])
{
case ATTRIBUTE_HEX(ALC_FORMAT_CHANNELS_SOFT)
if(device->Type == DeviceType::Loopback)
optchans = DevFmtChannelsFromEnum(attrList[attrIdx + 1]);
break;
case ATTRIBUTE_HEX(ALC_FORMAT_TYPE_SOFT)
if(device->Type == DeviceType::Loopback)
opttype = DevFmtTypeFromEnum(attrList[attrIdx + 1]);
break;
case ATTRIBUTE(ALC_FREQUENCY)
freqAttr = attrList[attrIdx + 1];
break;
case ATTRIBUTE_HEX(ALC_AMBISONIC_LAYOUT_SOFT)
if(device->Type == DeviceType::Loopback)
optlayout = DevAmbiLayoutFromEnum(attrList[attrIdx + 1]);
break;
case ATTRIBUTE_HEX(ALC_AMBISONIC_SCALING_SOFT)
if(device->Type == DeviceType::Loopback)
optscale = DevAmbiScalingFromEnum(attrList[attrIdx + 1]);
break;
case ATTRIBUTE(ALC_AMBISONIC_ORDER_SOFT)
if(device->Type == DeviceType::Loopback)
aorder = static_cast<uint>(attrList[attrIdx + 1]);
break;
case ATTRIBUTE(ALC_MONO_SOURCES)
numMono = static_cast<uint>(attrList[attrIdx + 1]);
if(numMono > INT_MAX) numMono = 0;
break;
case ATTRIBUTE(ALC_STEREO_SOURCES)
numStereo = static_cast<uint>(attrList[attrIdx + 1]);
if(numStereo > INT_MAX) numStereo = 0;
break;
case ATTRIBUTE(ALC_MAX_AUXILIARY_SENDS)
numSends = static_cast<uint>(attrList[attrIdx + 1]);
if(numSends > uint{std::numeric_limits<int>::max()}) numSends = 0;
else numSends = std::min(numSends, uint{MaxSendCount});
break;
case ATTRIBUTE(ALC_HRTF_SOFT)
if(attrList[attrIdx + 1] == ALC_FALSE)
opthrtf = false;
else if(attrList[attrIdx + 1] == ALC_TRUE)
opthrtf = true;
else if(attrList[attrIdx + 1] == ALC_DONT_CARE_SOFT)
opthrtf = std::nullopt;
break;
case ATTRIBUTE(ALC_HRTF_ID_SOFT)
hrtf_id = attrList[attrIdx + 1];
break;
case ATTRIBUTE(ALC_OUTPUT_LIMITER_SOFT)
if(attrList[attrIdx + 1] == ALC_FALSE)
optlimit = false;
else if(attrList[attrIdx + 1] == ALC_TRUE)
optlimit = true;
else if(attrList[attrIdx + 1] == ALC_DONT_CARE_SOFT)
optlimit = std::nullopt;
break;
case ATTRIBUTE_HEX(ALC_OUTPUT_MODE_SOFT)
outmode = attrList[attrIdx + 1];
break;
case ATTRIBUTE_HEX(ALC_CONTEXT_FLAGS_EXT)
/* Handled in alcCreateContext */
break;
case ATTRIBUTE(ALC_SYNC)
/* Ignored attribute */
break;
default:
TRACE("{:#04x} = {} ({:#x})", as_unsigned(attrList[attrIdx]),
attrList[attrIdx + 1], as_unsigned(attrList[attrIdx + 1]));
break;
}
}
#undef ATTRIBUTE_HEX
#undef ATTRIBUTE
if(device->Type == DeviceType::Loopback)
{
if(!optchans || !opttype)
return ALC_INVALID_VALUE;
if(freqAttr < int{MinOutputRate} || freqAttr > int{MaxOutputRate})
return ALC_INVALID_VALUE;
if(*optchans == DevFmtAmbi3D)
{
if(!optlayout || !optscale)
return ALC_INVALID_VALUE;
if(aorder < 1 || aorder > MaxAmbiOrder)
return ALC_INVALID_VALUE;
if((*optlayout == DevAmbiLayout::FuMa || *optscale == DevAmbiScaling::FuMa)
&& aorder > 3)
return ALC_INVALID_VALUE;
}
else if(*optchans == DevFmtStereo)
{
if(opthrtf)
{
if(*opthrtf)
stereomode = StereoEncoding::Hrtf;
else
{
if(stereomode.value_or(StereoEncoding::Hrtf) == StereoEncoding::Hrtf)
stereomode = StereoEncoding::Default;
}
}
if(outmode == ALC_STEREO_BASIC_SOFT)
stereomode = StereoEncoding::Basic;
else if(outmode == ALC_STEREO_UHJ_SOFT)
stereomode = StereoEncoding::Uhj;
else if(outmode == ALC_STEREO_HRTF_SOFT)
stereomode = StereoEncoding::Hrtf;
}
optsrate = static_cast<uint>(freqAttr);
}
else
{
if(opthrtf)
{
if(*opthrtf)
stereomode = StereoEncoding::Hrtf;
else
{
if(stereomode.value_or(StereoEncoding::Hrtf) == StereoEncoding::Hrtf)
stereomode = StereoEncoding::Default;
}
}
if(outmode != ALC_ANY_SOFT)
{
using OutputMode = al::Device::OutputMode;
switch(OutputMode(outmode))
{
case OutputMode::Any: break;
case OutputMode::Mono: optchans = DevFmtMono; break;
case OutputMode::Stereo: optchans = DevFmtStereo; break;
case OutputMode::StereoBasic:
optchans = DevFmtStereo;
stereomode = StereoEncoding::Basic;
break;
case OutputMode::Uhj2:
optchans = DevFmtStereo;
stereomode = StereoEncoding::Uhj;
break;
case OutputMode::Hrtf:
optchans = DevFmtStereo;
stereomode = StereoEncoding::Hrtf;
break;
case OutputMode::Quad: optchans = DevFmtQuad; break;
case OutputMode::X51: optchans = DevFmtX51; break;
case OutputMode::X61: optchans = DevFmtX61; break;
case OutputMode::X71: optchans = DevFmtX71; break;
}
}
if(freqAttr)
{
uint oldrate = optsrate.value_or(DefaultOutputRate);
freqAttr = std::clamp<int>(freqAttr, MinOutputRate, MaxOutputRate);
const double scale{static_cast<double>(freqAttr) / oldrate};
period_size = static_cast<uint>(std::lround(period_size * scale));
buffer_size = static_cast<uint>(std::lround(buffer_size * scale));
optsrate = static_cast<uint>(freqAttr);
}
}
/* If a context is already running on the device, stop playback so the
* device attributes can be updated.
*/
if(device->mDeviceState == DeviceState::Playing)
{
device->Backend->stop();
device->mDeviceState = DeviceState::Unprepared;
}
UpdateClockBase(device);
}
if(device->mDeviceState == DeviceState::Playing)
return ALC_NO_ERROR;
device->mDeviceState = DeviceState::Unprepared;
device->AvgSpeakerDist = 0.0f;
device->mNFCtrlFilter = NfcFilter{};
device->mUhjEncoder = nullptr;
device->AmbiDecoder = nullptr;
device->Bs2b = nullptr;
device->PostProcess = nullptr;
device->Limiter = nullptr;
device->ChannelDelays = nullptr;
std::fill(std::begin(device->HrtfAccumData), std::end(device->HrtfAccumData), float2{});
device->Dry.AmbiMap.fill(BFChannelConfig{});
device->Dry.Buffer = {};
std::fill(std::begin(device->NumChannelsPerOrder), std::end(device->NumChannelsPerOrder), 0u);
device->RealOut.RemixMap = {};
device->RealOut.ChannelIndex.fill(InvalidChannelIndex);
device->RealOut.Buffer = {};
device->MixBuffer.clear();
device->MixBuffer.shrink_to_fit();
UpdateClockBase(device);
device->FixedLatency = nanoseconds::zero();
device->DitherDepth = 0.0f;
device->DitherSeed = DitherRNGSeed;
device->mHrtfStatus = ALC_HRTF_DISABLED_SOFT;
/*************************************************************************
* Update device format request
*/
if(device->Type == DeviceType::Loopback)
{
device->mSampleRate = *optsrate;
device->FmtChans = *optchans;
device->FmtType = *opttype;
if(device->FmtChans == DevFmtAmbi3D)
{
device->mAmbiOrder = aorder;
device->mAmbiLayout = *optlayout;
device->mAmbiScale = *optscale;
}
device->Flags.set(FrequencyRequest).set(ChannelsRequest).set(SampleTypeRequest);
}
else
{
device->FmtType = opttype.value_or(DevFmtTypeDefault);
device->FmtChans = optchans.value_or(DevFmtChannelsDefault);
device->mAmbiOrder = 0;
device->mBufferSize = buffer_size;
device->mUpdateSize = period_size;
device->mSampleRate = optsrate.value_or(DefaultOutputRate);
device->Flags.set(FrequencyRequest, optsrate.has_value())
.set(ChannelsRequest, optchans.has_value())
.set(SampleTypeRequest, opttype.has_value());
if(device->FmtChans == DevFmtAmbi3D)
{
device->mAmbiOrder = std::clamp(aorder, 1u, uint{MaxAmbiOrder});
device->mAmbiLayout = optlayout.value_or(DevAmbiLayout::Default);
device->mAmbiScale = optscale.value_or(DevAmbiScaling::Default);
if(device->mAmbiOrder > 3
&& (device->mAmbiLayout == DevAmbiLayout::FuMa
|| device->mAmbiScale == DevAmbiScaling::FuMa))
{
ERR("FuMa is incompatible with {}{} order ambisonics (up to 3rd order only)",
device->mAmbiOrder, GetCounterSuffix(device->mAmbiOrder));
device->mAmbiOrder = 3;
}
}
}
TRACE("Pre-reset: {}{}, {}{}, {}{}hz, {} / {} buffer",
device->Flags.test(ChannelsRequest)?"*":"", DevFmtChannelsString(device->FmtChans),
device->Flags.test(SampleTypeRequest)?"*":"", DevFmtTypeString(device->FmtType),
device->Flags.test(FrequencyRequest)?"*":"", device->mSampleRate,
device->mUpdateSize, device->mBufferSize);
const uint oldFreq{device->mSampleRate};
const DevFmtChannels oldChans{device->FmtChans};
const DevFmtType oldType{device->FmtType};
try {
auto backend = device->Backend.get();
if(!backend->reset())
throw al::backend_exception{al::backend_error::DeviceError, "Device reset failure"};
}
catch(std::exception &e) {
ERR("Device error: {}", e.what());
device->handleDisconnect("{}", e.what());
return ALC_INVALID_DEVICE;
}
if(device->FmtChans != oldChans && device->Flags.test(ChannelsRequest))
{
ERR("Failed to set {}, got {} instead", DevFmtChannelsString(oldChans),
DevFmtChannelsString(device->FmtChans));
device->Flags.reset(ChannelsRequest);
}
if(device->FmtType != oldType && device->Flags.test(SampleTypeRequest))
{
ERR("Failed to set {}, got {} instead", DevFmtTypeString(oldType),
DevFmtTypeString(device->FmtType));
device->Flags.reset(SampleTypeRequest);
}
if(device->mSampleRate != oldFreq && device->Flags.test(FrequencyRequest))
{
WARN("Failed to set {}hz, got {}hz instead", oldFreq, device->mSampleRate);
device->Flags.reset(FrequencyRequest);
}
TRACE("Post-reset: {}, {}, {}hz, {} / {} buffer",
DevFmtChannelsString(device->FmtChans), DevFmtTypeString(device->FmtType),
device->mSampleRate, device->mUpdateSize, device->mBufferSize);
if(device->Type != DeviceType::Loopback)
{
if(auto modeopt = device->configValue<std::string>({}, "stereo-mode"))
{
if(al::case_compare(*modeopt, "headphones"sv) == 0)
device->Flags.set(DirectEar);
else if(al::case_compare(*modeopt, "speakers"sv) == 0)
device->Flags.reset(DirectEar);
else if(al::case_compare(*modeopt, "auto"sv) != 0)
ERR("Unexpected stereo-mode: {}", *modeopt);
}
}
aluInitRenderer(device, hrtf_id, stereomode);
/* Calculate the max number of sources, and split them between the mono and
* stereo count given the requested number of stereo sources.
