mirror of
https://github.com/TorqueGameEngines/Torque3D.git
synced 2026-02-13 03:33:48 +00:00
animation update
updated how animations are handled from assimp gltf timing now correct
This commit is contained in:
parent
5f1c2a63e5
commit
28fcb8d68b
6 changed files with 161 additions and 160 deletions
|
|
@ -135,115 +135,104 @@ MatrixF AssimpAppNode::getTransform(F32 time)
|
|||
|
||||
void AssimpAppNode::getAnimatedTransform(MatrixF& mat, F32 t, aiAnimation* animSeq)
|
||||
{
|
||||
// Find the channel for this node
|
||||
// Convert time `t` (in seconds) to a frame index
|
||||
const F32 frameTime = (t * animSeq->mTicksPerSecond + 0.5f) + 1.0f;
|
||||
|
||||
// Loop through animation channels to find the matching node
|
||||
for (U32 k = 0; k < animSeq->mNumChannels; ++k)
|
||||
{
|
||||
if (dStrcmp(mName, animSeq->mChannels[k]->mNodeName.C_Str()) == 0)
|
||||
const aiNodeAnim* nodeAnim = animSeq->mChannels[k];
|
||||
if (dStrcmp(mName, nodeAnim->mNodeName.C_Str()) != 0)
|
||||
continue;
|
||||
|
||||
Point3F translation(Point3F::Zero);
|
||||
QuatF rotation(QuatF::Identity);
|
||||
Point3F scale(Point3F::One);
|
||||
|
||||
// Interpolate Translation Keys
|
||||
if (nodeAnim->mNumPositionKeys > 0)
|
||||
{
|
||||
aiNodeAnim *nodeAnim = animSeq->mChannels[k];
|
||||
Point3F trans(Point3F::Zero);
|
||||
Point3F scale(Point3F::One);
|
||||
QuatF rot;
|
||||
rot.identity();
|
||||
// T is in seconds, convert to frames.
|
||||
F32 frame = (t * animSeq->mTicksPerSecond + 0.5f) + 1.0f;
|
||||
translation = interpolateVectorKey(nodeAnim->mPositionKeys, nodeAnim->mNumPositionKeys, frameTime);
|
||||
}
|
||||
|
||||
// Transform
|
||||
if (nodeAnim->mNumPositionKeys == 1)
|
||||
trans.set(nodeAnim->mPositionKeys[0].mValue.x, nodeAnim->mPositionKeys[0].mValue.y, nodeAnim->mPositionKeys[0].mValue.z);
|
||||
else
|
||||
{
|
||||
Point3F curPos, lastPos;
|
||||
F32 lastT = 0.0;
|
||||
for (U32 key = 0; key < nodeAnim->mNumPositionKeys; ++key)
|
||||
{
|
||||
F32 curT = sTimeMultiplier * (F32)nodeAnim->mPositionKeys[key].mTime;
|
||||
curPos.set(nodeAnim->mPositionKeys[key].mValue.x, nodeAnim->mPositionKeys[key].mValue.y, nodeAnim->mPositionKeys[key].mValue.z);
|
||||
if ((curT > frame) && (key > 0))
|
||||
{
|
||||
F32 factor = (frame - lastT) / (curT - lastT);
|
||||
trans.interpolate(lastPos, curPos, factor);
|
||||
break;
|
||||
}
|
||||
else if ((curT >= frame) || (key == nodeAnim->mNumPositionKeys - 1))
|
||||
{
|
||||
trans = curPos;
|
||||
break;
|
||||
}
|
||||
// Interpolate Rotation Keys
|
||||
if (nodeAnim->mNumRotationKeys > 0)
|
||||
{
|
||||
rotation = interpolateQuaternionKey(nodeAnim->mRotationKeys, nodeAnim->mNumRotationKeys, frameTime);
|
||||
}
|
||||
|
||||
lastT = curT;
|
||||
lastPos = curPos;
|
||||
}
|
||||
}
|
||||
// Interpolate Scaling Keys
|
||||
if (nodeAnim->mNumScalingKeys > 0)
|
||||
{
|
||||
scale = interpolateVectorKey(nodeAnim->mScalingKeys, nodeAnim->mNumScalingKeys, frameTime);
|
||||
}
|
||||
|
||||
// Rotation
|
||||
if (nodeAnim->mNumRotationKeys == 1)
|
||||
rot.set(nodeAnim->mRotationKeys[0].mValue.x, nodeAnim->mRotationKeys[0].mValue.y,
|
||||
nodeAnim->mRotationKeys[0].mValue.z, nodeAnim->mRotationKeys[0].mValue.w);
|
||||
else
|
||||
{
|
||||
QuatF curRot, lastRot;
|
||||
F32 lastT = 0.0;
|
||||
for (U32 key = 0; key < nodeAnim->mNumRotationKeys; ++key)
|
||||
{
|
||||
F32 curT = sTimeMultiplier * (F32)nodeAnim->mRotationKeys[key].mTime;
|
||||
curRot.set(nodeAnim->mRotationKeys[key].mValue.x, nodeAnim->mRotationKeys[key].mValue.y,
|
||||
nodeAnim->mRotationKeys[key].mValue.z, nodeAnim->mRotationKeys[key].mValue.w);
|
||||
if ((curT > frame) && (key > 0))
|
||||
{
|
||||
F32 factor = (frame - lastT) / (curT - lastT);
|
||||
rot.interpolate(lastRot, curRot, factor);
|
||||
break;
|
||||
}
|
||||
else if ((curT >= frame) || (key == nodeAnim->mNumRotationKeys - 1))
|
||||
{
|
||||
rot = curRot;
|
||||
break;
|
||||
}
|
||||
// Apply the interpolated transform components to the matrix
|
||||
rotation.setMatrix(&mat);
