Updated Assimp

Added initial behavior for ImageAssets to hold a list of GFX resources of different texture profiles to avoid mem leaks with incorrect-typed usages
Added function to ImageAsset to get best-fit asset, allowing for fallbacks if the requested assetID is not found
Added function to ShapeAsset to get best-fit asset, allowing for fallbacks if the requested assetID is not found
Disabled fields for dynamic and static shadowmap refresh rates
Moved noShape model to core/rendering/shapes to place it in a more logical module position
Added an include to avoid undefined type compile error and removed unneeded semicolon from zone code
Added call to reload probe textures when a reloadTextures call is made
Adjusted default directional light shadowmap settings to not be as extreme
Added utility function to probe manager to allow any class to request a 'best fit' list of probes that would affect a given location, allowing other classes such as fog or particles to utilize IBL. Also updated probeManager's forward rendering to utilize same function to reduce code duplication.
Shifted shape loader code to utilize assimp for loader consistency and testing
Changed render bin used for SSAO postfx so it runs at the right time
Made Core_Rendering module scan for assets
Updated loose file references to a number of assets to follow proper formatting
Refactored asset import code to follow a more consistent object heirarchy structure on importing assets, allowing more reliable cross-referencing between inbound items
Updated asset import logic for materials/images so that they properly utilize ImageType. Images correctly save out the assigned image type, materials reference the images' type to know what map slot they should be used in. Importer logic also updated to better find-and-add associated images based on type.
Cleaned up a bunch of old, outdated code in the asset importer
Added initial handling for in-place importing of files without needing to process them through the UI.
Added ability to edit module script from RMB context menu if torsion path is set
Updated list field code for variable inspector to utilize correct ownerObject field
This commit is contained in:
Areloch 2020-03-19 09:47:38 -05:00
parent 2d015bc426
commit 6ade6f08ce
545 changed files with 15077 additions and 8437 deletions

View file

@ -3,7 +3,7 @@
Open Asset Import Library (assimp)
---------------------------------------------------------------------------
Copyright (c) 2006-2019, assimp team
Copyright (c) 2006-2020, assimp team
All rights reserved.
@ -43,13 +43,13 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* @brief Implementation of the aiProcess_OptimizGraph step
*/
#ifndef ASSIMP_BUILD_NO_OPTIMIZEGRAPH_PROCESS
#include "OptimizeGraph.h"
#include "ProcessHelper.h"
#include <assimp/SceneCombiner.h>
#include "ConvertToLHProcess.h"
#include <assimp/Exceptional.h>
#include <assimp/SceneCombiner.h>
#include <stdio.h>
using namespace Assimp;
@ -60,292 +60,299 @@ using namespace Assimp;
* The unhashed variant should be faster, except for *very* large data sets
*/
#ifdef AI_OG_USE_HASHING
// Use our standard hashing function to compute the hash
# define AI_OG_GETKEY(str) SuperFastHash(str.data,str.length)
// Use our standard hashing function to compute the hash
#define AI_OG_GETKEY(str) SuperFastHash(str.data, str.length)
#else
// Otherwise hope that std::string will utilize a static buffer
// for shorter node names. This would avoid endless heap copying.
# define AI_OG_GETKEY(str) std::string(str.data)
// Otherwise hope that std::string will utilize a static buffer
// for shorter node names. This would avoid endless heap copying.
#define AI_OG_GETKEY(str) std::string(str.data)
#endif
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
OptimizeGraphProcess::OptimizeGraphProcess()
: mScene()
, nodes_in()
, nodes_out()
, count_merged() {
// empty
OptimizeGraphProcess::OptimizeGraphProcess() :
mScene(),
nodes_in(),
nodes_out(),
count_merged() {
// empty
}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
OptimizeGraphProcess::~OptimizeGraphProcess() {
// empty
// empty
}
// ------------------------------------------------------------------------------------------------
// Returns whether the processing step is present in the given flag field.