*/
if(auto srcsopt = device->configValue<uint>({}, "sources"sv))
{
if(*srcsopt <= 0) numMono = 256;
else numMono = std::max(*srcsopt, 16u);
}
else
{
numMono = std::min(numMono, std::numeric_limits<int>::max()-numStereo);
numMono = std::max(numMono+numStereo, 256u);
}
numStereo = std::min(numStereo, numMono);
numMono -= numStereo;
device->SourcesMax = numMono + numStereo;
device->NumMonoSources = numMono;
device->NumStereoSources = numStereo;
if(auto sendsopt = device->configValue<uint>({}, "sends"sv))
numSends = std::min(numSends, std::clamp(*sendsopt, 0u, uint{MaxSendCount}));
device->NumAuxSends = numSends;
TRACE("Max sources: {} ({} + {}), effect slots: {}, sends: {}",
device->SourcesMax, device->NumMonoSources, device->NumStereoSources,
device->AuxiliaryEffectSlotMax, device->NumAuxSends);
switch(device->FmtChans)
{
case DevFmtMono: break;
case DevFmtStereo:
if(!device->mUhjEncoder)
device->RealOut.RemixMap = StereoDownmix;
break;
case DevFmtQuad: device->RealOut.RemixMap = QuadDownmix; break;
case DevFmtX51: device->RealOut.RemixMap = X51Downmix; break;
case DevFmtX61: device->RealOut.RemixMap = X61Downmix; break;
case DevFmtX71: device->RealOut.RemixMap = X71Downmix; break;
case DevFmtX714: device->RealOut.RemixMap = X71Downmix; break;
case DevFmtX7144: device->RealOut.RemixMap = X71Downmix; break;
case DevFmtX3D71: device->RealOut.RemixMap = X51Downmix; break;
case DevFmtAmbi3D: break;
}
size_t sample_delay{0};
if(auto *encoder{device->mUhjEncoder.get()})
sample_delay += encoder->getDelay();
if(device->getConfigValueBool({}, "dither"sv, true))
{
int depth{device->configValue<int>({}, "dither-depth"sv).value_or(0)};
if(depth <= 0)
{
switch(device->FmtType)
{
case DevFmtByte:
case DevFmtUByte:
depth = 8;
break;
case DevFmtShort:
case DevFmtUShort:
depth = 16;
break;
case DevFmtInt:
case DevFmtUInt:
case DevFmtFloat:
break;
}
}
if(depth > 0)
{
depth = std::clamp(depth, 2, 24);
device->DitherDepth = std::pow(2.0f, static_cast<float>(depth-1));
}
}
if(!(device->DitherDepth > 0.0f))
TRACE("Dithering disabled");
else
TRACE("Dithering enabled ({}-bit, {:g})",
float2int(std::log2(device->DitherDepth)+0.5f)+1, device->DitherDepth);
if(!optlimit)
optlimit = device->configValue<bool>({}, "output-limiter");
/* If the gain limiter is unset, use the limiter for integer-based output
* (where samples must be clamped), and don't for floating-point (which can
* take unclamped samples).
*/
if(!optlimit)
{
switch(device->FmtType)
{
case DevFmtByte:
case DevFmtUByte:
case DevFmtShort:
case DevFmtUShort:
case DevFmtInt:
case DevFmtUInt:
optlimit = true;
break;
case DevFmtFloat:
break;
}
}
if(!optlimit.value_or(false))
TRACE("Output limiter disabled");
else
{
float thrshld{1.0f};
switch(device->FmtType)
{
case DevFmtByte:
case DevFmtUByte:
thrshld = 127.0f / 128.0f;
break;
case DevFmtShort:
case DevFmtUShort:
thrshld = 32767.0f / 32768.0f;
break;
case DevFmtInt:
case DevFmtUInt:
case DevFmtFloat:
break;
}
if(device->DitherDepth > 0.0f)
thrshld -= 1.0f / device->DitherDepth;
const float thrshld_dB{std::log10(thrshld) * 20.0f};
auto limiter = CreateDeviceLimiter(device, thrshld_dB);
sample_delay += limiter->getLookAhead();
device->Limiter = std::move(limiter);
TRACE("Output limiter enabled, {:.4f}dB limit", thrshld_dB);
}
/* Convert the sample delay from samples to nanosamples to nanoseconds. */
sample_delay = std::min<size_t>(sample_delay, std::numeric_limits<int>::max());
device->FixedLatency += nanoseconds{seconds{sample_delay}} / device->mSampleRate;
TRACE("Fixed device latency: {}ns", device->FixedLatency.count());
FPUCtl mixer_mode{};
auto reset_context = [device](ContextBase *ctxbase)
{
auto *context = dynamic_cast<ALCcontext*>(ctxbase);
assert(context != nullptr);
if(!context) return;
std::unique_lock<std::mutex> proplock{context->mPropLock};
std::unique_lock<std::mutex> slotlock{context->mEffectSlotLock};
/* Clear out unused effect slot clusters. */
auto slot_cluster_not_in_use = [](ContextBase::EffectSlotCluster &clusterptr) -> bool
{
return std::none_of(clusterptr->begin(), clusterptr->end(),
std::mem_fn(&EffectSlot::InUse));
};
auto slotcluster_end = std::remove_if(context->mEffectSlotClusters.begin(),
context->mEffectSlotClusters.end(), slot_cluster_not_in_use);
context->mEffectSlotClusters.erase(slotcluster_end, context->mEffectSlotClusters.end());
/* Free all wet buffers. Any in use will be reallocated with an updated
* configuration in aluInitEffectPanning.
