Torque3D/Engine/source/ts/collada/colladaUtils.cpp

1495 lines
57 KiB
C++
Raw Normal View History

2012-09-19 15:15:01 +00:00
//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include <algorithm>
#include "console/console.h"
#include "gfx/bitmap/gBitmap.h"
#include "ts/collada/colladaUtils.h"
#include "materials/matInstance.h"
using namespace ColladaUtils;
#define MAX_PATH_LENGTH 256
// Helper macro to create Collada elements
#define CREATE_ELEMENT(container, name, type) \
type* name = daeSafeCast<type>(container->createAndPlace(#name));
ColladaUtils::ImportOptions& ColladaUtils::getOptions()
{
static ImportOptions options;
return options;
}
//------------------------------------------------------------------------------
// Utility functions
// Convert a transform from the Collada model coordinate system to the DTS coordinate
// system
void ColladaUtils::convertTransform(MatrixF& mat)
{
MatrixF rot(true);
switch (ColladaUtils::getOptions().upAxis)
{
case UPAXISTYPE_X_UP:
// rotate 90 around Y-axis, then 90 around Z-axis
rot(0,0) = 0.0f; rot(1,0) = 1.0f;
rot(1,1) = 0.0f; rot(2,1) = 1.0f;
rot(0,2) = 1.0f; rot(2,2) = 0.0f;
// pre-multiply the transform by the rotation matrix
mat.mulL(rot);
break;
case UPAXISTYPE_Y_UP:
// rotate 180 around Y-axis, then 90 around X-axis
rot(0,0) = -1.0f;
rot(1,1) = 0.0f; rot(2,1) = 1.0f;
rot(1,2) = 1.0f; rot(2,2) = 0.0f;
// pre-multiply the transform by the rotation matrix
mat.mulL(rot);
break;
case UPAXISTYPE_Z_UP:
default:
// nothing to do
break;
}
}
/// Find the COMMON profile element in an effect
const domProfile_COMMON* ColladaUtils::findEffectCommonProfile(const domEffect* effect)
{
if (effect) {
// Find the COMMON profile
const domFx_profile_abstract_Array& profiles = effect->getFx_profile_abstract_array();
for (int iProfile = 0; iProfile < profiles.getCount(); iProfile++) {
if (profiles[iProfile]->getElementType() == COLLADA_TYPE::PROFILE_COMMON)
return daeSafeCast<domProfile_COMMON>(profiles[iProfile]);
}
}
return NULL;
}
/// Find the <diffuse> element in the COMMON profile of an effect
const domCommon_color_or_texture_type_complexType* ColladaUtils::findEffectDiffuse(const domEffect* effect)
{
const domProfile_COMMON* profile = findEffectCommonProfile(effect);
if (profile) {
if (profile->getTechnique()->getLambert())
return profile->getTechnique()->getLambert()->getDiffuse();
else if (profile->getTechnique()->getPhong())
return profile->getTechnique()->getPhong()->getDiffuse();
else if (profile->getTechnique()->getBlinn())
return profile->getTechnique()->getBlinn()->getDiffuse();
}
return NULL;
}
/// Find the <specular> element in the COMMON profile of an effect
const domCommon_color_or_texture_type_complexType* ColladaUtils::findEffectSpecular(const domEffect* effect)
{
const domProfile_COMMON* profile = findEffectCommonProfile(effect);
if (profile) {
if (profile->getTechnique()->getLambert())
return NULL; // no <specular> element for Lambert shader
else if (profile->getTechnique()->getPhong())
return profile->getTechnique()->getPhong()->getSpecular();
else if (profile->getTechnique()->getBlinn())
return profile->getTechnique()->getBlinn()->getSpecular();
}
return NULL;
}
const domFx_sampler2D_common_complexType* ColladaUtils::getTextureSampler(const domEffect* effect,
const domCommon_color_or_texture_type_complexType* texture)
{
// <texture texture="new_param_SID">.<newparam>.<sampler2D>
if (texture) {
const domCommon_color_or_texture_type_complexType::domTexture* domTex = texture->getTexture();
if (domTex && domTex->getTexture()) {
daeSIDResolver resolver(const_cast<domEffect*>(effect), domTex->getTexture());
const domCommon_newparam_type* param = daeSafeCast<domCommon_newparam_type>(resolver.getElement());
if (param)
return param->getSampler2D();
}
}
return NULL;
}
String ColladaUtils::getSamplerImagePath(const domEffect* effect,
const domFx_sampler2D_common_complexType* sampler2D)
{
// <sampler2D>.<source>.<newparam>.<surface>.<init_from>.<image>.<init_from>
const domProfile_COMMON* profile = findEffectCommonProfile(effect);
if (profile && sampler2D && sampler2D->getSource()) {
// Resolve the SID to get the <surface> param
daeSIDResolver resolver(const_cast<domProfile_COMMON*>(profile), sampler2D->getSource()->getValue());
domCommon_newparam_type* surfaceParam = daeSafeCast<domCommon_newparam_type>(resolver.getElement());
// Get the surface <init_from> element
if (surfaceParam && surfaceParam->getSurface()) {
const domFx_surface_init_common* surfaceInit = surfaceParam->getSurface()->getFx_surface_init_common();
if (surfaceInit && surfaceInit->getInit_from_array().getCount()) {
// Resolve the ID to get the <image>, then read the texture path
xsIDREF& idRef = surfaceInit->getInit_from_array()[0]->getValue();
const domImage* image = daeSafeCast<domImage>(idRef.getElement());
if (image && image->getInit_from())
return resolveImagePath(image);
}
}
}
return "";
}
// Resolve image path into something we can use.
