Merge pull request #42 from OTHGMars/Assimp_WIP

Node transform and vertex weight fixes.
This commit is contained in:
Areloch 2019-03-28 14:25:34 -05:00 committed by GitHub
commit 5a93bfd39b
6 changed files with 225 additions and 135 deletions

View file

@ -37,6 +37,15 @@ AssimpAppMesh::AssimpAppMesh(const struct aiMesh* mesh, AssimpAppNode* node)
: mMeshData(mesh), appNode(node)
{
Con::printf("[ASSIMP] Mesh Created: %s", getName());
// See if it's a skinned mesh
mIsSkinMesh = false;
for (U32 b = 0; b < mesh->mNumBones; b++)
if (mMeshData->mBones[b]->mNumWeights > 0)
{
mIsSkinMesh = true;
break;
}
}
const char* AssimpAppMesh::getName(bool allowFixed)
@ -59,12 +68,11 @@ MatrixF AssimpAppMesh::getMeshTransform(F32 time)
return appNode->getNodeTransform(time);
}
void AssimpAppMesh::lockMesh(F32 t, const MatrixF& objectOffset)
void AssimpAppMesh::lockMesh(F32 t, const MatrixF& objOffset)
{
// After this function, the following are expected to be populated:
// points, normals, uvs, primitives, indices
// There is also colors and uv2s but those don't seem to be required.
points.reserve(mMeshData->mNumVertices);
uvs.reserve(mMeshData->mNumVertices);
normals.reserve(mMeshData->mNumVertices);
@ -74,23 +82,19 @@ void AssimpAppMesh::lockMesh(F32 t, const MatrixF& objectOffset)
{
// Points and Normals
aiVector3D pt = mMeshData->mVertices[i];
aiVector3D nrm = mMeshData->mNormals[i];
aiVector3D nrm;
if (mMeshData->HasNormals())
nrm = mMeshData->mNormals[i];
else
nrm.Set(0, 0, 0);
Point3F tmpVert;
Point3F tmpNormal;
if (Con::getBoolVariable("$Assimp::SwapYZ", false))
{
tmpVert = Point3F(pt.x, pt.z, pt.y);
tmpNormal = Point3F(nrm.x, nrm.z, nrm.y);
}
else
{
tmpVert = Point3F(pt.x, pt.y, pt.z);
tmpNormal = Point3F(nrm.x, nrm.y, nrm.z);
}
tmpVert = Point3F(pt.x, pt.y, pt.z);
tmpNormal = Point3F(nrm.x, nrm.y, nrm.z);
//objectOffset.mulP(tmpVert);
objOffset.mulP(tmpVert);
points.push_back(tmpVert);
@ -128,8 +132,7 @@ void AssimpAppMesh::lockMesh(F32 t, const MatrixF& objectOffset)
}
U32 numFaces = mMeshData->mNumFaces;
U32 primCount = 0;
primitives.reserve(numFaces);
//primitives.reserve(numFaces);
//Fetch the number of indices
U32 indicesCount = 0;
@ -140,41 +143,18 @@ void AssimpAppMesh::lockMesh(F32 t, const MatrixF& objectOffset)
indices.reserve(indicesCount);
/*U32 idxCount = 0;
for (U32 j = 0; j<mModel->mMaterials.size(); j++)
{
MikuModel::Material &mat = mModel->mMaterials[j];
U32 nextIdxCount = idxCount + mat.numIndices;
primitives.increment();
TSDrawPrimitive& primitive = primitives.last();
primitive.start = indices.size();
primitive.matIndex = (TSDrawPrimitive::Triangles | TSDrawPrimitive::Indexed) | j;
primitive.numElements = mat.numIndices;
for (U32 i = idxCount; i<nextIdxCount; i++)
{
indices.push_back(mModel->mIndices[i]);
}
idxCount = nextIdxCount;
}*/
// Create TSMesh primitive
primitives.increment();
TSDrawPrimitive& primitive = primitives.last();
primitive.start = 0;
primitive.matIndex = (TSDrawPrimitive::Triangles | TSDrawPrimitive::Indexed) | (S32)mMeshData->mMaterialIndex;
primitive.numElements = indicesCount;
for ( U32 n = 0; n < mMeshData->mNumFaces; ++n)
{
const struct aiFace* face = &mMeshData->mFaces[n];
if ( face->mNumIndices == 3 )
{
// Create TSMesh primitive
primitives.increment();