*/
auto clear_wetbuffers = [](ContextBase::EffectSlotCluster &clusterptr)
{
auto clear_buffer = [](EffectSlot &slot)
{
slot.mWetBuffer.clear();
slot.mWetBuffer.shrink_to_fit();
slot.Wet.Buffer = {};
};
std::for_each(clusterptr->begin(), clusterptr->end(), clear_buffer);
};
std::for_each(context->mEffectSlotClusters.begin(), context->mEffectSlotClusters.end(),
clear_wetbuffers);
if(ALeffectslot *slot{context->mDefaultSlot.get()})
{
auto *slotbase = slot->mSlot;
aluInitEffectPanning(slotbase, context);
if(auto *props = slotbase->Update.exchange(nullptr, std::memory_order_relaxed))
AtomicReplaceHead(context->mFreeEffectSlotProps, props);
EffectState *state{slot->Effect.State.get()};
state->mOutTarget = device->Dry.Buffer;
state->deviceUpdate(device, slot->Buffer);
slot->mPropsDirty = true;
}
if(EffectSlotArray *curarray{context->mActiveAuxSlots.load(std::memory_order_relaxed)})
std::fill(curarray->begin()+ptrdiff_t(curarray->size()>>1), curarray->end(), nullptr);
auto reset_slots = [device,context](EffectSlotSubList &sublist)
{
uint64_t usemask{~sublist.FreeMask};
while(usemask)
{
const auto idx = static_cast<uint>(al::countr_zero(usemask));
auto &slot = (*sublist.EffectSlots)[idx];
usemask &= ~(1_u64 << idx);
auto *slotbase = slot.mSlot;
aluInitEffectPanning(slotbase, context);
if(auto *props = slotbase->Update.exchange(nullptr, std::memory_order_relaxed))
AtomicReplaceHead(context->mFreeEffectSlotProps, props);
EffectState *state{slot.Effect.State.get()};
state->mOutTarget = device->Dry.Buffer;
state->deviceUpdate(device, slot.Buffer);
slot.mPropsDirty = true;
}
};
std::for_each(context->mEffectSlotList.begin(), context->mEffectSlotList.end(),
reset_slots);
/* Clear all effect slot props to let them get allocated again. */
context->mEffectSlotPropClusters.clear();
context->mFreeEffectSlotProps.store(nullptr, std::memory_order_relaxed);
slotlock.unlock();
std::unique_lock<std::mutex> srclock{context->mSourceLock};
const uint num_sends{device->NumAuxSends};
auto reset_sources = [num_sends](SourceSubList &sublist)
{
uint64_t usemask{~sublist.FreeMask};
while(usemask)
{
const auto idx = static_cast<uint>(al::countr_zero(usemask));
auto &source = (*sublist.Sources)[idx];
usemask &= ~(1_u64 << idx);
auto clear_send = [](ALsource::SendData &send) -> void
{
if(send.Slot)
DecrementRef(send.Slot->ref);
send.Slot = nullptr;
send.Gain = 1.0f;
send.GainHF = 1.0f;
send.HFReference = LowPassFreqRef;
send.GainLF = 1.0f;
send.LFReference = HighPassFreqRef;
};
const auto sends = al::span{source.Send}.subspan(num_sends);
std::for_each(sends.begin(), sends.end(), clear_send);
source.mPropsDirty = true;
}
};
std::for_each(context->mSourceList.begin(), context->mSourceList.end(), reset_sources);
auto reset_voice = [device,num_sends,context](Voice *voice)
{
/* Clear extraneous property set sends. */
const auto sendparams = al::span{voice->mProps.Send}.subspan(num_sends);
std::fill(sendparams.begin(), sendparams.end(), VoiceProps::SendData{});
std::fill(voice->mSend.begin()+num_sends, voice->mSend.end(), Voice::TargetData{});
auto clear_wetparams = [num_sends](Voice::ChannelData &chandata)
{
const auto wetparams = al::span{chandata.mWetParams}.subspan(num_sends);
std::fill(wetparams.begin(), wetparams.end(), SendParams{});
};
std::for_each(voice->mChans.begin(), voice->mChans.end(), clear_wetparams);
if(VoicePropsItem *props{voice->mUpdate.exchange(nullptr, std::memory_order_relaxed)})
AtomicReplaceHead(context->mFreeVoiceProps, props);
/* Force the voice to stopped if it was stopping. */
Voice::State vstate{Voice::Stopping};
voice->mPlayState.compare_exchange_strong(vstate, Voice::Stopped,
std::memory_order_acquire, std::memory_order_acquire);
if(voice->mSourceID.load(std::memory_order_relaxed) == 0u)
return;
voice->prepare(device);
};
const auto voicespan = context->getVoicesSpan();
std::for_each(voicespan.begin(), voicespan.end(), reset_voice);
/* Clear all voice props to let them get allocated again. */
context->mVoicePropClusters.clear();
context->mFreeVoiceProps.store(nullptr, std::memory_order_relaxed);
srclock.unlock();
context->mPropsDirty = false;
UpdateContextProps(context);
UpdateAllEffectSlotProps(context);
UpdateAllSourceProps(context);
};
auto ctxspan = al::span{*device->mContexts.load()};
std::for_each(ctxspan.begin(), ctxspan.end(), reset_context);
mixer_mode.leave();
device->mDeviceState = DeviceState::Configured;
if(!device->Flags.test(DevicePaused))
{
try {
auto backend = device->Backend.get();
backend->start();
device->mDeviceState = DeviceState::Playing;
}
catch(al::backend_exception& e) {
ERR("{}", e.what());
device->handleDisconnect("{}", e.what());
return ALC_INVALID_DEVICE;
}
TRACE("Post-start: {}, {}, {}hz, {} / {} buffer",
DevFmtChannelsString(device->FmtChans), DevFmtTypeString(device->FmtType),
device->mSampleRate, device->mUpdateSize, device->mBufferSize);
}
return ALC_NO_ERROR;
}
/**
* Updates device parameters as above, and also first clears the disconnected
* status, if set.
*/
auto ResetDeviceParams(al::Device *device, const al::span<const int> attrList) -> bool
{
/* If the device was disconnected, reset it since we're opened anew. */
if(!device->Connected.load(std::memory_order_relaxed)) UNLIKELY
{
/* Make sure disconnection is finished before continuing on. */
std::ignore = device->waitForMix();
for(ContextBase *ctxbase : *device->mContexts.load(std::memory_order_acquire))
{
auto *ctx = dynamic_cast<ALCcontext*>(ctxbase);
assert(ctx != nullptr);
if(!ctx || !ctx->mStopVoicesOnDisconnect.load(std::memory_order_acquire))
continue;
/* Clear any pending voice changes and reallocate voices to get a
* clean restart.
*/
std::lock_guard<std::mutex> sourcelock{ctx->mSourceLock};
auto *vchg = ctx->mCurrentVoiceChange.load(std::memory_order_acquire);
while(auto *next = vchg->mNext.load(std::memory_order_acquire))
vchg = next;
ctx->mCurrentVoiceChange.store(vchg, std::memory_order_release);
ctx->mVoicePropClusters.clear();
ctx->mFreeVoiceProps.store(nullptr, std::memory_order_relaxed);
ctx->mVoiceClusters.clear();
ctx->allocVoices(std::max<size_t>(256,
ctx->mActiveVoiceCount.load(std::memory_order_relaxed)));
}
device->Connected.store(true);
}
ALCenum err{UpdateDeviceParams(device, attrList)};
if(err == ALC_NO_ERROR) LIKELY return ALC_TRUE;
alcSetError(device, err);
return ALC_FALSE;
}
/** Checks if the device handle is valid, and returns a new reference if so. */
DeviceRef VerifyDevice(ALCdevice *device)
{
std::lock_guard<std::recursive_mutex> listlock{ListLock};
auto iter = std::lower_bound(DeviceList.begin(), DeviceList.end(), device);
if(iter != DeviceList.end() && *iter == device)
{
(*iter)->add_ref();
return DeviceRef{*iter};
}
return nullptr;
}
/**
* Checks if the given context is valid, returning a new reference to it if so.
*/
ContextRef VerifyContext(ALCcontext *context)
{
std::lock_guard<std::recursive_mutex> listlock{ListLock};
auto iter = std::lower_bound(ContextList.begin(), ContextList.end(), context);
if(iter != ContextList.end() && *iter == context)
{
(*iter)->add_ref();
return ContextRef{*iter};
}
return nullptr;
}
} // namespace
FORCE_ALIGN void ALC_APIENTRY alsoft_set_log_callback(LPALSOFTLOGCALLBACK callback, void *userptr) noexcept
{
al_set_log_callback(callback, userptr);
}
/** Returns a new reference to the currently active context for this thread. */
ContextRef GetContextRef() noexcept
{
ALCcontext *context{ALCcontext::getThreadContext()};
if(context)
context->add_ref();
else
{
while(ALCcontext::sGlobalContextLock.exchange(true, std::memory_order_acquire)) {
/* Wait to make sure another thread isn't trying to change the
* current context and bring its refcount to 0.
*/
}
context = ALCcontext::sGlobalContext.load(std::memory_order_acquire);
if(context) LIKELY context->add_ref();
ALCcontext::sGlobalContextLock.store(false, std::memory_order_release);
}
return ContextRef{context};
}
void alcSetError(al::Device *device, ALCenum errorCode)
{
WARN("Error generated on device {}, code {:#04x}", voidp{device}, as_unsigned(errorCode));
if(TrapALCError)
{
#ifdef _WIN32
/* DebugBreak() will cause an exception if there is no debugger */
if(IsDebuggerPresent())
DebugBreak();
#elif defined(SIGTRAP)
raise(SIGTRAP);
#endif
}
if(device)
device->LastError.store(errorCode);
else
LastNullDeviceError.store(errorCode);
}
/************************************************
* Standard ALC functions
************************************************/
ALC_API ALCenum ALC_APIENTRY alcGetError(ALCdevice *device) noexcept
{
if(!gProcessRunning)
return ALC_INVALID_DEVICE;
DeviceRef dev{VerifyDevice(device)};