String ColladaUtils::resolveImagePath(const domImage* image)
{
// 1. If the URI string contains an absolute path, use it if
// it is inside the Torque folder, otherwise force textures
// to be in the same folder as the shape.
// 2. If the URI string contains a relative path, append it
// to the shape path (since materials.cs cannot handle
// relative paths).
Torque::Path imagePath;
String imageStr(image->getInit_from()->getValue().originalStr().c_str());
// Trim leading "file://"
if (imageStr.compare("file://", 7) == 0)
imageStr.erase(0, 7);
// Trim leading slash from absolute windows paths. eg. /D:/
if ((imageStr.compare("/", 1) == 0) && (imageStr.find(':') == 2))
imageStr.erase(0, 1);
// Replace %20 with space
imageStr.replace("%20", " ");
if (Platform::isFullPath(imageStr))
{
// Absolute path => check for outside the Torque game folder
imagePath = String( Platform::makeRelativePathName(imageStr, Platform::getMainDotCsDir()) );
if ( !imagePath.getRoot().isEmpty() || // different drive (eg. C:/ vs D:/)
(imagePath.getPath().find("/") == 0) || // different OS (eg. /home vs C:/home)
(imagePath.getPath().find("../") == 0) ) // same drive, outside Torque game folder
{
// Force these to the shape folder
imagePath.setRoot("");
imagePath.setPath("");
}
}
else
{
// Relative path => prepend with shape path
Torque::Path tempPath(imageStr);
imagePath = TSShapeLoader::getShapePath();
imagePath.appendPath(tempPath);
imagePath.setFileName(tempPath.getFileName());
}
// No need to specify the path if it is in the same folder as the model
if (imagePath.getPath() == TSShapeLoader::getShapePath().getPath())
imagePath.setPath("");
// Don't care about the extension
imagePath.setExtension("");
return imagePath.getFullPath();
}
//-----------------------------------------------------------------------------
// Construct the appropriate child class
BasePrimitive* BasePrimitive::get(const daeElement* element)
{
switch (element->getElementType()) {
case COLLADA_TYPE::TRIANGLES: return new ColladaPrimitive<domTriangles>(element);
case COLLADA_TYPE::TRISTRIPS: return new ColladaPrimitive<domTristrips>(element);
case COLLADA_TYPE::TRIFANS: return new ColladaPrimitive<domTrifans>(element);
case COLLADA_TYPE::POLYGONS: return new ColladaPrimitive<domPolygons>(element);
case COLLADA_TYPE::POLYLIST: return new ColladaPrimitive<domPolylist>(element);
default: return 0;
}
}
//------------------------------------------------------------------------------
// Collada animation curves
/// Determine which elements are being targeted
void AnimData::parseTargetString(const char* target, int fullCount, const char* elements[])
{
// Assume targeting all elements at offset 0
targetValueCount = fullCount;
targetValueOffset = 0;
// Check for array syntax: (n) or (n)(m)
if (const char* p = dStrchr(target, '(')) {
int indN, indM;
if (dSscanf(p, "(%d)(%d)", &indN, &indM) == 2) {
targetValueOffset = (indN * 4) + indM; // @todo: 4x4 matrix only
targetValueCount = 1;
}
else if (dSscanf(p, "(%d)", &indN) == 1) {
targetValueOffset = indN;
targetValueCount = 1;
}
}
else if (const char* p = dStrrchr(target, '.')) {
// Check for named elements
for (int iElem = 0; elements[iElem][0] != 0; iElem++) {
if (!dStrcmp(p, elements[iElem])) {
targetValueOffset = iElem;
targetValueCount = 1;
break;
}
}
}
}
/// Solve the cubic spline B(s) = param for s
F32 AnimData::invertParamCubic(F32 param, F32 x0, F32 x1, F32 x2, F32 x3) const
{
const double INVERTPARAMCUBIC_TOL = 1.0e-09;
const double INVERTPARAMCUBIC_SMALLERTOL = 1.0e-20;
const double INVERTPARAMCUBIC_MAXIT = 100;
// check input value for outside range
if ((param - x0) < INVERTPARAMCUBIC_SMALLERTOL)
return 0.0f;
else if ((x3 - param) < INVERTPARAMCUBIC_SMALLERTOL)
return 1.0f;
U32 iterations = 0;
// de Casteljau Subdivision.
F32 u = 0.0f;
F32 v = 1.0f;
while (iterations < INVERTPARAMCUBIC_MAXIT) {
double a = (x0 + x1)*0.5f;
double b = (x1 + x2)*0.5f;
double c = (x2 + x3)*0.5f;
double d = (a + b)*0.5f;
double e = (b + c)*0.5f;
double f = (d + e)*0.5f;
if (mFabs(f - param) < INVERTPARAMCUBIC_TOL)
break;
if (f < param) {
x0 = f;
x1 = e;
x2 = c;
u = (u + v)*0.5f;
}
else {
x1 = a;
x2 = d;
x3 = f;
v = (u + v)*0.5f;
}
iterations++;
}
return mClampF((u+v)*0.5f, 0.0f, 1.0f);
}
/// Get the interpolated value at time 't'
void AnimData::interpValue(F32 t, U32 offset, double* value) const
{
// handle degenerate animation data
if (input.size() == 0)
{
*value = 0.0f;
return;
}
else if (input.size() == 1)
{
*value = output.getStringArrayData(0)[offset];
return;
}
// clamp time to valid range
F32 curveStart = input.getFloatValue(0);
F32 curveEnd = input.getFloatValue(input.size()-1);
t = mClampF(t, curveStart, curveEnd);
// find the index of the input keyframe BEFORE 't'
int index;
for (index = 0; index < input.size()-2; index++) {
if (input.getFloatValue(index + 1) > t)
break;
}
// get the data for the two control points either side of 't'
Point2F v0;
v0.x = input.getFloatValue(index);
v0.y = output.getStringArrayData(index)[offset];
Point2F v3;
v3.x = input.getFloatValue(index + 1);
v3.y = output.getStringArrayData(index + 1)[offset];
// If spline interpolation is specified but the tangents are not available,
// default to LINEAR.