bool OptimizeGraphProcess::IsActive( unsigned int pFlags) const {
return (0 != (pFlags & aiProcess_OptimizeGraph));
bool OptimizeGraphProcess::IsActive(unsigned int pFlags) const {
return (0 != (pFlags & aiProcess_OptimizeGraph));
}
// ------------------------------------------------------------------------------------------------
// Setup properties for the post-processing step
void OptimizeGraphProcess::SetupProperties(const Importer* pImp) {
// Get value of AI_CONFIG_PP_OG_EXCLUDE_LIST
std::string tmp = pImp->GetPropertyString(AI_CONFIG_PP_OG_EXCLUDE_LIST,"");
AddLockedNodeList(tmp);
void OptimizeGraphProcess::SetupProperties(const Importer *pImp) {
// Get value of AI_CONFIG_PP_OG_EXCLUDE_LIST
std::string tmp = pImp->GetPropertyString(AI_CONFIG_PP_OG_EXCLUDE_LIST, "");
AddLockedNodeList(tmp);
}
// ------------------------------------------------------------------------------------------------
// Collect new children
void OptimizeGraphProcess::CollectNewChildren(aiNode* nd, std::list<aiNode*>& nodes) {
nodes_in += nd->mNumChildren;
void OptimizeGraphProcess::CollectNewChildren(aiNode *nd, std::list<aiNode *> &nodes) {
nodes_in += nd->mNumChildren;
// Process children
std::list<aiNode*> child_nodes;
for (unsigned int i = 0; i < nd->mNumChildren; ++i) {
CollectNewChildren(nd->mChildren[i],child_nodes);
nd->mChildren[i] = nullptr;
}
// Process children
std::list<aiNode *> child_nodes;
for (unsigned int i = 0; i < nd->mNumChildren; ++i) {
CollectNewChildren(nd->mChildren[i], child_nodes);
nd->mChildren[i] = nullptr;
}
// Check whether we need this node; if not we can replace it by our own children (warn, danger of incest).
if (locked.find(AI_OG_GETKEY(nd->mName)) == locked.end() ) {
for (std::list<aiNode*>::iterator it = child_nodes.begin(); it != child_nodes.end();) {
// Check whether we need this node; if not we can replace it by our own children (warn, danger of incest).
if (locked.find(AI_OG_GETKEY(nd->mName)) == locked.end()) {
for (std::list<aiNode *>::iterator it = child_nodes.begin(); it != child_nodes.end();) {
if (locked.find(AI_OG_GETKEY((*it)->mName)) == locked.end()) {
(*it)->mTransformation = nd->mTransformation * (*it)->mTransformation;
nodes.push_back(*it);
if (locked.find(AI_OG_GETKEY((*it)->mName)) == locked.end()) {
(*it)->mTransformation = nd->mTransformation * (*it)->mTransformation;
nodes.push_back(*it);
it = child_nodes.erase(it);
continue;
}
++it;
}
it = child_nodes.erase(it);
continue;
}
++it;
}
if (nd->mNumMeshes || !child_nodes.empty()) {
nodes.push_back(nd);
} else {
delete nd; /* bye, node */
return;
}
} else {
if (nd->mNumMeshes || !child_nodes.empty()) {
nodes.push_back(nd);
} else {
delete nd; /* bye, node */
return;
}
} else {
// Retain our current position in the hierarchy
nodes.push_back(nd);
// Retain our current position in the hierarchy
nodes.push_back(nd);
// Now check for possible optimizations in our list of child nodes. join as many as possible
aiNode* join_master = NULL;
aiMatrix4x4 inv;
// Now check for possible optimizations in our list of child nodes. join as many as possible
aiNode *join_master = nullptr;
aiMatrix4x4 inv;
const LockedSetType::const_iterator end = locked.end();
const LockedSetType::const_iterator end = locked.end();
std::list<aiNode*> join;
for (std::list<aiNode*>::iterator it = child_nodes.begin(); it != child_nodes.end();) {
aiNode* child = *it;
if (child->mNumChildren == 0 && locked.find(AI_OG_GETKEY(child->mName)) == end) {
std::list<aiNode *> join;
for (std::list<aiNode *>::iterator it = child_nodes.begin(); it != child_nodes.end();) {
aiNode *child = *it;
if (child->mNumChildren == 0 && locked.find(AI_OG_GETKEY(child->mName)) == end) {
// There may be no instanced meshes
unsigned int n = 0;
for (; n < child->mNumMeshes;++n) {
if (meshes[child->mMeshes[n]] > 1) {
break;
}
}
if (n == child->mNumMeshes) {
if (!join_master) {
join_master = child;
inv = join_master->mTransformation;
inv.Inverse();
} else {
child->mTransformation = inv * child->mTransformation ;
// There may be no instanced meshes
unsigned int n = 0;
for (; n < child->mNumMeshes; ++n) {
if (meshes[child->mMeshes[n]] > 1) {
break;
}
}
if (n == child->mNumMeshes) {
if (!join_master) {
join_master = child;
inv = join_master->mTransformation;
inv.Inverse();
} else {
child->mTransformation = inv * child->mTransformation;
join.push_back(child);
it = child_nodes.erase(it);
continue;
}
}
}
++it;
}
if (join_master && !join.empty()) {
join_master->mName.length = ::ai_snprintf(join_master->mName.data, MAXLEN, "$MergedNode_%i",count_merged++);
join.push_back(child);
it = child_nodes.erase(it);
continue;
}
}
}
++it;
}
if (join_master && !join.empty()) {
join_master->mName.length = ::ai_snprintf(join_master->mName.data, MAXLEN, "$MergedNode_%i", count_merged++);
unsigned int out_meshes = 0;
for (std::list<aiNode*>::iterator it = join.begin(); it != join.end(); ++it) {
out_meshes += (*it)->mNumMeshes;
}
unsigned int out_meshes = 0;
for (std::list<aiNode *>::const_iterator it = join.cbegin(); it != join.cend(); ++it) {
out_meshes += (*it)->mNumMeshes;
}
// copy all mesh references in one array
if (out_meshes) {
unsigned int* meshes = new unsigned int[out_meshes+join_master->mNumMeshes], *tmp = meshes;
for (unsigned int n = 0; n < join_master->mNumMeshes;++n) {
*tmp++ = join_master->mMeshes[n];
}
// copy all mesh references in one array
if (out_meshes) {
unsigned int *meshes = new unsigned int[out_meshes + join_master->mNumMeshes], *tmp = meshes;
for (unsigned int n = 0; n < join_master->mNumMeshes; ++n) {
*tmp++ = join_master->mMeshes[n];
}
for (std::list<aiNode*>::iterator it = join.begin(); it != join.end(); ++it) {
for (unsigned int n = 0; n < (*it)->mNumMeshes; ++n) {
for (const aiNode *join_node : join) {
for (unsigned int n = 0; n < join_node->mNumMeshes; ++n) {
*tmp = (*it)->mMeshes[n];
aiMesh* mesh = mScene->mMeshes[*tmp++];
*tmp = join_node->mMeshes[n];
aiMesh *mesh = mScene->mMeshes[*tmp++];
// manually move the mesh into the right coordinate system
const aiMatrix3x3 IT = aiMatrix3x3( (*it)->mTransformation ).Inverse().Transpose();
for (unsigned int a = 0; a < mesh->mNumVertices; ++a) {
// Assume the transformation is affine
// manually move the mesh into the right coordinate system
mesh->mVertices[a] *= (*it)->mTransformation;
// Check for odd negative scale (mirror)
if (join_node->mTransformation.Determinant() < 0) {
// Reverse the mesh face winding order
FlipWindingOrderProcess::ProcessMesh(mesh);
}
if (mesh->HasNormals())
mesh->mNormals[a] *= IT;
// Update positions, normals and tangents
const aiMatrix3x3 IT = aiMatrix3x3(join_node->mTransformation).Inverse().Transpose();
for (unsigned int a = 0; a < mesh->mNumVertices; ++a) {
if (mesh->HasTangentsAndBitangents()) {
mesh->mTangents[a] *= IT;
mesh->mBitangents[a] *= IT;
}
}
}
delete *it; // bye, node
}
delete[] join_master->mMeshes;
join_master->mMeshes = meshes;
join_master->mNumMeshes += out_meshes;
}
}
}
// reassign children if something changed
if (child_nodes.empty() || child_nodes.size() > nd->mNumChildren) {
mesh->mVertices[a] *= join_node->mTransformation;
delete[] nd->mChildren;
if (mesh->HasNormals())
mesh->mNormals[a] *= IT;
if (!child_nodes.empty()) {
nd->mChildren = new aiNode*[child_nodes.size()];
}
else nd->mChildren = nullptr;