if(dev) return dev->LastError.exchange(ALC_NO_ERROR);
return LastNullDeviceError.exchange(ALC_NO_ERROR);
}
ALC_API void ALC_APIENTRY alcSuspendContext(ALCcontext *context) noexcept
{
ContextRef ctx{VerifyContext(context)};
if(!ctx)
{
alcSetError(nullptr, ALC_INVALID_CONTEXT);
return;
}
if(ctx->mContextFlags.test(ContextFlags::DebugBit)) UNLIKELY
ctx->debugMessage(DebugSource::API, DebugType::Portability, 0, DebugSeverity::Medium,
"alcSuspendContext behavior is not portable -- some implementations suspend all "
"rendering, some only defer property changes, and some are completely no-op; consider "
"using alcDevicePauseSOFT to suspend all rendering, or alDeferUpdatesSOFT to only "
"defer property changes");
if(SuspendDefers)
{
std::lock_guard<std::mutex> proplock{ctx->mPropLock};
ctx->deferUpdates();
}
}
ALC_API void ALC_APIENTRY alcProcessContext(ALCcontext *context) noexcept
{
ContextRef ctx{VerifyContext(context)};
if(!ctx)
{
alcSetError(nullptr, ALC_INVALID_CONTEXT);
return;
}
if(ctx->mContextFlags.test(ContextFlags::DebugBit)) UNLIKELY
ctx->debugMessage(DebugSource::API, DebugType::Portability, 1, DebugSeverity::Medium,
"alcProcessContext behavior is not portable -- some implementations resume rendering, "
"some apply deferred property changes, and some are completely no-op; consider using "
"alcDeviceResumeSOFT to resume rendering, or alProcessUpdatesSOFT to apply deferred "
"property changes");
if(SuspendDefers)
{
std::lock_guard<std::mutex> proplock{ctx->mPropLock};
ctx->processUpdates();
}
}
ALC_API auto ALC_APIENTRY alcGetString(ALCdevice *Device, ALCenum param) noexcept -> const ALCchar*
{
switch(param)
{
case ALC_NO_ERROR: return GetNoErrorString();
case ALC_INVALID_ENUM: return GetInvalidEnumString();
case ALC_INVALID_VALUE: return GetInvalidValueString();
case ALC_INVALID_DEVICE: return GetInvalidDeviceString();
case ALC_INVALID_CONTEXT: return GetInvalidContextString();
case ALC_OUT_OF_MEMORY: return GetOutOfMemoryString();
case ALC_DEVICE_SPECIFIER:
return GetDefaultName();
case ALC_ALL_DEVICES_SPECIFIER:
if(DeviceRef dev{VerifyDevice(Device)})
{
if(dev->Type == DeviceType::Capture)
{
alcSetError(dev.get(), ALC_INVALID_ENUM);
return nullptr;
}
if(dev->Type == DeviceType::Loopback)
return GetDefaultName();
auto statelock = std::lock_guard{dev->StateLock};
return dev->mDeviceName.c_str();
}
ProbeAllDevicesList();
return alcAllDevicesList.c_str();
case ALC_CAPTURE_DEVICE_SPECIFIER:
if(DeviceRef dev{VerifyDevice(Device)})
{
if(dev->Type != DeviceType::Capture)
{
alcSetError(dev.get(), ALC_INVALID_ENUM);
return nullptr;
}
auto statelock = std::lock_guard{dev->StateLock};
return dev->mDeviceName.c_str();
}
ProbeCaptureDeviceList();
return alcCaptureDeviceList.c_str();
/* Default devices are always first in the list */
case ALC_DEFAULT_DEVICE_SPECIFIER:
return GetDefaultName();
case ALC_DEFAULT_ALL_DEVICES_SPECIFIER:
if(alcAllDevicesList.empty())
ProbeAllDevicesList();
/* Copy first entry as default. */
if(!alcAllDevicesArray.empty())
alcDefaultAllDevicesSpecifier = alcAllDevicesArray.front();
else
alcDefaultAllDevicesSpecifier.clear();
return alcDefaultAllDevicesSpecifier.c_str();
case ALC_CAPTURE_DEFAULT_DEVICE_SPECIFIER:
if(alcCaptureDeviceList.empty())
ProbeCaptureDeviceList();
/* Copy first entry as default. */
if(!alcCaptureDeviceArray.empty())
alcCaptureDefaultDeviceSpecifier = alcCaptureDeviceArray.front();
else
alcCaptureDefaultDeviceSpecifier.clear();
return alcCaptureDefaultDeviceSpecifier.c_str();
case ALC_EXTENSIONS:
if(VerifyDevice(Device))
return GetExtensionList();
return GetNoDeviceExtList();
case ALC_HRTF_SPECIFIER_SOFT:
if(DeviceRef dev{VerifyDevice(Device)})
{
std::lock_guard<std::mutex> statelock{dev->StateLock};
return dev->mHrtf ? dev->mHrtfName.c_str() : "";
}
alcSetError(nullptr, ALC_INVALID_DEVICE);
return nullptr;
default:
alcSetError(VerifyDevice(Device).get(), ALC_INVALID_ENUM);
}
return nullptr;
}
namespace {
auto GetIntegerv(al::Device *device, ALCenum param, const al::span<int> values) -> size_t
{
if(values.empty())
{
alcSetError(device, ALC_INVALID_VALUE);
return 0;
}
if(!device)
{
switch(param)
{
case ALC_MAJOR_VERSION:
values[0] = alcMajorVersion;
return 1;
case ALC_MINOR_VERSION:
values[0] = alcMinorVersion;
return 1;
case ALC_EFX_MAJOR_VERSION:
values[0] = alcEFXMajorVersion;
return 1;
case ALC_EFX_MINOR_VERSION:
values[0] = alcEFXMinorVersion;
return 1;
case ALC_MAX_AUXILIARY_SENDS:
values[0] = MaxSendCount;
return 1;
case ALC_ATTRIBUTES_SIZE:
case ALC_ALL_ATTRIBUTES:
case ALC_FREQUENCY:
case ALC_REFRESH:
case ALC_SYNC:
case ALC_MONO_SOURCES:
case ALC_STEREO_SOURCES:
case ALC_CAPTURE_SAMPLES:
case ALC_FORMAT_CHANNELS_SOFT:
case ALC_FORMAT_TYPE_SOFT:
case ALC_AMBISONIC_LAYOUT_SOFT:
case ALC_AMBISONIC_SCALING_SOFT:
case ALC_AMBISONIC_ORDER_SOFT:
case ALC_MAX_AMBISONIC_ORDER_SOFT:
alcSetError(nullptr, ALC_INVALID_DEVICE);
return 0;
default:
alcSetError(nullptr, ALC_INVALID_ENUM);
}
return 0;
}
std::lock_guard<std::mutex> statelock{device->StateLock};
if(device->Type == DeviceType::Capture)
{
static constexpr int MaxCaptureAttributes{9};
switch(param)
{
case ALC_ATTRIBUTES_SIZE:
values[0] = MaxCaptureAttributes;
return 1;
case ALC_ALL_ATTRIBUTES:
if(values.size() >= MaxCaptureAttributes)
{
size_t i{0};
values[i++] = ALC_MAJOR_VERSION;
values[i++] = alcMajorVersion;
values[i++] = ALC_MINOR_VERSION;
values[i++] = alcMinorVersion;
values[i++] = ALC_CAPTURE_SAMPLES;
values[i++] = static_cast<int>(device->Backend->availableSamples());
values[i++] = ALC_CONNECTED;
values[i++] = device->Connected.load(std::memory_order_relaxed);
values[i++] = 0;
assert(i == MaxCaptureAttributes);
return i;
}
alcSetError(device, ALC_INVALID_VALUE);
return 0;
case ALC_MAJOR_VERSION:
values[0] = alcMajorVersion;
return 1;
case ALC_MINOR_VERSION:
values[0] = alcMinorVersion;
return 1;
case ALC_CAPTURE_SAMPLES:
values[0] = static_cast<int>(device->Backend->availableSamples());
return 1;
case ALC_CONNECTED:
values[0] = device->Connected.load(std::memory_order_acquire);
return 1;
default:
alcSetError(device, ALC_INVALID_ENUM);
}
return 0;
}
/* render device */
auto NumAttrsForDevice = [device]() noexcept -> uint8_t
{
if(device->Type == DeviceType::Loopback && device->FmtChans == DevFmtAmbi3D)
return 37;
return 31;
};
switch(param)
{
case ALC_ATTRIBUTES_SIZE:
values[0] = NumAttrsForDevice();
return 1;
case ALC_ALL_ATTRIBUTES:
if(values.size() >= NumAttrsForDevice())
{
size_t i{0};
values[i++] = ALC_MAJOR_VERSION;
values[i++] = alcMajorVersion;
values[i++] = ALC_MINOR_VERSION;
values[i++] = alcMinorVersion;
values[i++] = ALC_EFX_MAJOR_VERSION;
values[i++] = alcEFXMajorVersion;
values[i++] = ALC_EFX_MINOR_VERSION;
values[i++] = alcEFXMinorVersion;
values[i++] = ALC_FREQUENCY;
values[i++] = static_cast<int>(device->mSampleRate);
if(device->Type != DeviceType::Loopback)
{
values[i++] = ALC_REFRESH;
values[i++] = static_cast<int>(device->mSampleRate / device->mUpdateSize);
values[i++] = ALC_SYNC;
values[i++] = ALC_FALSE;
}
else
{
if(device->FmtChans == DevFmtAmbi3D)
{
values[i++] = ALC_AMBISONIC_LAYOUT_SOFT;
values[i++] = EnumFromDevAmbi(device->mAmbiLayout);
values[i++] = ALC_AMBISONIC_SCALING_SOFT;
values[i++] = EnumFromDevAmbi(device->mAmbiScale);
values[i++] = ALC_AMBISONIC_ORDER_SOFT;
values[i++] = static_cast<int>(device->mAmbiOrder);
}
values[i++] = ALC_FORMAT_CHANNELS_SOFT;
values[i++] = EnumFromDevFmt(device->FmtChans);
values[i++] = ALC_FORMAT_TYPE_SOFT;
values[i++] = EnumFromDevFmt(device->FmtType);
}
values[i++] = ALC_MONO_SOURCES;
values[i++] = static_cast<int>(device->NumMonoSources);
values[i++] = ALC_STEREO_SOURCES;
values[i++] = static_cast<int>(device->NumStereoSources);
values[i++] = ALC_MAX_AUXILIARY_SENDS;
values[i++] = static_cast<int>(device->NumAuxSends);
values[i++] = ALC_HRTF_SOFT;
values[i++] = (device->mHrtf ? ALC_TRUE : ALC_FALSE);
values[i++] = ALC_HRTF_STATUS_SOFT;
values[i++] = device->mHrtfStatus;
values[i++] = ALC_OUTPUT_LIMITER_SOFT;
values[i++] = device->Limiter ? ALC_TRUE : ALC_FALSE;
values[i++] = ALC_MAX_AMBISONIC_ORDER_SOFT;
values[i++] = MaxAmbiOrder;
values[i++] = ALC_OUTPUT_MODE_SOFT;
values[i++] = static_cast<ALCenum>(device->getOutputMode1());
values[i++] = 0;
assert(i == NumAttrsForDevice());
return i;
}
alcSetError(device, ALC_INVALID_VALUE);
return 0;
case ALC_MAJOR_VERSION:
values[0] = alcMajorVersion;
return 1;
case ALC_MINOR_VERSION:
values[0] = alcMinorVersion;
return 1;
case ALC_EFX_MAJOR_VERSION:
values[0] = alcEFXMajorVersion;
return 1;
case ALC_EFX_MINOR_VERSION:
values[0] = alcEFXMinorVersion;
return 1;
case ALC_FREQUENCY:
values[0] = static_cast<int>(device->mSampleRate);
return 1;
case ALC_REFRESH:
if(device->Type == DeviceType::Loopback)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
values[0] = static_cast<int>(device->mSampleRate / device->mUpdateSize);
return 1;
case ALC_SYNC:
if(device->Type == DeviceType::Loopback)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
values[0] = ALC_FALSE;
return 1;
case ALC_FORMAT_CHANNELS_SOFT:
if(device->Type != DeviceType::Loopback)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
values[0] = EnumFromDevFmt(device->FmtChans);
return 1;
case ALC_FORMAT_TYPE_SOFT:
if(device->Type != DeviceType::Loopback)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
values[0] = EnumFromDevFmt(device->FmtType);
return 1;
case ALC_AMBISONIC_LAYOUT_SOFT:
if(device->Type != DeviceType::Loopback || device->FmtChans != DevFmtAmbi3D)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
values[0] = EnumFromDevAmbi(device->mAmbiLayout);
return 1;
case ALC_AMBISONIC_SCALING_SOFT:
if(device->Type != DeviceType::Loopback || device->FmtChans != DevFmtAmbi3D)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
values[0] = EnumFromDevAmbi(device->mAmbiScale);
return 1;
case ALC_AMBISONIC_ORDER_SOFT:
if(device->Type != DeviceType::Loopback || device->FmtChans != DevFmtAmbi3D)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
values[0] = static_cast<int>(device->mAmbiOrder);
return 1;
case ALC_MONO_SOURCES:
values[0] = static_cast<int>(device->NumMonoSources);
return 1;
case ALC_STEREO_SOURCES:
values[0] = static_cast<int>(device->NumStereoSources);
return 1;
case ALC_MAX_AUXILIARY_SENDS:
values[0] = static_cast<int>(device->NumAuxSends);
return 1;
case ALC_CONNECTED:
values[0] = device->Connected.load(std::memory_order_acquire);
return 1;
case ALC_HRTF_SOFT:
values[0] = (device->mHrtf ? ALC_TRUE : ALC_FALSE);
return 1;
case ALC_HRTF_STATUS_SOFT:
values[0] = device->mHrtfStatus;
return 1;
case ALC_NUM_HRTF_SPECIFIERS_SOFT:
device->enumerateHrtfs();
values[0] = static_cast<int>(std::min(device->mHrtfList.size(),
size_t{std::numeric_limits<int>::max()}));
return 1;
case ALC_OUTPUT_LIMITER_SOFT:
values[0] = device->Limiter ? ALC_TRUE : ALC_FALSE;
return 1;
case ALC_MAX_AMBISONIC_ORDER_SOFT:
values[0] = MaxAmbiOrder;
return 1;
case ALC_OUTPUT_MODE_SOFT:
values[0] = static_cast<ALCenum>(device->getOutputMode1());
return 1;
default:
alcSetError(device, ALC_INVALID_ENUM);
}
return 0;
}
} // namespace
ALC_API void ALC_APIENTRY alcGetIntegerv(ALCdevice *device, ALCenum param, ALCsizei size, ALCint *values) noexcept
{
DeviceRef dev{VerifyDevice(device)};
if(size <= 0 || values == nullptr)
alcSetError(dev.get(), ALC_INVALID_VALUE);
else
GetIntegerv(dev.get(), param, {values, static_cast<uint>(size)});
}
ALC_API void ALC_APIENTRY alcGetInteger64vSOFT(ALCdevice *device, ALCenum pname, ALCsizei size, ALCint64SOFT *values) noexcept
{
DeviceRef dev{VerifyDevice(device)};
if(size <= 0 || values == nullptr)
{
alcSetError(dev.get(), ALC_INVALID_VALUE);
return;
}
const auto valuespan = al::span{values, static_cast<uint>(size)};
if(!dev || dev->Type == DeviceType::Capture)
{
auto ivals = std::vector<int>(valuespan.size());
if(size_t got{GetIntegerv(dev.get(), pname, ivals)})
std::copy_n(ivals.cbegin(), got, valuespan.begin());
return;
}
/* render device */
auto NumAttrsForDevice = [](al::Device *aldev) noexcept -> size_t
{
if(aldev->Type == DeviceType::Loopback && aldev->FmtChans == DevFmtAmbi3D)
return 41;
return 35;
};
std::lock_guard<std::mutex> statelock{dev->StateLock};
switch(pname)
{
case ALC_ATTRIBUTES_SIZE:
valuespan[0] = static_cast<ALCint64SOFT>(NumAttrsForDevice(dev.get()));
break;
case ALC_ALL_ATTRIBUTES:
if(valuespan.size() < NumAttrsForDevice(dev.get()))
alcSetError(dev.get(), ALC_INVALID_VALUE);
else
{
size_t i{0};
valuespan[i++] = ALC_FREQUENCY;
valuespan[i++] = dev->mSampleRate;
if(dev->Type != DeviceType::Loopback)
{
valuespan[i++] = ALC_REFRESH;
valuespan[i++] = dev->mSampleRate / dev->mUpdateSize;
valuespan[i++] = ALC_SYNC;
valuespan[i++] = ALC_FALSE;
}
else
{
valuespan[i++] = ALC_FORMAT_CHANNELS_SOFT;
valuespan[i++] = EnumFromDevFmt(dev->FmtChans);
valuespan[i++] = ALC_FORMAT_TYPE_SOFT;
valuespan[i++] = EnumFromDevFmt(dev->FmtType);
if(dev->FmtChans == DevFmtAmbi3D)
{
valuespan[i++] = ALC_AMBISONIC_LAYOUT_SOFT;
valuespan[i++] = EnumFromDevAmbi(dev->mAmbiLayout);
valuespan[i++] = ALC_AMBISONIC_SCALING_SOFT;
valuespan[i++] = EnumFromDevAmbi(dev->mAmbiScale);
valuespan[i++] = ALC_AMBISONIC_ORDER_SOFT;
valuespan[i++] = dev->mAmbiOrder;
}
}
valuespan[i++] = ALC_MONO_SOURCES;
valuespan[i++] = dev->NumMonoSources;
valuespan[i++] = ALC_STEREO_SOURCES;
valuespan[i++] = dev->NumStereoSources;
valuespan[i++] = ALC_MAX_AUXILIARY_SENDS;
valuespan[i++] = dev->NumAuxSends;
valuespan[i++] = ALC_HRTF_SOFT;
valuespan[i++] = (dev->mHrtf ? ALC_TRUE : ALC_FALSE);
valuespan[i++] = ALC_HRTF_STATUS_SOFT;
valuespan[i++] = dev->mHrtfStatus;
valuespan[i++] = ALC_OUTPUT_LIMITER_SOFT;
valuespan[i++] = dev->Limiter ? ALC_TRUE : ALC_FALSE;
ClockLatency clock{GetClockLatency(dev.get(), dev->Backend.get())};
valuespan[i++] = ALC_DEVICE_CLOCK_SOFT;
valuespan[i++] = clock.ClockTime.count();
valuespan[i++] = ALC_DEVICE_LATENCY_SOFT;
valuespan[i++] = clock.Latency.count();
valuespan[i++] = ALC_OUTPUT_MODE_SOFT;
valuespan[i++] = al::to_underlying(dev->getOutputMode1());
valuespan[i++] = 0;
}
break;
case ALC_DEVICE_CLOCK_SOFT:
{
uint samplecount, refcount;
seconds clocksec;
nanoseconds clocknsec;
do {
refcount = dev->waitForMix();
samplecount = dev->mSamplesDone.load(std::memory_order_relaxed);
clocksec = dev->mClockBaseSec.load(std::memory_order_relaxed);
clocknsec = dev->mClockBaseNSec.load(std::memory_order_relaxed);
std::atomic_thread_fence(std::memory_order_acquire);
} while(refcount != dev->mMixCount.load(std::memory_order_relaxed));
valuespan[0] = nanoseconds{clocksec + nanoseconds{clocknsec}
+ nanoseconds{seconds{samplecount}}/dev->mSampleRate}.count();
}
break;
case ALC_DEVICE_LATENCY_SOFT:
valuespan[0] = GetClockLatency(dev.get(), dev->Backend.get()).Latency.count();
break;
case ALC_DEVICE_CLOCK_LATENCY_SOFT:
if(size < 2)
alcSetError(dev.get(), ALC_INVALID_VALUE);
else
{
ClockLatency clock{GetClockLatency(dev.get(), dev->Backend.get())};
valuespan[0] = clock.ClockTime.count();
valuespan[1] = clock.Latency.count();
}
break;
default:
auto ivals = std::vector<int>(valuespan.size());
if(size_t got{GetIntegerv(dev.get(), pname, ivals)})
std::copy_n(ivals.cbegin(), got, valuespan.begin());
break;
}
}
ALC_API ALCboolean ALC_APIENTRY alcIsExtensionPresent(ALCdevice *device, const ALCchar *extName) noexcept
{
DeviceRef dev{VerifyDevice(device)};
if(!extName)
{
alcSetError(dev.get(), ALC_INVALID_VALUE);
return ALC_FALSE;
}
const std::string_view tofind{extName};
const auto extlist = dev ? std::string_view{GetExtensionList()}
: std::string_view{GetNoDeviceExtList()};
auto matchpos = extlist.find(tofind);
while(matchpos != std::string_view::npos)
{
const auto endpos = matchpos + tofind.size();
if((matchpos == 0 || std::isspace(extlist[matchpos-1]))
&& (endpos == extlist.size() || std::isspace(extlist[endpos])))
return ALC_TRUE;
matchpos = extlist.find(tofind, matchpos+1);
}
return ALC_FALSE;
}
ALCvoid* ALC_APIENTRY alcGetProcAddress2(ALCdevice *device, const ALCchar *funcName) noexcept
{ return alcGetProcAddress(device, funcName); }
ALC_API ALCvoid* ALC_APIENTRY alcGetProcAddress(ALCdevice *device, const ALCchar *funcName) noexcept
{
if(!funcName)
{
DeviceRef dev{VerifyDevice(device)};
alcSetError(dev.get(), ALC_INVALID_VALUE);
return nullptr;
}
#if ALSOFT_EAX
if(eax_g_is_enabled)
{
for(const auto &func : eaxFunctions)
{
if(strcmp(func.funcName, funcName) == 0)
return func.address;
}
}
#endif
for(const auto &func : alcFunctions)
{
if(strcmp(func.funcName, funcName) == 0)
return func.address;
}
return nullptr;
}
ALC_API ALCenum ALC_APIENTRY alcGetEnumValue(ALCdevice *device, const ALCchar *enumName) noexcept
{
if(!enumName)
{
DeviceRef dev{VerifyDevice(device)};
alcSetError(dev.get(), ALC_INVALID_VALUE);
return 0;
}
#if ALSOFT_EAX
if(eax_g_is_enabled)
{
for(const auto &enm : eaxEnumerations)
{
if(strcmp(enm.enumName, enumName) == 0)
return enm.value;
}
}
#endif
for(const auto &enm : alcEnumerations)
{
if(strcmp(enm.enumName, enumName) == 0)
return enm.value;
}
return 0;
}
ALC_API ALCcontext* ALC_APIENTRY alcCreateContext(ALCdevice *device, const ALCint *attrList) noexcept
{
/* Explicitly hold the list lock while taking the StateLock in case the
* device is asynchronously destroyed, to ensure this new context is
* properly cleaned up after being made.