const char* interp_method = interpolation.getStringValue(index);
if (dStrEqual(interp_method, "BEZIER") ||
dStrEqual(interp_method, "HERMITE") ||
dStrEqual(interp_method, "CARDINAL")) {
const double* inArray = inTangent.getStringArrayData(index + 1);
const double* outArray = outTangent.getStringArrayData(index);
if (!inArray || !outArray)
interp_method = "LINEAR";
}
if (dStrEqual(interp_method, "STEP")) {
// STEP interpolation
*value = v0.y;
}
else if (dStrEqual(interp_method, "BEZIER") ||
dStrEqual(interp_method, "HERMITE") ||
dStrEqual(interp_method, "CARDINAL") ||
dStrEqual(interp_method, "BSPLINE"))
{
// Cubic spline interpolation. The only difference between the 4 supported
// forms is in the calculation of the other 2 control points:
// BEZIER: control points are specified explicitly
// HERMITE: tangents are specified, need to offset to get the control points
// CARDINAL: (baked) tangents are specified, need to offset to get the control points
// BSPLINE: control points are based on previous and next points
// Get the 2 extra control points
Point2F v1, v2;
if (dStrEqual(interp_method, "BSPLINE")) {
// v0 and v3 are the center points => need to
// get the control points before and after them
v1 = v0;
v2 = v3;
if (index > 0) {
v0.x = input.getFloatValue(index-1);
v0.y = output.getStringArrayData(index-1)[offset];
}
else {
// mirror P1 through P0
v0 = v1 + (v1 - v2);
}
if (index < (input.size()-2)) {
v3.x = input.getFloatValue(index+2);
v3.y = output.getStringArrayData(index+2)[offset];
}
else {
// mirror P0 through P1
v3 = v2 + (v2 - v1);
}
}
else {
const double* inArray = inTangent.getStringArrayData(index + 1);
const double* outArray = outTangent.getStringArrayData(index);
if (output.stride() == inTangent.stride()) {
// This degenerate form (1D control points) does 2 things wrong:
// 1) it does not specify the key (time) value
// 2) the control point is specified as a tangent for both bezier and hermite
// => interpolate to get the key values, and offset the tangent values
v1.set((v0.x*2 + v3.x)/3, v0.y + outArray[offset]);
v2.set((v0.x + v3.x*2)/3, v3.y - inArray[offset]);
}
else {
// the expected form (2D control points)
v1.set(outArray[offset*2], outArray[offset*2+1]);
v2.set(inArray[offset*2], inArray[offset*2+1]);
// if this is a hermite or cardinal spline, treat the values as tangents
if (dStrEqual(interp_method, "HERMITE") || dStrEqual(interp_method, "CARDINAL")) {
v1.set(v0.x + v1.x, v3.y - v1.y);
v2.set(v0.x + v2.x, v3.x - v2.y);
}
}
}
// find 's' that gives the desired 't' value
F32 s = invertParamCubic(t, v0.x, v1.x, v2.x, v3.x);
// Calculate the output value using Bernstein evaluation and the
// computed 's' value
F32 c = 3.0f*(v1.y - v0.y);
F32 e = 3.0f*(v2.y - v1.y);
*value = (((v3.y - v0.y - e)*s + e - c)*s + c)*s + v0.y;
}
else {
// default to LINEAR interpolation
F32 s = mClampF((t - v0.x) / (v3.x - v0.x), 0.0f, 1.0f);
*value = v0.y + (v3.y - v0.y) * s;
}
}
void AnimData::interpValue(F32 t, U32 offset, const char** value) const
{
if (input.size() == 0)
*value = "";
else if (input.size() == 1)
*value = output.getStringValue(0);
else
{
// clamp time to valid range
F32 curveStart = input.getFloatValue(0);
F32 curveEnd = input.getFloatValue(input.size()-1);
t = mClampF(t, curveStart, curveEnd);
// find the index of the input keyframe BEFORE 't'
int index;
for (index = 0; index < input.size()-2; index++) {
if (input.getFloatValue(index + 1) > t)
break;
}
// String values only support STEP interpolation, so just get the
// value at the input keyframe
*value = output.getStringValue(index);
}
}
//------------------------------------------------------------------------------
// Collada document conditioners
static void conditioner_fixupTextureSIDs(domCOLLADA* root)
{
for (int iLib = 0; iLib < root->getLibrary_effects_array().getCount(); iLib++) {
domLibrary_effects* lib = root->getLibrary_effects_array()[iLib];
for (int iEffect = 0; iEffect < lib->getEffect_array().getCount(); iEffect++) {
domEffect* effect = lib->getEffect_array()[iEffect];
const domCommon_color_or_texture_type_complexType* diffuse = findEffectDiffuse(effect);
if (!diffuse || !diffuse->getTexture())
continue;
// Resolve the SID => if it is an <image>, add <sampler2D> and
// <surface> elements to conform to the Collada spec.