TSDrawPrimitive& primitive = primitives.last();
primitive.start = indices.size();
primitive.matIndex = (TSDrawPrimitive::Triangles | TSDrawPrimitive::Indexed) | (S32)mMeshData->mMaterialIndex;
//primitive.numElements = face->mNumIndices;//3;
primitive.numElements = 3;
if (Con::getBoolVariable("$Assimp::FlipNormals", true))
{
U32 indexCount = face->mNumIndices;
@ -193,11 +173,6 @@ void AssimpAppMesh::lockMesh(F32 t, const MatrixF& objectOffset)
indices.push_back(index);
}
}
// Load the indices in.
//indices.push_back(face->mIndices[0]);
//indices.push_back(face->mIndices[1]);
//indices.push_back(face->mIndices[2]);
}
else
{
@ -206,39 +181,67 @@ void AssimpAppMesh::lockMesh(F32 t, const MatrixF& objectOffset)
}
U32 boneCount = mMeshData->mNumBones;
bones.setSize(boneCount);
// Count the total number of weights for all of the bones.
U32 totalWeights = 0;
U32 nonZeroWeights = 0;
for (U32 b = 0; b < boneCount; b++)
totalWeights += mMeshData->mBones[b]->mNumWeights;
// Assimp gives weights sorted by bone index. We need them in vertex order.
Vector<F32> tmpWeight;
Vector<S32> tmpBoneIndex;
Vector<S32> tmpVertexIndex;
tmpWeight.setSize(totalWeights);
tmpBoneIndex.setSize(totalWeights);
tmpVertexIndex.setSize(totalWeights);
for (U32 b = 0; b < boneCount; b++)
{
String name = mMeshData->mBones[b]->mName.C_Str();
aiNode* nodePtr = AssimpAppNode::findChildNodeByName(mMeshData->mBones[b]->mName.C_Str(), appNode->mScene->mRootNode);
bones[b] = new AssimpAppNode(appNode->mScene, nodePtr);
MatrixF boneTransform;
for (U32 m = 0; m < 16; ++m)
{
boneTransform[m] = *mMeshData->mBones[b]->mOffsetMatrix[m];
}
//initialTransforms.push_back(boneTransform);
initialTransforms.push_back(MatrixF::Identity);
AssimpAppNode::assimpToTorqueMat(mMeshData->mBones[b]->mOffsetMatrix, boneTransform);
initialTransforms.push_back(boneTransform);
//Weights
U32 numWeights = mMeshData->mBones[b]->mNumWeights;
weight.setSize(numWeights);
vertexIndex.setSize(numWeights);
for (U32 w = 0; w < numWeights; ++w)
{
aiVertexWeight* aiWeight = mMeshData->mBones[b]->mWeights;
aiVertexWeight* aiWeight = &mMeshData->mBones[b]->mWeights[w];
weight[w] = aiWeight->mWeight;
vertexIndex[w] = aiWeight->mVertexId;
boneIndex[w] = b;
//vertWeight. = aiWeight->
if (aiWeight->mWeight > 0.0f)
{
tmpWeight[nonZeroWeights] = aiWeight->mWeight;
tmpVertexIndex[nonZeroWeights] = aiWeight->mVertexId;
tmpBoneIndex[nonZeroWeights] = b;
nonZeroWeights++;
}
}
}
weight.setSize(nonZeroWeights);
vertexIndex.setSize(nonZeroWeights);
boneIndex.setSize(nonZeroWeights);
// Copy the weights to our vectors in vertex order
U32 nextWeight = 0;
for (U32 i = 0; i < mMeshData->mNumVertices; i++)
{
for (U32 ind = 0; ind < nonZeroWeights; ind++)
{
if (tmpVertexIndex[ind] == i)
{
weight[nextWeight] = tmpWeight[ind];
vertexIndex[nextWeight] = tmpVertexIndex[ind];
boneIndex[nextWeight] = tmpBoneIndex[ind];
nextWeight++;
}
}
//= mNumWeights
}
if ( noUVFound )
@ -246,8 +249,8 @@ void AssimpAppMesh::lockMesh(F32 t, const MatrixF& objectOffset)
}
void AssimpAppMesh::lookupSkinData()
{
{ // This function is intentionally left blank. The skin data - bones, weights and indexes are
// processed in lockMesh() with the rest of the mesh data.
}
F32 AssimpAppMesh::getVisValue(F32 t)