*/
std::unique_lock<std::recursive_mutex> listlock{ListLock};
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type == DeviceType::Capture || !dev->Connected.load(std::memory_order_relaxed))
{
listlock.unlock();
alcSetError(dev.get(), ALC_INVALID_DEVICE);
return nullptr;
}
std::unique_lock<std::mutex> statelock{dev->StateLock};
listlock.unlock();
dev->LastError.store(ALC_NO_ERROR);
const auto attrSpan = SpanFromAttributeList(attrList);
ALCenum err{UpdateDeviceParams(dev.get(), attrSpan)};
if(err != ALC_NO_ERROR)
{
alcSetError(dev.get(), err);
return nullptr;
}
ContextFlagBitset ctxflags{0};
for(size_t i{0};i < attrSpan.size();i+=2)
{
if(attrSpan[i] == ALC_CONTEXT_FLAGS_EXT)
{
ctxflags = static_cast<ALuint>(attrSpan[i+1]);
break;
}
}
auto context = ContextRef{new(std::nothrow) ALCcontext{dev, ctxflags}};
if(!context)
{
alcSetError(dev.get(), ALC_OUT_OF_MEMORY);
return nullptr;
}
context->init();
if(auto volopt = dev->configValue<float>({}, "volume-adjust"))
{
const float valf{*volopt};
if(!std::isfinite(valf))
ERR("volume-adjust must be finite: {:f}", valf);
else
{
const float db{std::clamp(valf, -24.0f, 24.0f)};
if(db != valf)
WARN("volume-adjust clamped: {:f}, range: +/-24", valf);
context->mGainBoost = std::pow(10.0f, db/20.0f);
TRACE("volume-adjust gain: {:f}", context->mGainBoost);
}
}
{
using ContextArray = al::FlexArray<ContextBase*>;
/* Allocate a new context array, which holds 1 more than the current/
* old array.
*/
auto *oldarray = dev->mContexts.load();
auto newarray = ContextArray::Create(oldarray->size() + 1);
/* Copy the current/old context handles to the new array, appending the
* new context.
*/
auto iter = std::copy(oldarray->begin(), oldarray->end(), newarray->begin());
*iter = context.get();
/* Store the new context array in the device. Wait for any current mix
* to finish before deleting the old array.
*/
auto prevarray = dev->mContexts.exchange(std::move(newarray));
std::ignore = dev->waitForMix();
}
statelock.unlock();
{
listlock.lock();
auto iter = std::lower_bound(ContextList.cbegin(), ContextList.cend(), context.get());
ContextList.emplace(iter, context.get());
listlock.unlock();
}
if(ALeffectslot *slot{context->mDefaultSlot.get()})
{
ALenum sloterr{slot->initEffect(0, ALCcontext::sDefaultEffect.type,
ALCcontext::sDefaultEffect.Props, context.get())};
if(sloterr == AL_NO_ERROR)
slot->updateProps(context.get());
else
ERR("Failed to initialize the default effect");
}
TRACE("Created context {}", voidp{context.get()});
return context.release();
}
ALC_API void ALC_APIENTRY alcDestroyContext(ALCcontext *context) noexcept
{
if(!gProcessRunning)
return;
std::unique_lock<std::recursive_mutex> listlock{ListLock};
auto iter = std::lower_bound(ContextList.begin(), ContextList.end(), context);
if(iter == ContextList.end() || *iter != context)
{
listlock.unlock();
alcSetError(nullptr, ALC_INVALID_CONTEXT);
return;
}
/* Hold a reference to this context so it remains valid until the ListLock
* is released.
*/
ContextRef ctx{*iter};
ContextList.erase(iter);
auto *Device = ctx->mALDevice.get();
std::lock_guard<std::mutex> statelock{Device->StateLock};
ctx->deinit();
}
ALC_API auto ALC_APIENTRY alcGetCurrentContext() noexcept -> ALCcontext*
{
ALCcontext *Context{ALCcontext::getThreadContext()};
if(!Context) Context = ALCcontext::sGlobalContext.load();
return Context;
}
/** Returns the currently active thread-local context. */
ALC_API auto ALC_APIENTRY alcGetThreadContext() noexcept -> ALCcontext*
{ return ALCcontext::getThreadContext(); }
ALC_API ALCboolean ALC_APIENTRY alcMakeContextCurrent(ALCcontext *context) noexcept
{
/* context must be valid or nullptr */
ContextRef ctx;
if(context)
{
ctx = VerifyContext(context);
if(!ctx)
{
alcSetError(nullptr, ALC_INVALID_CONTEXT);
return ALC_FALSE;
}
}
/* Release this reference (if any) to store it in the GlobalContext
* pointer. Take ownership of the reference (if any) that was previously
* stored there, and let the reference go.
*/
while(ALCcontext::sGlobalContextLock.exchange(true, std::memory_order_acquire)) {
/* Wait to make sure another thread isn't getting or trying to change
* the current context as its refcount is decremented.
*/
}
ctx = ContextRef{ALCcontext::sGlobalContext.exchange(ctx.release())};
ALCcontext::sGlobalContextLock.store(false, std::memory_order_release);
/* Take ownership of the thread-local context reference (if any), clearing
* the storage to null.
*/
ctx = ContextRef{ALCcontext::getThreadContext()};
if(ctx) ALCcontext::setThreadContext(nullptr);
/* Reset (decrement) the previous thread-local reference. */
return ALC_TRUE;
}
/** Makes the given context the active context for the current thread. */
ALC_API ALCboolean ALC_APIENTRY alcSetThreadContext(ALCcontext *context) noexcept
{
/* context must be valid or nullptr */
ContextRef ctx;
if(context)
{
ctx = VerifyContext(context);
if(!ctx)
{
alcSetError(nullptr, ALC_INVALID_CONTEXT);
return ALC_FALSE;
}
}
/* context's reference count is already incremented */
ContextRef old{ALCcontext::getThreadContext()};
ALCcontext::setThreadContext(ctx.release());
return ALC_TRUE;
}
ALC_API ALCdevice* ALC_APIENTRY alcGetContextsDevice(ALCcontext *Context) noexcept
{
ContextRef ctx{VerifyContext(Context)};
if(!ctx)
{
alcSetError(nullptr, ALC_INVALID_CONTEXT);
return nullptr;
}
return ctx->mALDevice.get();
}
ALC_API ALCdevice* ALC_APIENTRY alcOpenDevice(const ALCchar *deviceName) noexcept
{
InitConfig();
if(!PlaybackFactory)
{
alcSetError(nullptr, ALC_INVALID_VALUE);
return nullptr;
}
std::string_view devname{deviceName ? deviceName : ""};
if(!devname.empty())
{
TRACE("Opening playback device \"{}\"", devname);
if(al::case_compare(devname, GetDefaultName()) == 0
#ifdef _WIN32
/* Some old Windows apps hardcode these expecting OpenAL to use a
* specific audio API, even when they're not enumerated. Creative's
* router effectively ignores them too.
*/
|| al::case_compare(devname, "DirectSound3D"sv) == 0
|| al::case_compare(devname, "DirectSound"sv) == 0
|| al::case_compare(devname, "MMSYSTEM"sv) == 0
#endif
/* Some old Linux apps hardcode configuration strings that were
* supported by the OpenAL SI. We can't really do anything useful
* with them, so just ignore.
*/
|| al::starts_with(devname, "'("sv)
|| al::case_compare(devname, "openal-soft"sv) == 0)
devname = {};
else
{
const auto prefix = GetDevicePrefix();
if(!prefix.empty() && devname.size() > prefix.size()
&& al::starts_with(devname, prefix))
devname = devname.substr(prefix.size());
}
}
else
TRACE("Opening default playback device");
const uint DefaultSends{
#if ALSOFT_EAX
eax_g_is_enabled ? uint{EAX_MAX_FXSLOTS} :
#endif // ALSOFT_EAX
uint{DefaultSendCount}
};
auto device = DeviceRef{new(std::nothrow) al::Device{DeviceType::Playback}};
if(!device)
{
WARN("Failed to create playback device handle");
alcSetError(nullptr, ALC_OUT_OF_MEMORY);
return nullptr;
}
/* Set output format */
device->FmtChans = DevFmtChannelsDefault;
device->FmtType = DevFmtTypeDefault;
device->mSampleRate = DefaultOutputRate;
device->mUpdateSize = DefaultUpdateSize;
device->mBufferSize = DefaultUpdateSize * DefaultNumUpdates;
device->SourcesMax = 256;
device->NumStereoSources = 1;
device->NumMonoSources = device->SourcesMax - device->NumStereoSources;
device->AuxiliaryEffectSlotMax = 64;
device->NumAuxSends = DefaultSends;
try {
auto backend = PlaybackFactory->createBackend(device.get(), BackendType::Playback);
std::lock_guard<std::recursive_mutex> listlock{ListLock};
backend->open(devname);
device->mDeviceName = std::string{GetDevicePrefix()}+backend->mDeviceName;
device->Backend = std::move(backend);
}
catch(al::backend_exception &e) {
WARN("Failed to open playback device: {}", e.what());
alcSetError(nullptr, (e.errorCode() == al::backend_error::OutOfMemory)
? ALC_OUT_OF_MEMORY : ALC_INVALID_VALUE);
return nullptr;
}
auto checkopt = [&device](const char *envname, const std::string_view optname)
{
if(auto optval = al::getenv(envname)) return optval;
return device->configValue<std::string>("game_compat", optname);
};
if(auto overrideopt = checkopt("__ALSOFT_VENDOR_OVERRIDE", "vendor-override"sv))
{
device->mVendorOverride = std::move(*overrideopt);
TRACE("Overriding vendor string: \"{}\"", device->mVendorOverride);
}
if(auto overrideopt = checkopt("__ALSOFT_VERSION_OVERRIDE", "version-override"sv))
{
device->mVersionOverride = std::move(*overrideopt);
TRACE("Overriding version string: \"{}\"", device->mVersionOverride);
}
if(auto overrideopt = checkopt("__ALSOFT_RENDERER_OVERRIDE", "renderer-override"sv))
{
device->mRendererOverride = std::move(*overrideopt);
TRACE("Overriding renderer string: \"{}\"", device->mRendererOverride);
}
{
std::lock_guard<std::recursive_mutex> listlock{ListLock};
auto iter = std::lower_bound(DeviceList.cbegin(), DeviceList.cend(), device.get());
DeviceList.emplace(iter, device.get());
}
TRACE("Created device {}, \"{}\"", voidp{device.get()}, device->mDeviceName);
return device.release();
}
ALC_API ALCboolean ALC_APIENTRY alcCloseDevice(ALCdevice *device) noexcept
{
if(!gProcessRunning)
return ALC_FALSE;
std::unique_lock<std::recursive_mutex> listlock{ListLock};
auto iter = std::lower_bound(DeviceList.begin(), DeviceList.end(), device);
if(iter == DeviceList.end() || *iter != device)
{
alcSetError(nullptr, ALC_INVALID_DEVICE);
return ALC_FALSE;
}
if((*iter)->Type == DeviceType::Capture)
{
alcSetError(*iter, ALC_INVALID_DEVICE);
return ALC_FALSE;
}
/* Erase the device, and any remaining contexts left on it, from their
* respective lists.