const char *image_sid = diffuse->getTexture()->getTexture();
daeSIDResolver resolver(effect, image_sid);
if (!daeSafeCast<domImage>(resolver.getElement()))
continue;
daeErrorHandler::get()->handleWarning(avar("Fixup %s <diffuse>.<texture> "
"pointing at <image> instead of <sampler2D>", effect->getID()));
// Generate SIDs for the new sampler2D and surface elements
std::string sampler_sid(std::string(image_sid) + "-sampler");
std::string surface_sid(std::string(image_sid) + "-surface");
domProfile_COMMON* profile = const_cast<domProfile_COMMON*>(findEffectCommonProfile(effect));
// Create <newparam>.<sampler2D>.<source>
{
CREATE_ELEMENT(profile, newparam, domCommon_newparam_type)
CREATE_ELEMENT(newparam, sampler2D, domFx_sampler2D_common)
CREATE_ELEMENT(sampler2D, source, domFx_sampler2D_common_complexType::domSource)
newparam->setSid(sampler_sid.c_str());
source->setValue(surface_sid.c_str());
}
// Create <newparam>.<surface>.<init_from>
{
CREATE_ELEMENT(profile, newparam, domCommon_newparam_type)
CREATE_ELEMENT(newparam, surface, domFx_surface_common)
CREATE_ELEMENT(surface, init_from, domFx_surface_init_from_common)
CREATE_ELEMENT(surface, format, domFx_surface_common_complexType::domFormat)
newparam->setSid(surface_sid.c_str());
surface->setType(FX_SURFACE_TYPE_ENUM_2D);
format->setValue("A8R8G8B8");
init_from->setValue(image_sid);
}
// Store sampler2D sid in the <diffuse>.<texture> "texture" attribute
diffuse->getTexture()->setTexture(sampler_sid.c_str());
}
}
}
static void conditioner_fixupImageURIs(domCOLLADA* root)
{
for (int iLib = 0; iLib < root->getLibrary_images_array().getCount(); iLib++) {
domLibrary_images* lib = root->getLibrary_images_array()[iLib];
for (int iImage = 0; iImage < lib->getImage_array().getCount(); iImage++) {
domImage* image = lib->getImage_array()[iImage];
if (image->getInit_from()) {
xsAnyURI& uri = image->getInit_from()->getValue();
// Replace '\' with '/'
if (uri.originalStr().find("\\") != std::string::npos) {
daeErrorHandler::get()->handleWarning(avar("Fixup invalid URI "
"in %s: \"%s\"", image->getID(), uri.originalStr().c_str()));
std::string str(uri.originalStr());
std::replace(str.begin(), str.end(), '\\', '/');
uri.set(str);
}
// Detect file://texture.jpg => this is an invalid URI and will
// not be parsed correctly
if (uri.scheme() == "file" &&
uri.pathFile().empty() &&
!uri.authority().empty()) {
daeErrorHandler::get()->handleWarning(avar("Fixup invalid URI "
"in %s: \"%s\"", image->getID(), uri.originalStr().c_str()));
uri.set(uri.authority());
}
}
}
}
}
static void conditioner_fixupTransparency(domCOLLADA* root)
{
// Transparency is another example of something simple made complicated by
// Collada. There are two (optional) elements that determine transparency:
//
// <transparent>: a color
// <transparency>: a percentage applied to the color values
//
// Additionally, <transparent> has an optional "opaque" attribute that changes
// the way transparency is determined. If set to A_ONE (the default), only the
// alpha value of the transparent color is used, and a value of "1" means fully
// opaque. If set to RGB_ZERO, only the RGB values of transparent are used, and
// a value of "0" means fully opaque.
//
// To further complicate matters, Google Sketchup (all versions) and FeelingSoftware
// ColladaMax (pre 3.03) export materials with the transparency element inverted
// (1-transparency)
// Get the <authoring_tool> string
const char *authoringTool = "";
if (const domAsset* asset = root->getAsset()) {
for (int iContrib = 0; iContrib < asset->getContributor_array().getCount(); iContrib++) {
const domAsset::domContributor* contrib = asset->getContributor_array()[iContrib];
if (contrib->getAuthoring_tool()) {
authoringTool = contrib->getAuthoring_tool()->getValue();
break;
}
}
}
// Check for a match with the known problem-tools
bool invertTransparency = false;
const char *toolNames[] = { "FBX COLLADA exporter", "Google SketchUp",
"Illusoft Collada Exporter", "FCollada" };
for (int iName = 0; iName < (sizeof(toolNames)/sizeof(toolNames[0])); iName++) {
if (dStrstr(authoringTool, toolNames[iName])) {
invertTransparency = true;
break;
}
}
if (!invertTransparency)
return;
// Invert transparency as required for each effect
for (int iLib = 0; iLib < root->getLibrary_effects_array().getCount(); iLib++) {
domLibrary_effects* lib = root->getLibrary_effects_array()[iLib];
for (int iEffect = 0; iEffect < lib->getEffect_array().getCount(); iEffect++) {
domEffect* effect = lib->getEffect_array()[iEffect];
// Find the common profile
const domProfile_COMMON* commonProfile = findEffectCommonProfile(effect);
if (!commonProfile)
continue;
domCommon_transparent_type* transparent = 0;
if (commonProfile->getTechnique()->getConstant())
transparent = commonProfile->getTechnique()->getConstant()->getTransparent();
else if (commonProfile->getTechnique()->getLambert())
transparent = commonProfile->getTechnique()->getLambert()->getTransparent();
else if (commonProfile->getTechnique()->getPhong())
transparent = commonProfile->getTechnique()->getPhong()->getTransparent();
else if (commonProfile->getTechnique()->getBlinn())
transparent = commonProfile->getTechnique()->getBlinn()->getTransparent();
if (!transparent)
continue;
// If the shader "opaque" attribute is not specified, set it to
// RGB_ZERO (the opposite of the Collada default), as this is what
// the bad exporter tools seem to assume.
if (!transparent->isAttributeSet("opaque")) {
daeErrorHandler::get()->handleWarning(avar("Setting <transparent> "
"\"opaque\" attribute to RGB_ZERO for %s <effect>", effect->getID()));
transparent->setOpaque(FX_OPAQUE_ENUM_RGB_ZERO);
}
}
}
}
static void conditioner_checkBindShapeMatrix(domCOLLADA* root)
{
for (int iLib = 0; iLib < root->getLibrary_controllers_array().getCount(); iLib++) {
domLibrary_controllers* lib = root->getLibrary_controllers_array().get(iLib);
for (int iCon = 0; iCon < lib->getController_array().getCount(); iCon++) {
domController* con = lib->getController_array().get(iCon);
if (con->getSkin() && con->getSkin()->getBind_shape_matrix()) {
MatrixF mat = vecToMatrixF<domMatrix>(con->getSkin()->getBind_shape_matrix()->getValue());
if (!mat.fullInverse()) {
daeErrorHandler::get()->handleWarning(avar("<bind_shape_matrix> "
"in %s <controller> is not invertible (may cause problems with "
"skinning)", con->getID()));
}
}
}
}
}
static void conditioner_fixupVertexWeightJoints(domCOLLADA* root)
{
for (int iLib = 0; iLib < root->getLibrary_controllers_array().getCount(); iLib++) {
domLibrary_controllers* lib = root->getLibrary_controllers_array().get(iLib);
for (int iCon = 0; iCon < lib->getController_array().getCount(); iCon++) {
domController* con = lib->getController_array().get(iCon);
if (con->getSkin() && con->getSkin()->getVertex_weights())
{
domInputLocalOffset_Array& vw_inputs = con->getSkin()->getVertex_weights()->getInput_array();
for (int vInput = 0; vInput < vw_inputs.getCount(); vInput++) {
domInputLocalOffset *vw_input = vw_inputs.get(vInput);
if (dStrEqual(vw_input->getSemantic(), "JOINT")) {
// Check if this input points at a float array (bad)
domSource* vw_source = daeSafeCast<domSource>(vw_input->getSource().getElement());
if (vw_source->getFloat_array()) {
// Copy the value from the <joints> JOINTS input instead
domInputLocal_Array& joint_inputs = con->getSkin()->getJoints()->getInput_array();
for (int jInput = 0; jInput < joint_inputs.getCount(); jInput++) {
domInputLocal *joint_input = joint_inputs.get(jInput);
if (dStrEqual(joint_input->getSemantic(), "JOINT")) {
vw_input->setSource(joint_input->getSource());
break;
}
}
}
}
}
}
}
}
}
static void conditioner_createDefaultClip(domCOLLADA* root)
{
// Check if the document has any <animation_clip>s
for (int iLib = 0; iLib < root->getLibrary_animation_clips_array().getCount(); iLib++) {
if (root->getLibrary_animation_clips_array()[iLib]->getAnimation_clip_array().getCount())
return;
}
// Get all top-level <animation>s into an array
domAnimation_Array animations;
for (int iAnimLib = 0; iAnimLib < root->getLibrary_animations_array().getCount(); iAnimLib++) {
const domLibrary_animations* libraryAnims = root->getLibrary_animations_array()[iAnimLib];
for (int iAnim = 0; iAnim < libraryAnims->getAnimation_array().getCount(); iAnim++)
animations.append(libraryAnims->getAnimation_array()[iAnim]);
}
if (!animations.getCount())
return;
daeErrorHandler::get()->handleWarning("Creating cyclic animation clip to "
"hold all animations");
// Get animation_clip library (create one if necessary)
if (!root->getLibrary_animation_clips_array().getCount()) {
root->createAndPlace("library_animation_clips");
}
domLibrary_animation_clips* libraryClips = root->getLibrary_animation_clips_array()[0];
// Create new animation_clip for the default sequence
CREATE_ELEMENT(libraryClips, animation_clip, domAnimation_clip)
animation_clip->setName("ambient");
animation_clip->setId("dummy_ambient_clip");
animation_clip->setStart(0);
animation_clip->setEnd(0);
// Add all top_level animations to the clip (sub-animations will be included
// when the clip is procesed)
for (int iAnim = 0; iAnim < animations.getCount(); iAnim++) {
if (!animations[iAnim]->getId())
animations[iAnim]->setId(avar("dummy-animation-id%d", iAnim));
CREATE_ELEMENT(animation_clip, instance_animation, domInstanceWithExtra)
std::string url(std::string("#") + animations[iAnim]->getId());
instance_animation->setUrl(url.c_str());
}
// Add the 'Torque' profile to specify the 'Cyclic' flag
CREATE_ELEMENT(animation_clip, extra, domExtra)
CREATE_ELEMENT(extra, technique, domTechnique)
CREATE_ELEMENT(technique, any, domAny)
technique->setProfile("Torque");
any->setElementName("cyclic");
any->setValue("1");
}
static void conditioner_fixupAnimation(domAnimation* anim)
{
for (int iChannel = 0; iChannel < anim->getChannel_array().getCount(); iChannel++) {
// Get the animation elements: <channel>, <sampler>
domChannel* channel = anim->getChannel_array()[iChannel];
domSampler* sampler = daeSafeCast<domSampler>(channel->getSource().getElement());
if (!sampler)
continue;
/*
// If using a spline interpolation type but no tangents are specified,
// fall back to LINEAR interpolation.
bool isSpline = false;
bool foundInTangent = false;
bool foundOutTangent = false;
for (int iInput = 0; iInput < sampler->getInput_array().getCount(); iInput++) {
const char *semantic = sampler->getInput_array()[iInput]->getSemantic();
if (dStrEqual(semantic, "INTERPOLATION")) {
if (
}
if (dStrEqual(semantic, "IN_TANGENT"))
foundInTangent = true;
if (dStrEqual(semantic, "OUT_TANGENT"))
foundOutTangent = true;
}
if (isSpline && (!foundInTangent || !foundOutTangent)) {
daeErrorHandler::get()->handleWarning(avar("%s type interpolation "
"specified for %s, but IN/OUT TANGENTS are not provided. Using "
"LINEAR interpolation instead.");
}
*/
// Find the animation channel target
daeSIDResolver resolver(channel, channel->getTarget());
daeElement* target = resolver.getElement();
if (!target) {
// Some exporters generate visibility animations but don't add the
// FCOLLADA extension, so the target doesn't actually exist! Detect
// this situation and add the extension manually so the animation
// still works.
if (dStrEndsWith(channel->getTarget(), "/visibility")) {
// Get parent SID string
char *parentSID = dStrdup(channel->getTarget());
parentSID[dStrlen(parentSID) - dStrlen("/visibility")] = '\0';
// Find the parent element (should be a <node>)
daeSIDResolver parentResolver(channel, parentSID);
daeElement* parent = parentResolver.getElement();
delete [] parentSID;
if (parent && (parent->getElementType() == COLLADA_TYPE::NODE)) {
// Create the FCOLLADA extension
daeErrorHandler::get()->handleWarning(avar("Creating missing "
"visibility animation target: %s", channel->getTarget()));
// Check if the <visibility> element exists but is missing the SID
daeElement* vis = parent->getDescendant("visibility");
if (vis)
{
vis->setAttribute("sid", "visibility");
}
else
{
CREATE_ELEMENT(parent, extra, domExtra)
CREATE_ELEMENT(extra, technique, domTechnique)
CREATE_ELEMENT(technique, any, domAny)
technique->setProfile("FCOLLADA");
any->setElementName("visibility");
any->setAttribute("sid", "visibility");
any->setValue(""); // real initial value will be set when animation is processed in ColladaShapeLoader::processAnimation
}
}
}
}
}
// Process child animations
for (int iAnim = 0; iAnim < anim->getAnimation_array().getCount(); iAnim++)
conditioner_fixupAnimation(anim->getAnimation_array()[iAnim]);
}
/// Apply the set of model conditioners
void ColladaUtils::applyConditioners(domCOLLADA* root)
{
//--------------------------------------------------------------------------
// The built-in MAX FBX exporter specifies an <image> SID in the <texture>
// "texture" attribute instead of a <newparam> SID. Detect and fix this.
conditioner_fixupTextureSIDs(root);
//--------------------------------------------------------------------------
// The built-in MAX FBX exporter also generates invalid URI paths in the
// <image>.<init_from> tag, so fix that up too.
conditioner_fixupImageURIs(root);
//--------------------------------------------------------------------------
// Many exporters get transparency backwards. Check if the model was exported
// by one with a known issue and correct it.
conditioner_fixupTransparency(root);
//--------------------------------------------------------------------------
// Some exporters (AutoDesk) generate invalid bind_shape matrices. Warn if
// the bind_shape_matrix is not invertible.
conditioner_checkBindShapeMatrix(root);
//--------------------------------------------------------------------------
// The PoserPro exporter points the <vertex_weights> JOINT input to the
// inverse bind matrices instead of the joint names array. Detect and fix it.
conditioner_fixupVertexWeightJoints(root);
//--------------------------------------------------------------------------
// If the model contains <animation>s but no <animation_clip>s, just put all
// top level animations into a single clip.
conditioner_createDefaultClip(root);
//--------------------------------------------------------------------------
// Apply some animation fixups:
// 1) Some exporters (eg. Blender) generate "BEZIER" type animation curves,
// but do not specify the IN and OUT tangent data arrays. Detect this and
// fall back to LINEAR interpolation.
// 2) Some exporters generate visibility animations but don't add the FCOLLADA
// extension, so the target doesn't actually exist! Detect this situation
// and add the extension manually so the animation still works.
for (int iLib = 0; iLib < root->getLibrary_animations_array().getCount(); iLib++) {
const domLibrary_animations* lib = root->getLibrary_animations_array()[iLib];
for (int iAnim = 0; iAnim < lib->getAnimation_array().getCount(); iAnim++)
conditioner_fixupAnimation(lib->getAnimation_array()[iAnim]);
}
}
Torque::Path ColladaUtils::findTexture(const Torque::Path& diffuseMap)
{
Vector<Torque::Path> foundPaths;
GBitmap::sFindFiles(diffuseMap, &foundPaths);
if (foundPaths.size() > 0)
return Torque::Path(foundPaths[0]);
// If unable to load texture in current directory
// look in the parent directory. But never look in the root.
Torque::Path newPath(diffuseMap);
String filePath = newPath.getPath();
String::SizeType slash = filePath.find('/', filePath.length(), String::Right);
if (slash != String::NPos)
{
slash = filePath.find('/', filePath.length(), String::Right);
if (slash != String::NPos)
{
String truncPath = filePath.substr(0, slash);
newPath.setPath(truncPath);
return findTexture(newPath);
}
}
return String::EmptyString;
}
void ColladaUtils::exportColladaHeader(TiXmlElement* rootNode)
{
TiXmlElement* assetNode = new TiXmlElement("asset");
rootNode->LinkEndChild(assetNode);
TiXmlElement* contributorNode = new TiXmlElement("contributor");
assetNode->LinkEndChild(contributorNode);
TiXmlElement* authorNode = new TiXmlElement("author");
contributorNode->LinkEndChild(authorNode);
TiXmlElement* authoringToolNode = new TiXmlElement("authoring_tool");
contributorNode->LinkEndChild(authoringToolNode);
TiXmlText* authorText = new TiXmlText(avar("%s %s Interior Exporter", getEngineProductString(), getVersionString()));
authoringToolNode->LinkEndChild(authorText);
TiXmlElement* commentsNode = new TiXmlElement("comments");
contributorNode->LinkEndChild(commentsNode);
// Get the current time
Platform::LocalTime lt;
Platform::getLocalTime(lt);
String localTime = Platform::localTimeToString(lt);
localTime.replace('\t', ' ');
TiXmlElement* createdNode = new TiXmlElement("created");
assetNode->LinkEndChild(createdNode);
TiXmlText* createdText = new TiXmlText(avar("%s", localTime.c_str()));
createdNode->LinkEndChild(createdText);
TiXmlElement* modifiedNode = new TiXmlElement("modified");
assetNode->LinkEndChild(modifiedNode);
TiXmlText* modifiedText = new TiXmlText(avar("%s", localTime.c_str()));
modifiedNode->LinkEndChild(modifiedText);
TiXmlElement* revisionNode = new TiXmlElement("revision");
assetNode->LinkEndChild(revisionNode);
TiXmlElement* titleNode = new TiXmlElement("title");
assetNode->LinkEndChild(titleNode);
TiXmlElement* subjectNode = new TiXmlElement("subject");
assetNode->LinkEndChild(subjectNode);
TiXmlElement* keywordsNode = new TiXmlElement("keywords");
assetNode->LinkEndChild(keywordsNode);
// Torque uses Z_UP with 1 unit equal to 1 meter by default
TiXmlElement* unitNode = new TiXmlElement("unit");
assetNode->LinkEndChild(unitNode);
unitNode->SetAttribute("meter", "1.000000");
TiXmlElement* axisNode = new TiXmlElement("up_axis");
assetNode->LinkEndChild(axisNode);
TiXmlText* axisText = new TiXmlText("Z_UP");
axisNode->LinkEndChild(axisText);
}
void ColladaUtils::exportColladaMaterials(TiXmlElement* rootNode, const OptimizedPolyList& mesh, Vector<String>& matNames, const Torque::Path& colladaFile)
{
// First the image library
TiXmlElement* imgLibNode = new TiXmlElement("library_images");
rootNode->LinkEndChild(imgLibNode);
for (U32 i = 0; i < mesh.mMaterialList.size(); i++)
{
BaseMatInstance* baseInst = mesh.mMaterialList[i];
matNames.push_back(String::ToString("Material%d", i));
Material* mat = dynamic_cast<Material*>(baseInst->getMaterial());
if (!mat)
continue;
String diffuseMap;
if (mat->getName() && mat->getName()[0])
matNames.last() = String(mat->getName());
// Handle an auto-generated "Default Material" specially
if (mat->isAutoGenerated())
{
Torque::Path diffusePath;
if (mat->mDiffuseMapFilename[0].isNotEmpty())
diffusePath = mat->mDiffuseMapFilename[0];
else
diffusePath = String("warningMat");
matNames.last() = diffusePath.getFileName();
diffuseMap += diffusePath.getFullFileName();
}
else
{
if (mat->mDiffuseMapFilename[0].isNotEmpty())
diffuseMap += mat->mDiffuseMapFilename[0];
else
diffuseMap += "warningMat";
}
Torque::Path diffusePath = findTexture(colladaFile.getPath() + "/" + diffuseMap);
// If we didn't get a path
if (diffusePath.getFullPath().isNotEmpty())
diffuseMap = Torque::Path::MakeRelativePath(diffusePath, colladaFile);
TiXmlElement* imageNode = new TiXmlElement("image");
imgLibNode->LinkEndChild(imageNode);
imageNode->SetAttribute("id", avar("%s-Diffuse", matNames.last().c_str()));
imageNode->SetAttribute("name", avar("%s-Diffuse", matNames.last().c_str()));
TiXmlElement* initNode = new TiXmlElement("init_from");
imageNode->LinkEndChild(initNode);
TiXmlText* initText = new TiXmlText(avar("file://%s", diffuseMap.c_str()));
initNode->LinkEndChild(initText);
}
// Next the material library
TiXmlElement* matLibNode = new TiXmlElement("library_materials");
rootNode->LinkEndChild(matLibNode);
for (U32 i = 0; i < mesh.mMaterialList.size(); i++)
{
BaseMatInstance* baseInst = mesh.mMaterialList[i];
