Adds animated node transforms for animation importing.

Fixes sequence timing variables.
This commit is contained in:
OTHGMars 2019-04-18 16:45:52 -04:00
parent bd486bab66
commit 17a2e416ed
4 changed files with 187 additions and 17 deletions

View file

@ -31,6 +31,8 @@
#include <assimp/postprocess.h>
#include <assimp/types.h>
aiAnimation* AssimpAppNode::sActiveSequence = NULL;
AssimpAppNode::AssimpAppNode(const struct aiScene* scene, const struct aiNode* node, AssimpAppNode* parent)
: mInvertMeshes(false),
mLastTransformTime(TSShapeLoader::DefaultTime - 1),
@ -94,12 +96,131 @@ MatrixF AssimpAppNode::getTransform(F32 time)
//mLastTransform.scale(ColladaUtils::getOptions().unit);
}
mLastTransform.mul(mNodeTransform);
// If this node is animated in the active sequence, fetch the animated transform
if (sActiveSequence)
{
MatrixF mat(true);
getAnimatedTransform(mat, time, sActiveSequence);
mLastTransform.mul(mat);
}
else
mLastTransform.mul(mNodeTransform);
mLastTransformTime = time;
return mLastTransform;
}
void AssimpAppNode::getAnimatedTransform(MatrixF& mat, F32 t, aiAnimation* animSeq)
{
// Find the channel for this node
for (U32 i = 0; i < animSeq->mNumChannels; ++i)
{
if (strcmp(mName, animSeq->mChannels[i]->mNodeName.C_Str()) == 0)
{
aiNodeAnim *nodeAnim = animSeq->mChannels[i];
Point3F trans(Point3F::Zero);
Point3F scale(Point3F::One);
QuatF rot;
rot.identity();
// Transform
if (nodeAnim->mNumPositionKeys == 1)
trans.set(nodeAnim->mPositionKeys[0].mValue.x, nodeAnim->mPositionKeys[0].mValue.y, nodeAnim->mPositionKeys[0].mValue.z);
else
{
Point3F curPos, lastPos;
F32 lastT = 0.0;
for (U32 key = 0; key < nodeAnim->mNumPositionKeys; ++key)
{
F32 curT = (F32)nodeAnim->mPositionKeys[key].mTime;
curPos.set(nodeAnim->mPositionKeys[key].mValue.x, nodeAnim->mPositionKeys[key].mValue.y, nodeAnim->mPositionKeys[key].mValue.z);
if (curT > t)
{
F32 factor = (t - lastT) / (curT - lastT);
trans.interpolate(lastPos, curPos, factor);
break;
}
else if ((curT == t) || (key == nodeAnim->mNumPositionKeys - 1))
{
trans = curPos;
break;
}
lastT = curT;
lastPos = curPos;
}
}
// Rotation
if (nodeAnim->mNumRotationKeys == 1)
rot.set(nodeAnim->mRotationKeys[0].mValue.x, nodeAnim->mRotationKeys[0].mValue.y,
nodeAnim->mRotationKeys[0].mValue.z, nodeAnim->mRotationKeys[0].mValue.w);
else
{
QuatF curRot, lastRot;
F32 lastT = 0.0;
for (U32 key = 0; key < nodeAnim->mNumRotationKeys; ++key)
{
F32 curT = (F32)nodeAnim->mRotationKeys[key].mTime;
curRot.set(nodeAnim->mRotationKeys[key].mValue.x, nodeAnim->mRotationKeys[key].mValue.y,
nodeAnim->mRotationKeys[key].mValue.z, nodeAnim->mRotationKeys[key].mValue.w);
if (curT > t)
{
F32 factor = (t - lastT) / (curT - lastT);
rot.interpolate(lastRot, curRot, factor);
break;
}
else if ((curT == t) || (key == nodeAnim->mNumRotationKeys - 1))
{
rot = curRot;
break;
}
lastT = curT;
lastRot = curRot;
}
}
// Scale
if (nodeAnim->mNumScalingKeys == 1)
scale.set(nodeAnim->mScalingKeys[0].mValue.x, nodeAnim->mScalingKeys[0].mValue.y, nodeAnim->mScalingKeys[0].mValue.z);
else
{
Point3F curScale, lastScale;
F32 lastT = 0.0;
for (U32 key = 0; key < nodeAnim->mNumScalingKeys; ++key)
{
F32 curT = (F32)nodeAnim->mScalingKeys[key].mTime;
curScale.set(nodeAnim->mScalingKeys[key].mValue.x, nodeAnim->mScalingKeys[key].mValue.y, nodeAnim->mScalingKeys[key].mValue.z);
if (curT > t)
{
F32 factor = (t - lastT) / (curT - lastT);
scale.interpolate(lastScale, curScale, factor);
break;
}
else if ((curT == t) || (key == nodeAnim->mNumScalingKeys - 1))
{
scale = curScale;
break;
}
lastT = curT;
lastScale = curScale;
}
}
rot.setMatrix(&mat);
mat.inverse();
mat.setPosition(trans);
mat.scale(scale);
return;
}
}
// Node not found in the animation channels
mat = mNodeTransform;
}
bool AssimpAppNode::animatesTransform(const AppSequence* appSeq)
{
return false;