}
if (mesh->HasTangentsAndBitangents()) {
mesh->mTangents[a] *= IT;
mesh->mBitangents[a] *= IT;
}
}
}
delete join_node; // bye, node
}
delete[] join_master->mMeshes;
join_master->mMeshes = meshes;
join_master->mNumMeshes += out_meshes;
}
}
}
// reassign children if something changed
if (child_nodes.empty() || child_nodes.size() > nd->mNumChildren) {
nd->mNumChildren = static_cast<unsigned int>(child_nodes.size());
delete[] nd->mChildren;
if (nd->mChildren) {
aiNode** tmp = nd->mChildren;
for (std::list<aiNode*>::iterator it = child_nodes.begin(); it != child_nodes.end(); ++it) {
aiNode* node = *tmp++ = *it;
node->mParent = nd;
}
}
if (!child_nodes.empty()) {
nd->mChildren = new aiNode *[child_nodes.size()];
} else
nd->mChildren = nullptr;
}
nodes_out += static_cast<unsigned int>(child_nodes.size());
nd->mNumChildren = static_cast<unsigned int>(child_nodes.size());
if (nd->mChildren) {
aiNode **tmp = nd->mChildren;
for (std::list<aiNode *>::iterator it = child_nodes.begin(); it != child_nodes.end(); ++it) {
aiNode *node = *tmp++ = *it;
node->mParent = nd;
}
}
nodes_out += static_cast<unsigned int>(child_nodes.size());
}
// ------------------------------------------------------------------------------------------------
// Execute the post-processing step on the given scene
void OptimizeGraphProcess::Execute( aiScene* pScene) {
ASSIMP_LOG_DEBUG("OptimizeGraphProcess begin");
nodes_in = nodes_out = count_merged = 0;
mScene = pScene;
void OptimizeGraphProcess::Execute(aiScene *pScene) {
ASSIMP_LOG_DEBUG("OptimizeGraphProcess begin");
nodes_in = nodes_out = count_merged = 0;
mScene = pScene;
meshes.resize(pScene->mNumMeshes,0);
FindInstancedMeshes(pScene->mRootNode);
meshes.resize(pScene->mNumMeshes, 0);
FindInstancedMeshes(pScene->mRootNode);
// build a blacklist of identifiers. If the name of a node matches one of these, we won't touch it
locked.clear();
for (std::list<std::string>::const_iterator it = locked_nodes.begin(); it != locked_nodes.end(); ++it) {
// build a blacklist of identifiers. If the name of a node matches one of these, we won't touch it
locked.clear();
for (std::list<std::string>::const_iterator it = locked_nodes.begin(); it != locked_nodes.end(); ++it) {
#ifdef AI_OG_USE_HASHING
locked.insert(SuperFastHash((*it).c_str()));
locked.insert(SuperFastHash((*it).c_str()));
#else
locked.insert(*it);
locked.insert(*it);
#endif
}
}
for (unsigned int i = 0; i < pScene->mNumAnimations; ++i) {
for (unsigned int a = 0; a < pScene->mAnimations[i]->mNumChannels; ++a) {
aiNodeAnim* anim = pScene->mAnimations[i]->mChannels[a];
locked.insert(AI_OG_GETKEY(anim->mNodeName));
}
}
for (unsigned int i = 0; i < pScene->mNumAnimations; ++i) {
for (unsigned int a = 0; a < pScene->mAnimations[i]->mNumChannels; ++a) {
aiNodeAnim *anim = pScene->mAnimations[i]->mChannels[a];
locked.insert(AI_OG_GETKEY(anim->mNodeName));
}
}
for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) {
for (unsigned int a = 0; a < pScene->mMeshes[i]->mNumBones; ++a) {
for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) {
for (unsigned int a = 0; a < pScene->mMeshes[i]->mNumBones; ++a) {
aiBone* bone = pScene->mMeshes[i]->mBones[a];
locked.insert(AI_OG_GETKEY(bone->mName));
aiBone *bone = pScene->mMeshes[i]->mBones[a];
locked.insert(AI_OG_GETKEY(bone->mName));
// HACK: Meshes referencing bones may not be transformed; we need to look them.
// The easiest way to do this is to increase their reference counters ...
meshes[i] += 2;
}
}
// HACK: Meshes referencing bones may not be transformed; we need to look them.
// The easiest way to do this is to increase their reference counters ...
meshes[i] += 2;
}
}
for (unsigned int i = 0; i < pScene->mNumCameras; ++i) {
aiCamera* cam = pScene->mCameras[i];
locked.insert(AI_OG_GETKEY(cam->mName));
}
for (unsigned int i = 0; i < pScene->mNumCameras; ++i) {
aiCamera *cam = pScene->mCameras[i];
locked.insert(AI_OG_GETKEY(cam->mName));
}
for (unsigned int i = 0; i < pScene->mNumLights; ++i) {
aiLight* lgh = pScene->mLights[i];
locked.insert(AI_OG_GETKEY(lgh->mName));
}
for (unsigned int i = 0; i < pScene->mNumLights; ++i) {
aiLight *lgh = pScene->mLights[i];
locked.insert(AI_OG_GETKEY(lgh->mName));
}
// Insert a dummy master node and make it read-only
aiNode* dummy_root = new aiNode(AI_RESERVED_NODE_NAME);
locked.insert(AI_OG_GETKEY(dummy_root->mName));
// Insert a dummy master node and make it read-only
aiNode *dummy_root = new aiNode(AI_RESERVED_NODE_NAME);
locked.insert(AI_OG_GETKEY(dummy_root->mName));
const aiString prev = pScene->mRootNode->mName;
pScene->mRootNode->mParent = dummy_root;
const aiString prev = pScene->mRootNode->mName;
pScene->mRootNode->mParent = dummy_root;
dummy_root->mChildren = new aiNode*[dummy_root->mNumChildren = 1];
dummy_root->mChildren[0] = pScene->mRootNode;
dummy_root->mChildren = new aiNode *[dummy_root->mNumChildren = 1];
dummy_root->mChildren[0] = pScene->mRootNode;
// Do our recursive processing of scenegraph nodes. For each node collect
// a fully new list of children and allow their children to place themselves
// on the same hierarchy layer as their parents.
std::list<aiNode*> nodes;
CollectNewChildren (dummy_root,nodes);
// Do our recursive processing of scenegraph nodes. For each node collect
// a fully new list of children and allow their children to place themselves
// on the same hierarchy layer as their parents.
std::list<aiNode *> nodes;
CollectNewChildren(dummy_root, nodes);
ai_assert(nodes.size() == 1);
ai_assert(nodes.size() == 1);
if (dummy_root->mNumChildren == 0) {
pScene->mRootNode = NULL;
throw DeadlyImportError("After optimizing the scene graph, no data remains");
}
if (dummy_root->mNumChildren == 0) {
pScene->mRootNode = nullptr;
throw DeadlyImportError("After optimizing the scene graph, no data remains");
}
if (dummy_root->mNumChildren > 1) {
pScene->mRootNode = dummy_root;
if (dummy_root->mNumChildren > 1) {
pScene->mRootNode = dummy_root;
// Keep the dummy node but assign the name of the old root node to it
pScene->mRootNode->mName = prev;
}
else {
// Keep the dummy node but assign the name of the old root node to it
pScene->mRootNode->mName = prev;
} else {
// Remove the dummy root node again.
pScene->mRootNode = dummy_root->mChildren[0];
// Remove the dummy root node again.
pScene->mRootNode = dummy_root->mChildren[0];
dummy_root->mChildren[0] = NULL;
delete dummy_root;
}
dummy_root->mChildren[0] = nullptr;
delete dummy_root;
}
pScene->mRootNode->mParent = NULL;
if (!DefaultLogger::isNullLogger()) {
if ( nodes_in != nodes_out) {
ASSIMP_LOG_INFO_F("OptimizeGraphProcess finished; Input nodes: ", nodes_in, ", Output nodes: ", nodes_out);
} else {
ASSIMP_LOG_DEBUG("OptimizeGraphProcess finished");
}
}
meshes.clear();
locked.clear();
pScene->mRootNode->mParent = nullptr;
if (!DefaultLogger::isNullLogger()) {
if (nodes_in != nodes_out) {
ASSIMP_LOG_INFO_F("OptimizeGraphProcess finished; Input nodes: ", nodes_in, ", Output nodes: ", nodes_out);
} else {
ASSIMP_LOG_DEBUG("OptimizeGraphProcess finished");
}
}
meshes.clear();
locked.clear();
}
// ------------------------------------------------------------------------------------------------
// Build a LUT of all instanced meshes
void OptimizeGraphProcess::FindInstancedMeshes (aiNode* pNode)
{
for (unsigned int i = 0; i < pNode->mNumMeshes;++i) {
++meshes[pNode->mMeshes[i]];
}
void OptimizeGraphProcess::FindInstancedMeshes(aiNode *pNode) {
for (unsigned int i = 0; i < pNode->mNumMeshes; ++i) {
++meshes[pNode->mMeshes[i]];
}
for (unsigned int i = 0; i < pNode->mNumChildren; ++i)
FindInstancedMeshes(pNode->mChildren[i]);
for (unsigned int i = 0; i < pNode->mNumChildren; ++i)
FindInstancedMeshes(pNode->mChildren[i]);
}
#endif // !! ASSIMP_BUILD_NO_OPTIMIZEGRAPH_PROCESS