*/
DeviceRef dev{*iter};
DeviceList.erase(iter);
std::unique_lock<std::mutex> statelock{dev->StateLock};
std::vector<ContextRef> orphanctxs;
for(ContextBase *ctx : *dev->mContexts.load())
{
auto ctxiter = std::lower_bound(ContextList.begin(), ContextList.end(), ctx);
if(ctxiter != ContextList.end() && *ctxiter == ctx)
{
orphanctxs.emplace_back(*ctxiter);
ContextList.erase(ctxiter);
}
}
listlock.unlock();
for(ContextRef &context : orphanctxs)
{
WARN("Releasing orphaned context {}", voidp{context.get()});
context->deinit();
}
orphanctxs.clear();
if(dev->mDeviceState == DeviceState::Playing)
{
dev->Backend->stop();
dev->mDeviceState = DeviceState::Configured;
}
return ALC_TRUE;
}
/************************************************
* ALC capture functions
************************************************/
ALC_API ALCdevice* ALC_APIENTRY alcCaptureOpenDevice(const ALCchar *deviceName, ALCuint frequency, ALCenum format, ALCsizei samples) noexcept
{
InitConfig();
if(!CaptureFactory)
{
alcSetError(nullptr, ALC_INVALID_VALUE);
return nullptr;
}
if(samples <= 0)
{
alcSetError(nullptr, ALC_INVALID_VALUE);
return nullptr;
}
std::string_view devname{deviceName ? deviceName : ""};
if(!devname.empty())
{
TRACE("Opening capture device \"{}\"", devname);
if(al::case_compare(devname, GetDefaultName()) == 0
|| al::case_compare(devname, "openal-soft"sv) == 0)
devname = {};
else
{
const auto prefix = GetDevicePrefix();
if(!prefix.empty() && devname.size() > prefix.size()
&& al::starts_with(devname, prefix))
devname = devname.substr(prefix.size());
}
}
else
TRACE("Opening default capture device");
auto device = DeviceRef{new(std::nothrow) al::Device{DeviceType::Capture}};
if(!device)
{
WARN("Failed to create capture device handle");
alcSetError(nullptr, ALC_OUT_OF_MEMORY);
return nullptr;
}
auto decompfmt = DecomposeDevFormat(format);
if(!decompfmt)
{
alcSetError(nullptr, ALC_INVALID_ENUM);
return nullptr;
}
device->mSampleRate = frequency;
device->FmtChans = decompfmt->chans;
device->FmtType = decompfmt->type;
device->Flags.set(FrequencyRequest);
device->Flags.set(ChannelsRequest);
device->Flags.set(SampleTypeRequest);
device->mUpdateSize = static_cast<uint>(samples);
device->mBufferSize = static_cast<uint>(samples);
TRACE("Capture format: {}, {}, {}hz, {} / {} buffer",
DevFmtChannelsString(device->FmtChans), DevFmtTypeString(device->FmtType),
device->mSampleRate, device->mUpdateSize, device->mBufferSize);
try {
auto backend = CaptureFactory->createBackend(device.get(), BackendType::Capture);
std::lock_guard<std::recursive_mutex> listlock{ListLock};
backend->open(devname);
device->mDeviceName = std::string{GetDevicePrefix()}+backend->mDeviceName;
device->Backend = std::move(backend);
}
catch(al::backend_exception &e) {
WARN("Failed to open capture device: {}", e.what());
alcSetError(nullptr, (e.errorCode() == al::backend_error::OutOfMemory)
? ALC_OUT_OF_MEMORY : ALC_INVALID_VALUE);
return nullptr;
}
{
std::lock_guard<std::recursive_mutex> listlock{ListLock};
auto iter = std::lower_bound(DeviceList.cbegin(), DeviceList.cend(), device.get());
DeviceList.emplace(iter, device.get());
}
device->mDeviceState = DeviceState::Configured;
TRACE("Created capture device {}, \"{}\"", voidp{device.get()}, device->mDeviceName);
return device.release();
}
ALC_API ALCboolean ALC_APIENTRY alcCaptureCloseDevice(ALCdevice *device) noexcept
{
if(!gProcessRunning)
return ALC_FALSE;
std::unique_lock<std::recursive_mutex> listlock{ListLock};
auto iter = std::lower_bound(DeviceList.begin(), DeviceList.end(), device);
if(iter == DeviceList.end() || *iter != device)
{
alcSetError(nullptr, ALC_INVALID_DEVICE);
return ALC_FALSE;
}
if((*iter)->Type != DeviceType::Capture)
{
alcSetError(*iter, ALC_INVALID_DEVICE);
return ALC_FALSE;
}
DeviceRef dev{*iter};
DeviceList.erase(iter);
listlock.unlock();
std::lock_guard<std::mutex> statelock{dev->StateLock};
if(dev->mDeviceState == DeviceState::Playing)
{
dev->Backend->stop();
dev->mDeviceState = DeviceState::Configured;
}
return ALC_TRUE;
}
ALC_API void ALC_APIENTRY alcCaptureStart(ALCdevice *device) noexcept
{
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type != DeviceType::Capture)
{
alcSetError(dev.get(), ALC_INVALID_DEVICE);
return;
}
std::lock_guard<std::mutex> statelock{dev->StateLock};
if(!dev->Connected.load(std::memory_order_acquire)
|| dev->mDeviceState < DeviceState::Configured)
alcSetError(dev.get(), ALC_INVALID_DEVICE);
else if(dev->mDeviceState != DeviceState::Playing)
{
try {
auto backend = dev->Backend.get();
backend->start();
dev->mDeviceState = DeviceState::Playing;
}
catch(al::backend_exception& e) {
ERR("{}", e.what());
dev->handleDisconnect("{}", e.what());
alcSetError(dev.get(), ALC_INVALID_DEVICE);
}
}
}
ALC_API void ALC_APIENTRY alcCaptureStop(ALCdevice *device) noexcept
{
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type != DeviceType::Capture)
alcSetError(dev.get(), ALC_INVALID_DEVICE);
else
{
std::lock_guard<std::mutex> statelock{dev->StateLock};
if(dev->mDeviceState == DeviceState::Playing)
{
dev->Backend->stop();
dev->mDeviceState = DeviceState::Configured;
}
}
}
ALC_API void ALC_APIENTRY alcCaptureSamples(ALCdevice *device, ALCvoid *buffer, ALCsizei samples) noexcept
{
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type != DeviceType::Capture)
{
alcSetError(dev.get(), ALC_INVALID_DEVICE);
return;
}
if(samples < 0 || (samples > 0 && buffer == nullptr))
{
alcSetError(dev.get(), ALC_INVALID_VALUE);
return;
}
if(samples < 1)
return;
std::lock_guard<std::mutex> statelock{dev->StateLock};
BackendBase *backend{dev->Backend.get()};
const auto usamples = static_cast<uint>(samples);
if(usamples > backend->availableSamples())
{
alcSetError(dev.get(), ALC_INVALID_VALUE);
return;
}
backend->captureSamples(static_cast<std::byte*>(buffer), usamples);
}
/************************************************
* ALC loopback functions
************************************************/
/** Open a loopback device, for manual rendering. */
ALC_API ALCdevice* ALC_APIENTRY alcLoopbackOpenDeviceSOFT(const ALCchar *deviceName) noexcept
{
InitConfig();
/* Make sure the device name, if specified, is us. */
if(deviceName && strcmp(deviceName, GetDefaultName()) != 0)
{
alcSetError(nullptr, ALC_INVALID_VALUE);
return nullptr;
}
const uint DefaultSends{
#if ALSOFT_EAX
eax_g_is_enabled ? uint{EAX_MAX_FXSLOTS} :
#endif // ALSOFT_EAX
uint{DefaultSendCount}
};
auto device = DeviceRef{new(std::nothrow) al::Device{DeviceType::Loopback}};
if(!device)
{
WARN("Failed to create loopback device handle");
alcSetError(nullptr, ALC_OUT_OF_MEMORY);
return nullptr;
}
device->SourcesMax = 256;
device->AuxiliaryEffectSlotMax = 64;
device->NumAuxSends = DefaultSends;
//Set output format
device->mBufferSize = 0;
device->mUpdateSize = 0;
device->mSampleRate = DefaultOutputRate;
device->FmtChans = DevFmtChannelsDefault;
device->FmtType = DevFmtTypeDefault;
device->NumStereoSources = 1;
device->NumMonoSources = device->SourcesMax - device->NumStereoSources;
try {
auto backend = LoopbackBackendFactory::getFactory().createBackend(device.get(),
BackendType::Playback);
backend->open("Loopback");
device->mDeviceName = std::string{GetDevicePrefix()}+backend->mDeviceName;
device->Backend = std::move(backend);
}
catch(al::backend_exception &e) {
WARN("Failed to open loopback device: {}", e.what());
alcSetError(nullptr, (e.errorCode() == al::backend_error::OutOfMemory)
? ALC_OUT_OF_MEMORY : ALC_INVALID_VALUE);
return nullptr;
}
{
std::lock_guard<std::recursive_mutex> listlock{ListLock};
auto iter = std::lower_bound(DeviceList.cbegin(), DeviceList.cend(), device.get());
DeviceList.emplace(iter, device.get());
}
TRACE("Created loopback device {}", voidp{device.get()});
return device.release();
}
/**
* Determines if the loopback device supports the given format for rendering.
*/
ALC_API ALCboolean ALC_APIENTRY alcIsRenderFormatSupportedSOFT(ALCdevice *device, ALCsizei freq, ALCenum channels, ALCenum type) noexcept
{
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type != DeviceType::Loopback)
alcSetError(dev.get(), ALC_INVALID_DEVICE);
else if(freq <= 0)
alcSetError(dev.get(), ALC_INVALID_VALUE);
else
{
if(DevFmtTypeFromEnum(type).has_value() && DevFmtChannelsFromEnum(channels).has_value()
&& freq >= int{MinOutputRate} && freq <= int{MaxOutputRate})
return ALC_TRUE;
}
return ALC_FALSE;
}
/**
* Renders some samples into a buffer, using the format last set by the
* attributes given to alcCreateContext.