|
||||
mat.inverse();
|
||||
mat.setPosition(translation);
|
||||
mat.scale(scale);
|
||||
|
||||
lastT = curT;
|
||||
lastRot = curRot;
|
||||
}
|
||||
}
|
||||
return; // Exit after processing the matching node
|
||||
}
|
||||
|
||||
// Scale
|
||||
if (nodeAnim->mNumScalingKeys == 1)
|
||||
scale.set(nodeAnim->mScalingKeys[0].mValue.x, nodeAnim->mScalingKeys[0].mValue.y, nodeAnim->mScalingKeys[0].mValue.z);
|
||||
else
|
||||
{
|
||||
Point3F curScale, lastScale;
|
||||
F32 lastT = 0.0;
|
||||
for (U32 key = 0; key < nodeAnim->mNumScalingKeys; ++key)
|
||||
{
|
||||
F32 curT = sTimeMultiplier * (F32)nodeAnim->mScalingKeys[key].mTime;
|
||||
curScale.set(nodeAnim->mScalingKeys[key].mValue.x, nodeAnim->mScalingKeys[key].mValue.y, nodeAnim->mScalingKeys[key].mValue.z);
|
||||
if ((curT > frame) && (key > 0))
|
||||
{
|
||||
F32 factor = (frame - lastT) / (curT - lastT);
|
||||
scale.interpolate(lastScale, curScale, factor);
|
||||
break;
|
||||
}
|
||||
else if ((curT >= frame) || (key == nodeAnim->mNumScalingKeys - 1))
|
||||
{
|
||||
scale = curScale;
|
||||
break;
|
||||
}
|
||||
// Default to the static node transformation if no animation data is found
|
||||
mat = mNodeTransform;
|
||||
}
|
||||
|
||||
lastT = curT;
|
||||
lastScale = curScale;
|
||||
}
|
||||
}
|
||||
Point3F AssimpAppNode::interpolateVectorKey(const aiVectorKey* keys, U32 numKeys, F32 frameTime)
|
||||
{
|
||||
if (numKeys == 1) // Single keyframe: use it directly
|
||||
return Point3F(keys[0].mValue.x, keys[0].mValue.y, keys[0].mValue.z);
|
||||
|
||||
rot.setMatrix(&mat);
|
||||
mat.inverse();
|
||||
mat.setPosition(trans);
|
||||
mat.scale(scale);
|
||||
return;
|
||||
// Clamp frameTime to the bounds of the keyframes
|
||||
if (frameTime <= keys[0].mTime) {
|
||||
// Before the first keyframe, return the first key
|
||||
return Point3F(keys[0].mValue.x, keys[0].mValue.y, keys[0].mValue.z);
|
||||
}
|
||||
if (frameTime >= keys[numKeys - 1].mTime) {
|
||||
// After the last keyframe, return the last key
|
||||
return Point3F(keys[numKeys - 1].mValue.x, keys[numKeys - 1].mValue.y, keys[numKeys - 1].mValue.z);
|
||||
}
|
||||
|
||||
// Interpolate between the two nearest keyframes
|
||||
for (U32 i = 1; i < numKeys; ++i)
|
||||
{
|
||||
if (frameTime < keys[i].mTime)
|
||||
{
|
||||
const F32 factor = (frameTime - keys[i - 1].mTime) / (keys[i].mTime - keys[i - 1].mTime);
|
||||
Point3F start(keys[i - 1].mValue.x, keys[i - 1].mValue.y, keys[i - 1].mValue.z);
|
||||
Point3F end(keys[i].mValue.x, keys[i].mValue.y, keys[i].mValue.z);
|
||||
Point3F result;
|
||||
result.interpolate(start, end, factor);
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
// Node not found in the animation channels
|
||||
mat = mNodeTransform;
|
||||
// Default to the last keyframe
|
||||
return Point3F(keys[numKeys - 1].mValue.x, keys[numKeys - 1].mValue.y, keys[numKeys - 1].mValue.z);
|
||||
}
|
||||
|
||||
QuatF AssimpAppNode::interpolateQuaternionKey(const aiQuatKey* keys, U32 numKeys, F32 frameTime)
|
||||
{
|
||||
if (numKeys == 1) // Single keyframe: use it directly
|
||||
return QuatF(keys[0].mValue.x, keys[0].mValue.y, keys[0].mValue.z, keys[0].mValue.w);
|
||||
|
||||
for (U32 i = 1; i < numKeys; ++i)
|
||||
{
|
||||
if (frameTime < keys[i].mTime)
|
||||
{
|
||||
const F32 factor = (frameTime - keys[i - 1].mTime) / (keys[i].mTime - keys[i - 1].mTime);
|
||||
QuatF start(keys[i - 1].mValue.x, keys[i - 1].mValue.y, keys[i - 1].mValue.z, keys[i - 1].mValue.w);
|
||||
QuatF end(keys[i].mValue.x, keys[i].mValue.y, keys[i].mValue.z, keys[i].mValue.w);
|
||||
QuatF result;
|
||||
result.interpolate(start, end, factor);
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
// Default to the last keyframe
|
||||
return QuatF(keys[numKeys - 1].mValue.x, keys[numKeys - 1].mValue.y, keys[numKeys - 1].mValue.z, keys[numKeys - 1].mValue.w);
|
||||
}
|
||||
|
||||
bool AssimpAppNode::animatesTransform(const AppSequence* appSeq)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue