animation update

updated how animations are handled from assimp
gltf timing now correct
This commit is contained in:
marauder2k7 2024-12-10 11:54:13 +00:00
parent 5f1c2a63e5
commit 28fcb8d68b
6 changed files with 161 additions and 160 deletions

View file

@ -135,115 +135,104 @@ MatrixF AssimpAppNode::getTransform(F32 time)
void AssimpAppNode::getAnimatedTransform(MatrixF& mat, F32 t, aiAnimation* animSeq)
{
// Find the channel for this node
// Convert time `t` (in seconds) to a frame index
const F32 frameTime = (t * animSeq->mTicksPerSecond + 0.5f) + 1.0f;
// Loop through animation channels to find the matching node
for (U32 k = 0; k < animSeq->mNumChannels; ++k)
{
if (dStrcmp(mName, animSeq->mChannels[k]->mNodeName.C_Str()) == 0)
const aiNodeAnim* nodeAnim = animSeq->mChannels[k];
if (dStrcmp(mName, nodeAnim->mNodeName.C_Str()) != 0)
continue;
Point3F translation(Point3F::Zero);
QuatF rotation(QuatF::Identity);
Point3F scale(Point3F::One);
// Interpolate Translation Keys
if (nodeAnim->mNumPositionKeys > 0)
{
aiNodeAnim *nodeAnim = animSeq->mChannels[k];
Point3F trans(Point3F::Zero);
Point3F scale(Point3F::One);
QuatF rot;
rot.identity();
// T is in seconds, convert to frames.
F32 frame = (t * animSeq->mTicksPerSecond + 0.5f) + 1.0f;
translation = interpolateVectorKey(nodeAnim->mPositionKeys, nodeAnim->mNumPositionKeys, frameTime);
}
// Transform
if (nodeAnim->mNumPositionKeys == 1)
trans.set(nodeAnim->mPositionKeys[0].mValue.x, nodeAnim->mPositionKeys[0].mValue.y, nodeAnim->mPositionKeys[0].mValue.z);
else
{
Point3F curPos, lastPos;
F32 lastT = 0.0;
for (U32 key = 0; key < nodeAnim->mNumPositionKeys; ++key)
{
F32 curT = sTimeMultiplier * (F32)nodeAnim->mPositionKeys[key].mTime;
curPos.set(nodeAnim->mPositionKeys[key].mValue.x, nodeAnim->mPositionKeys[key].mValue.y, nodeAnim->mPositionKeys[key].mValue.z);
if ((curT > frame) && (key > 0))
{
F32 factor = (frame - lastT) / (curT - lastT);
trans.interpolate(lastPos, curPos, factor);
break;
}
else if ((curT >= frame) || (key == nodeAnim->mNumPositionKeys - 1))
{
trans = curPos;
break;
}
// Interpolate Rotation Keys
if (nodeAnim->mNumRotationKeys > 0)
{
rotation = interpolateQuaternionKey(nodeAnim->mRotationKeys, nodeAnim->mNumRotationKeys, frameTime);
}
lastT = curT;
lastPos = curPos;
}
}
// Interpolate Scaling Keys
if (nodeAnim->mNumScalingKeys > 0)
{
scale = interpolateVectorKey(nodeAnim->mScalingKeys, nodeAnim->mNumScalingKeys, frameTime);
}
// Rotation
if (nodeAnim->mNumRotationKeys == 1)
rot.set(nodeAnim->mRotationKeys[0].mValue.x, nodeAnim->mRotationKeys[0].mValue.y,
nodeAnim->mRotationKeys[0].mValue.z, nodeAnim->mRotationKeys[0].mValue.w);
else
{
QuatF curRot, lastRot;
F32 lastT = 0.0;
for (U32 key = 0; key < nodeAnim->mNumRotationKeys; ++key)
{
F32 curT = sTimeMultiplier * (F32)nodeAnim->mRotationKeys[key].mTime;
curRot.set(nodeAnim->mRotationKeys[key].mValue.x, nodeAnim->mRotationKeys[key].mValue.y,
nodeAnim->mRotationKeys[key].mValue.z, nodeAnim->mRotationKeys[key].mValue.w);
if ((curT > frame) && (key > 0))
{
F32 factor = (frame - lastT) / (curT - lastT);
rot.interpolate(lastRot, curRot, factor);
break;
}
else if ((curT >= frame) || (key == nodeAnim->mNumRotationKeys - 1))
{
rot = curRot;
break;
}
// Apply the interpolated transform components to the matrix