View file

@ -40,6 +40,7 @@ class AssimpAppMesh : public AppMesh
protected:
class AssimpAppNode* appNode; ///< Pointer to the node that owns this mesh
const struct aiMesh* mMeshData;
bool mIsSkinMesh;
public:
@ -100,14 +101,14 @@ public:
/// Return true if this mesh is a skin
bool isSkin()
{
return false;
return mIsSkinMesh;
}
/// Generate the vertex, normal and triangle data for the mesh.
///
/// @param time Time at which to generate the mesh data
/// @param objectOffset Transform to apply to the generated data (bounds transform)
void lockMesh(F32 time, const MatrixF& objectOffset);
void lockMesh(F32 time, const MatrixF& objOffset);
/// Get the transform of this mesh at a certain time
///

View file

@ -32,6 +32,9 @@
#include <assimp/types.h>
AssimpAppNode::AssimpAppNode(const struct aiScene* scene, const struct aiNode* node, AssimpAppNode* parent)
: mInvertMeshes(false),
mLastTransformTime(TSShapeLoader::DefaultTime - 1),
mDefaultTransformValid(false)
{
mScene = scene;
mNode = node;
@ -45,7 +48,8 @@ AssimpAppNode::AssimpAppNode(const struct aiScene* scene, const struct aiNode* n
}
mParentName = dStrdup(parent ? parent->getName() : "ROOT");
Con::printf("[ASSIMP] Node Created: %s", mName);
assimpToTorqueMat(node->mTransformation, mNodeTransform);
Con::printf("[ASSIMP] Node Created: %s, Parent: %s", mName, mParentName);
}
// Get all child nodes
@ -73,66 +77,27 @@ void AssimpAppNode::buildMeshList()
MatrixF AssimpAppNode::getTransform(F32 time)
{
// Translate from assimp matrix to torque matrix.
// They're both row major, I wish I could just cast
// but that doesn't seem to be an option.
// Check if we can use the last computed transform
if (time == mLastTransformTime)
return mLastTransform;
// Note: this should be cached, it doesn't change
// at this level. This is base transform.
if (appParent) {
// Get parent node's transform
mLastTransform = appParent->getTransform(time);
}
else {
// no parent (ie. root level) => scale by global shape <unit>
mLastTransform.identity();
if (!isBounds())
convertMat(mLastTransform);
// Y and Z and optionally swapped.
MatrixF mat(false);
mat.setRow(0, Point4F((F32)mNode->mTransformation.a1,
(F32)mNode->mTransformation.a3,
(F32)mNode->mTransformation.a2,
(F32)mNode->mTransformation.a4)
);
// Check for Y Z Swap
if ( Con::getBoolVariable("$Assimp::SwapYZ", false) )
{
mat.setRow(1, Point4F((F32)mNode->mTransformation.c1,
(F32)mNode->mTransformation.c3,
(F32)mNode->mTransformation.c2,
(F32)mNode->mTransformation.c4)
);
mat.setRow(2, Point4F((F32)mNode->mTransformation.b1,
(F32)mNode->mTransformation.b3,
(F32)mNode->mTransformation.b2,
(F32)mNode->mTransformation.b4)
);
}
else
{
mat.setRow(1, Point4F((F32)mNode->mTransformation.b1,
(F32)mNode->mTransformation.b3,
(F32)mNode->mTransformation.b2,
(F32)mNode->mTransformation.b4)
);
mat.setRow(2, Point4F((F32)mNode->mTransformation.c1,
(F32)mNode->mTransformation.c3,
(F32)mNode->mTransformation.c2,
(F32)mNode->mTransformation.c4)
);
//mLastTransform.scale(ColladaUtils::getOptions().unit);
}
mat.setRow(3, Point4F((F32)mNode->mTransformation.d1,
(F32)mNode->mTransformation.d3,
(F32)mNode->mTransformation.d2,
(F32)mNode->mTransformation.d4)
);
mLastTransform.mul(mNodeTransform);