*/
#if defined(__GNUC__) && defined(__i386__)
/* Needed on x86-32 even without SSE codegen, since the mixer may still use SSE
* and GCC assumes the stack is aligned (x86-64 ABI guarantees alignment).
*/
[[gnu::force_align_arg_pointer]]
#endif
ALC_API void ALC_APIENTRY alcRenderSamplesSOFT(ALCdevice *device, ALCvoid *buffer, ALCsizei samples) noexcept
{
auto aldev = dynamic_cast<al::Device*>(device);
if(!aldev || aldev->Type != DeviceType::Loopback) UNLIKELY
alcSetError(aldev, ALC_INVALID_DEVICE);
else if(samples < 0 || (samples > 0 && buffer == nullptr)) UNLIKELY
alcSetError(aldev, ALC_INVALID_VALUE);
else
aldev->renderSamples(buffer, static_cast<uint>(samples), aldev->channelsFromFmt());
}
/************************************************
* ALC DSP pause/resume functions
************************************************/
/** Pause the DSP to stop audio processing. */
ALC_API void ALC_APIENTRY alcDevicePauseSOFT(ALCdevice *device) noexcept
{
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type != DeviceType::Playback)
alcSetError(dev.get(), ALC_INVALID_DEVICE);
else
{
std::lock_guard<std::mutex> statelock{dev->StateLock};
if(dev->mDeviceState == DeviceState::Playing)
{
dev->Backend->stop();
dev->mDeviceState = DeviceState::Configured;
}
dev->Flags.set(DevicePaused);
}
}
/** Resume the DSP to restart audio processing. */
ALC_API void ALC_APIENTRY alcDeviceResumeSOFT(ALCdevice *device) noexcept
{
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type != DeviceType::Playback)
{
alcSetError(dev.get(), ALC_INVALID_DEVICE);
return;
}
std::lock_guard<std::mutex> statelock{dev->StateLock};
if(!dev->Flags.test(DevicePaused))
return;
if(dev->mDeviceState < DeviceState::Configured)
{
WARN("Cannot resume unconfigured device");
alcSetError(dev.get(), ALC_INVALID_DEVICE);
return;
}
if(!dev->Connected.load())
{
WARN("Cannot resume a disconnected device");
alcSetError(dev.get(), ALC_INVALID_DEVICE);
return;
}
dev->Flags.reset(DevicePaused);
if(dev->mContexts.load()->empty())
return;
try {
auto backend = dev->Backend.get();
backend->start();
dev->mDeviceState = DeviceState::Playing;
}
catch(al::backend_exception& e) {
ERR("{}", e.what());
dev->handleDisconnect("{}", e.what());
alcSetError(dev.get(), ALC_INVALID_DEVICE);
return;
}
TRACE("Post-resume: {}, {}, {}hz, {} / {} buffer",
DevFmtChannelsString(dev->FmtChans), DevFmtTypeString(dev->FmtType),
dev->mSampleRate, dev->mUpdateSize, dev->mBufferSize);
}
/************************************************
* ALC HRTF functions
************************************************/
/** Gets a string parameter at the given index. */
ALC_API const ALCchar* ALC_APIENTRY alcGetStringiSOFT(ALCdevice *device, ALCenum paramName, ALCsizei index) noexcept
{
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type == DeviceType::Capture)
alcSetError(dev.get(), ALC_INVALID_DEVICE);
else switch(paramName)
{
case ALC_HRTF_SPECIFIER_SOFT:
if(index >= 0 && static_cast<uint>(index) < dev->mHrtfList.size())
return dev->mHrtfList[static_cast<uint>(index)].c_str();
alcSetError(dev.get(), ALC_INVALID_VALUE);
break;
default:
alcSetError(dev.get(), ALC_INVALID_ENUM);
break;
}
return nullptr;
}
/** Resets the given device output, using the specified attribute list. */
ALC_API ALCboolean ALC_APIENTRY alcResetDeviceSOFT(ALCdevice *device, const ALCint *attribs) noexcept
{
std::unique_lock<std::recursive_mutex> listlock{ListLock};
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type == DeviceType::Capture)
{
listlock.unlock();
alcSetError(dev.get(), ALC_INVALID_DEVICE);
return ALC_FALSE;
}
std::lock_guard<std::mutex> statelock{dev->StateLock};
listlock.unlock();
/* Force the backend to stop mixing first since we're resetting. Also reset
* the connected state so lost devices can attempt recover.
*/
if(dev->mDeviceState == DeviceState::Playing)
{
dev->Backend->stop();
dev->mDeviceState = DeviceState::Configured;
}
return ResetDeviceParams(dev.get(), SpanFromAttributeList(attribs)) ? ALC_TRUE : ALC_FALSE;
}
/************************************************
* ALC device reopen functions
************************************************/
/** Reopens the given device output, using the specified name and attribute list. */
FORCE_ALIGN ALCboolean ALC_APIENTRY alcReopenDeviceSOFT(ALCdevice *device,
const ALCchar *deviceName, const ALCint *attribs) noexcept
{
std::unique_lock<std::recursive_mutex> listlock{ListLock};
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type != DeviceType::Playback)
{
listlock.unlock();
alcSetError(dev.get(), ALC_INVALID_DEVICE);
return ALC_FALSE;
}
std::lock_guard<std::mutex> statelock{dev->StateLock};
std::string_view devname{deviceName ? deviceName : ""};
if(!devname.empty())
{
if(devname.length() >= size_t{std::numeric_limits<int>::max()})
{
ERR("Device name too long ({} >= {})", devname.length(),
std::numeric_limits<int>::max());
alcSetError(dev.get(), ALC_INVALID_VALUE);
return ALC_FALSE;
}
if(al::case_compare(devname, GetDefaultName()) == 0)
devname = {};
else
{
const auto prefix = GetDevicePrefix();
if(!prefix.empty() && devname.size() > prefix.size()
&& al::starts_with(devname, prefix))
devname = devname.substr(prefix.size());
}
}
/* Force the backend device to stop first since we're opening another one. */
const bool wasPlaying{dev->mDeviceState == DeviceState::Playing};
if(wasPlaying)
{
dev->Backend->stop();
dev->mDeviceState = DeviceState::Configured;
}
BackendPtr newbackend;
try {
newbackend = PlaybackFactory->createBackend(dev.get(), BackendType::Playback);
newbackend->open(devname);
}
catch(al::backend_exception &e) {
listlock.unlock();
newbackend = nullptr;
WARN("Failed to reopen playback device: {}", e.what());
alcSetError(dev.get(), (e.errorCode() == al::backend_error::OutOfMemory)
? ALC_OUT_OF_MEMORY : ALC_INVALID_VALUE);
if(dev->Connected.load(std::memory_order_relaxed) && wasPlaying)
{
try {
auto backend = dev->Backend.get();
backend->start();
dev->mDeviceState = DeviceState::Playing;
}
catch(al::backend_exception &be) {
ERR("{}", be.what());
dev->handleDisconnect("{}", be.what());
}
}
return ALC_FALSE;
}
listlock.unlock();
dev->mDeviceName = std::string{GetDevicePrefix()}+newbackend->mDeviceName;
dev->Backend = std::move(newbackend);
dev->mDeviceState = DeviceState::Unprepared;
TRACE("Reopened device {}, \"{}\"", voidp{dev.get()}, dev->mDeviceName);
std::string{}.swap(dev->mVendorOverride);
std::string{}.swap(dev->mVersionOverride);
std::string{}.swap(dev->mRendererOverride);
auto checkopt = [&dev](const char *envname, const std::string_view optname)
{
if(auto optval = al::getenv(envname)) return optval;
return dev->configValue<std::string>("game_compat", optname);
};
if(auto overrideopt = checkopt("__ALSOFT_VENDOR_OVERRIDE", "vendor-override"sv))
{
dev->mVendorOverride = std::move(*overrideopt);
TRACE("Overriding vendor string: \"{}\"", dev->mVendorOverride);
}
if(auto overrideopt = checkopt("__ALSOFT_VERSION_OVERRIDE", "version-override"sv))
{
dev->mVersionOverride = std::move(*overrideopt);
TRACE("Overriding version string: \"{}\"", dev->mVersionOverride);
}
if(auto overrideopt = checkopt("__ALSOFT_RENDERER_OVERRIDE", "renderer-override"sv))
{
dev->mRendererOverride = std::move(*overrideopt);
TRACE("Overriding renderer string: \"{}\"", dev->mRendererOverride);
}
/* Always return true even if resetting fails. It shouldn't fail, but this
* is primarily to avoid confusion by the app seeing the function return
* false while the device is on the new output anyway. We could try to
* restore the old backend if this fails, but the configuration would be
* changed with the new backend and would need to be reset again with the
* old one, and the provided attributes may not be appropriate or desirable
* for the old device.
*
* In this way, we essentially act as if the function succeeded, but
* immediately disconnects following it.
*/
ResetDeviceParams(dev.get(), SpanFromAttributeList(attribs));
return ALC_TRUE;
}
/************************************************
* ALC event query functions
************************************************/
FORCE_ALIGN ALCenum ALC_APIENTRY alcEventIsSupportedSOFT(ALCenum eventType, ALCenum deviceType) noexcept
{
auto etype = alc::GetEventType(eventType);
if(!etype)
{
WARN("Invalid event type: {:#04x}", as_unsigned(eventType));
alcSetError(nullptr, ALC_INVALID_ENUM);
return ALC_FALSE;
}
auto supported = alc::EventSupport::NoSupport;
switch(deviceType)
{
case ALC_PLAYBACK_DEVICE_SOFT:
if(PlaybackFactory)
supported = PlaybackFactory->queryEventSupport(*etype, BackendType::Playback);
return al::to_underlying(supported);
case ALC_CAPTURE_DEVICE_SOFT:
if(CaptureFactory)
supported = CaptureFactory->queryEventSupport(*etype, BackendType::Capture);
return al::to_underlying(supported);
}
WARN("Invalid device type: {:#04x}", as_unsigned(deviceType));
alcSetError(nullptr, ALC_INVALID_ENUM);
return ALC_FALSE;
}