rotation.setMatrix(&mat);
mat.inverse();
mat.setPosition(translation);
mat.scale(scale);
lastT = curT;
lastRot = curRot;
}
}
return; // Exit after processing the matching node
}
// Scale
if (nodeAnim->mNumScalingKeys == 1)
scale.set(nodeAnim->mScalingKeys[0].mValue.x, nodeAnim->mScalingKeys[0].mValue.y, nodeAnim->mScalingKeys[0].mValue.z);
else
{
Point3F curScale, lastScale;
F32 lastT = 0.0;
for (U32 key = 0; key < nodeAnim->mNumScalingKeys; ++key)
{
F32 curT = sTimeMultiplier * (F32)nodeAnim->mScalingKeys[key].mTime;
curScale.set(nodeAnim->mScalingKeys[key].mValue.x, nodeAnim->mScalingKeys[key].mValue.y, nodeAnim->mScalingKeys[key].mValue.z);
if ((curT > frame) && (key > 0))
{
F32 factor = (frame - lastT) / (curT - lastT);
scale.interpolate(lastScale, curScale, factor);
break;
}
else if ((curT >= frame) || (key == nodeAnim->mNumScalingKeys - 1))
{
scale = curScale;
break;
}
// Default to the static node transformation if no animation data is found
mat = mNodeTransform;
}
lastT = curT;
lastScale = curScale;
}
}
Point3F AssimpAppNode::interpolateVectorKey(const aiVectorKey* keys, U32 numKeys, F32 frameTime)
{
if (numKeys == 1) // Single keyframe: use it directly
return Point3F(keys[0].mValue.x, keys[0].mValue.y, keys[0].mValue.z);
rot.setMatrix(&mat);
mat.inverse();
mat.setPosition(trans);
mat.scale(scale);
return;
// Clamp frameTime to the bounds of the keyframes
if (frameTime <= keys[0].mTime) {
// Before the first keyframe, return the first key
return Point3F(keys[0].mValue.x, keys[0].mValue.y, keys[0].mValue.z);
}
if (frameTime >= keys[numKeys - 1].mTime) {
// After the last keyframe, return the last key
return Point3F(keys[numKeys - 1].mValue.x, keys[numKeys - 1].mValue.y, keys[numKeys - 1].mValue.z);
}
// Interpolate between the two nearest keyframes
for (U32 i = 1; i < numKeys; ++i)
{
if (frameTime < keys[i].mTime)
{
const F32 factor = (frameTime - keys[i - 1].mTime) / (keys[i].mTime - keys[i - 1].mTime);
Point3F start(keys[i - 1].mValue.x, keys[i - 1].mValue.y, keys[i - 1].mValue.z);
Point3F end(keys[i].mValue.x, keys[i].mValue.y, keys[i].mValue.z);
Point3F result;
result.interpolate(start, end, factor);
return result;
}
}
// Node not found in the animation channels
mat = mNodeTransform;
// Default to the last keyframe
return Point3F(keys[numKeys - 1].mValue.x, keys[numKeys - 1].mValue.y, keys[numKeys - 1].mValue.z);
}
QuatF AssimpAppNode::interpolateQuaternionKey(const aiQuatKey* keys, U32 numKeys, F32 frameTime)
{
if (numKeys == 1) // Single keyframe: use it directly
return QuatF(keys[0].mValue.x, keys[0].mValue.y, keys[0].mValue.z, keys[0].mValue.w);
for (U32 i = 1; i < numKeys; ++i)
{
if (frameTime < keys[i].mTime)
{
const F32 factor = (frameTime - keys[i - 1].mTime) / (keys[i].mTime - keys[i - 1].mTime);
QuatF start(keys[i - 1].mValue.x, keys[i - 1].mValue.y, keys[i - 1].mValue.z, keys[i - 1].mValue.w);
QuatF end(keys[i].mValue.x, keys[i].mValue.y, keys[i].mValue.z, keys[i].mValue.w);
QuatF result;
result.interpolate(start, end, factor);
return result;
}
}
// Default to the last keyframe
return QuatF(keys[numKeys - 1].mValue.x, keys[numKeys - 1].mValue.y, keys[numKeys - 1].mValue.z, keys[numKeys - 1].mValue.w);
}
bool AssimpAppNode::animatesTransform(const AppSequence* appSeq)