mLastTransformTime = time;
// Node transformations are carried down the hiearchy
// so we need all of our parents transforms to make
// this work.
/*if ( appParent != 0 )
{
MatrixF parentMat = appParent->getNodeTransform(time);
mat.mul(parentMat);
}*/
return mat;
return mLastTransform;
}
bool AssimpAppNode::animatesTransform(const AppSequence* appSeq)
@ -143,5 +108,99 @@ bool AssimpAppNode::animatesTransform(const AppSequence* appSeq)
/// Get the world transform of the node at the specified time
MatrixF AssimpAppNode::getNodeTransform(F32 time)
{
return getTransform(time);
// Avoid re-computing the default transform if possible
if (mDefaultTransformValid && time == TSShapeLoader::DefaultTime)
{
return mDefaultNodeTransform;
}
else
{
MatrixF nodeTransform = getTransform(time);
// Check for inverted node coordinate spaces => can happen when modelers
// use the 'mirror' tool in their 3d app. Shows up as negative <scale>
// transforms in the collada model.
if (m_matF_determinant(nodeTransform) < 0.0f)
{
// Mark this node as inverted so we can mirror mesh geometry, then
// de-invert the transform matrix
mInvertMeshes = true;
nodeTransform.scale(Point3F(1, 1, -1));
}
// Cache the default transform
if (time == TSShapeLoader::DefaultTime)
{
mDefaultTransformValid = true;
mDefaultNodeTransform = nodeTransform;
}
return nodeTransform;
}
}
void AssimpAppNode::assimpToTorqueMat(const aiMatrix4x4& inAssimpMat, MatrixF& outMat)
{
outMat.setRow(0, Point4F((F32)inAssimpMat.a1, (F32)inAssimpMat.a2,
(F32)inAssimpMat.a3, (F32)inAssimpMat.a4));
outMat.setRow(1, Point4F((F32)inAssimpMat.b1, (F32)inAssimpMat.b2,
(F32)inAssimpMat.b3, (F32)inAssimpMat.b4));
outMat.setRow(2, Point4F((F32)inAssimpMat.c1, (F32)inAssimpMat.c2,
(F32)inAssimpMat.c3, (F32)inAssimpMat.c4));
outMat.setRow(3, Point4F((F32)inAssimpMat.d1, (F32)inAssimpMat.d2,
(F32)inAssimpMat.d3, (F32)inAssimpMat.d4));
}
void AssimpAppNode::convertMat(MatrixF& outMat)
{
MatrixF rot(true);
// This is copied directly from ColladaUtils::convertTransform()
// ColladaUtils::getOptions().upAxis has been temporarily replaced with $Assimp::OverrideUpAxis for testing
// We need a plan for how the full set of assimp import options and settings is going to be managed.
switch (Con::getIntVariable("$Assimp::OverrideUpAxis", 2))
{
case 0: //UPAXISTYPE_X_UP:
// rotate 90 around Y-axis, then 90 around Z-axis
rot(0, 0) = 0.0f; rot(1, 0) = 1.0f;
rot(1, 1) = 0.0f; rot(2, 1) = 1.0f;
rot(0, 2) = 1.0f; rot(2, 2) = 0.0f;
// pre-multiply the transform by the rotation matrix
outMat.mulL(rot);
break;
case 1: //UPAXISTYPE_Y_UP:
// rotate 180 around Y-axis, then 90 around X-axis
rot(0, 0) = -1.0f;
rot(1, 1) = 0.0f; rot(2, 1) = 1.0f;
rot(1, 2) = 1.0f; rot(2, 2) = 0.0f;
// pre-multiply the transform by the rotation matrix
outMat.mulL(rot);
break;
case 2: //UPAXISTYPE_Z_UP:
default:
// nothing to do
break;
}
}
aiNode* AssimpAppNode::findChildNodeByName(const char* nodeName, aiNode* rootNode)
{
aiNode* retNode = NULL;
if (strcmp(nodeName, rootNode->mName.C_Str()) == 0)
return rootNode;
for (U32 i = 0; i < rootNode->mNumChildren; ++i)
{
retNode = findChildNodeByName(nodeName, rootNode->mChildren[i]);
if (retNode)
return retNode;
}
return nullptr;
}

View file

@ -33,6 +33,10 @@
#include "ts/collada/colladaExtensions.h"
#endif
#ifndef AI_TYPES_H_INC
#include <assimp/types.h>
#endif
class AssimpAppNode : public AppNode
{
typedef AppNode Parent;
@ -44,9 +48,16 @@ class AssimpAppNode : public AppNode
protected:
const struct aiScene* mScene;
const struct aiNode* mNode; ///< Pointer to the node in the Collada DOM
AssimpAppNode* appParent; ///< Parent node in Collada-space
const struct aiScene* mScene;
const struct aiNode* mNode; ///< Pointer to the assimp scene node
AssimpAppNode* appParent; ///< Parent node
MatrixF mNodeTransform; ///< Scene node transform converted to TorqueSpace (filled for ALL nodes)
bool mInvertMeshes; ///< True if this node's coordinate space is inverted (left handed)
F32 mLastTransformTime; ///< Time of the last transform lookup (getTransform)
MatrixF mLastTransform; ///< Last transform lookup (getTransform) (Only Non-Dummy Nodes)
bool mDefaultTransformValid; ///< Flag indicating whether the defaultNodeTransform is valid
MatrixF mDefaultNodeTransform; ///< Transform at DefaultTime (Only Non-Dummy Nodes)
public:
@ -93,6 +104,10 @@ public:
MatrixF getNodeTransform(F32 time);
bool animatesTransform(const AppSequence* appSeq);
bool isParentRoot() { return (appParent == NULL); }
static void assimpToTorqueMat(const aiMatrix4x4& inAssimpMat, MatrixF& outMat);
static void convertMat(MatrixF& outMat);
static aiNode* findChildNodeByName(const char* nodeName, aiNode* rootNode);
};
#endif // _ASSIMP_APPNODE_H_

View file

@ -103,7 +103,8 @@ MODULE_BEGIN( AssimpShapeLoader )
TSShapeLoader::addFormat("3D GameStudio (3DGS)", "mdl");
TSShapeLoader::addFormat("3D GameStudio (3DGS) Terrain", "hmp");
TSShapeLoader::addFormat("Izware Nendo", "ndo");
TSShapeLoader::addFormat("gltf", "gltf");
TSShapeLoader::addFormat("gltf", "gltf");
TSShapeLoader::addFormat("gltf binary", "glb");
}
MODULE_END;
@ -146,7 +147,7 @@ void AssimpShapeLoader::enumerateScene()
Con::getBoolVariable("$Assimp::OptimizeMeshes", false) ? aiProcess_OptimizeMeshes | aiProcess_OptimizeGraph : 0 |
0;
if(Con::getBoolVariable("$Assimp::Triangulate", false))
if(Con::getBoolVariable("$Assimp::Triangulate", true))
ppsteps |= aiProcess_Triangulate;
if (Con::getBoolVariable("$Assimp::OptimizeMeshes", false))
@ -276,6 +277,15 @@ bool AssimpShapeLoader::canLoadCachedDTS(const Torque::Path& path)
return false;
}
bool AssimpShapeLoader::ignoreNode(const String& name)
{
// Do not add AssimpFbx dummy nodes to the TSShape. See: Assimp::FBX::ImportSettings::preservePivots
// https://github.com/assimp/assimp/blob/master/code/FBXImportSettings.h#L116-L135
if (name.find("_$AssimpFbx$_") != String::NPos)
return true;
return false;
}
//-----------------------------------------------------------------------------
/// This function is invoked by the resource manager based on file extension.
TSShape* assimpLoadShape(const Torque::Path &path)

View file

@ -34,7 +34,9 @@ class AssimpShapeLoader : public TSShapeLoader
protected:
const struct aiScene* mScene;
virtual bool ignoreNode(const String& name);
public:
AssimpShapeLoader();
~AssimpShapeLoader();