Material* mat = dynamic_cast<Material*>(baseInst->getMaterial());
if (!mat)
continue;
TiXmlElement* materialNode = new TiXmlElement("material");
matLibNode->LinkEndChild(materialNode);
materialNode->SetAttribute("id", matNames[i].c_str());
materialNode->SetAttribute("name", matNames[i].c_str());
TiXmlElement* instEffectNode = new TiXmlElement("instance_effect");
materialNode->LinkEndChild(instEffectNode);
instEffectNode->SetAttribute("url", avar("#%s-fx", matNames[i].c_str()));
}
// Finally the effects library
TiXmlElement* effectLibNode = new TiXmlElement("library_effects");
rootNode->LinkEndChild(effectLibNode);
for (U32 i = 0; i < mesh.mMaterialList.size(); i++)
{
BaseMatInstance* baseInst = mesh.mMaterialList[i];
Material* mat = dynamic_cast<Material*>(baseInst->getMaterial());
if (!mat)
continue;
TiXmlElement* effectNode = new TiXmlElement("effect");
effectLibNode->LinkEndChild(effectNode);
effectNode->SetAttribute("id", avar("%s-fx", matNames[i].c_str()));
effectNode->SetAttribute("name", avar("%s-fx", matNames[i].c_str()));
TiXmlElement* profileNode = new TiXmlElement("profile_COMMON");
effectNode->LinkEndChild(profileNode);
TiXmlElement* techniqueNode = new TiXmlElement("technique");
profileNode->LinkEndChild(techniqueNode);
techniqueNode->SetAttribute("sid", "standard");
TiXmlElement* phongNode = new TiXmlElement("phong");
techniqueNode->LinkEndChild(phongNode);
TiXmlElement* diffuseNode = new TiXmlElement("diffuse");
phongNode->LinkEndChild(diffuseNode);
TiXmlElement* textureNode = new TiXmlElement("texture");
diffuseNode->LinkEndChild(textureNode);
textureNode->SetAttribute("texture", avar("%s-Diffuse", matNames[i].c_str()));
textureNode->SetAttribute("texcoord", "CHANNEL0");
// Extra info useful for getting the texture to show up correctly in some apps
TiXmlElement* extraNode = new TiXmlElement("extra");
textureNode->LinkEndChild(extraNode);
TiXmlElement* extraTechNode = new TiXmlElement("technique");
extraNode->LinkEndChild(extraTechNode);
extraTechNode->SetAttribute("profile", "MAYA");
TiXmlElement* extraWrapUNode = new TiXmlElement("wrapU");
extraTechNode->LinkEndChild(extraWrapUNode);
extraWrapUNode->SetAttribute("sid", "wrapU0");
TiXmlText* extraWrapUText = new TiXmlText("TRUE");
extraWrapUNode->LinkEndChild(extraWrapUText);
TiXmlElement* extraWrapVNode = new TiXmlElement("wrapV");
extraTechNode->LinkEndChild(extraWrapVNode);
extraWrapVNode->SetAttribute("sid", "wrapV0");
TiXmlText* extraWrapVText = new TiXmlText("TRUE");
extraWrapVNode->LinkEndChild(extraWrapVText);
TiXmlElement* extraBlendNode = new TiXmlElement("blend_mode");
extraTechNode->LinkEndChild(extraBlendNode);
TiXmlText* extraBlendText = new TiXmlText("ADD");
extraBlendNode->LinkEndChild(extraBlendText);
}
}
void ColladaUtils::exportColladaTriangles(TiXmlElement* meshNode, const OptimizedPolyList& mesh, const String& meshName, const Vector<String>& matNames)
{
// Start at -1 so we will export polygons that do not have a material.
for (S32 i = -1; i < matNames.size(); i++)
{
// Calculate the number of triangles that uses this Material
U32 triangleCount = 0;
for (U32 j = 0; j < mesh.mPolyList.size(); j++)
{
const OptimizedPolyList::Poly& poly = mesh.mPolyList[j];
if (poly.material != i)
continue;
if (poly.vertexCount < 3)
continue;
if (poly.type == OptimizedPolyList::TriangleList ||
poly.type == OptimizedPolyList::TriangleFan ||
poly.type == OptimizedPolyList::TriangleStrip)
{
triangleCount += poly.vertexCount - 2;
}
else
AssertISV(false, "ColladaUtils::exportColladaTriangles(): Unknown Poly type!");
}
// Make sure that we are actually using this Material
if (triangleCount == 0)
continue;
TiXmlElement* trianglesNode = new TiXmlElement("triangles");
meshNode->LinkEndChild(trianglesNode);
trianglesNode->SetAttribute("material", ( i > -1 ) ? matNames[i].c_str() : "" );
trianglesNode->SetAttribute("count", avar("%d", triangleCount));
TiXmlElement* trianglesVertInputNode = new TiXmlElement("input");
trianglesNode->LinkEndChild(trianglesVertInputNode);
trianglesVertInputNode->SetAttribute("semantic", "VERTEX");
trianglesVertInputNode->SetAttribute("offset", "0");
trianglesVertInputNode->SetAttribute("source", avar("#%s-Vertex", meshName.c_str()));
TiXmlElement* trianglesNormalInputNode = new TiXmlElement("input");
trianglesNode->LinkEndChild(trianglesNormalInputNode);
trianglesNormalInputNode->SetAttribute("semantic", "NORMAL");
trianglesNormalInputNode->SetAttribute("offset", "1");
trianglesNormalInputNode->SetAttribute("source", avar("#%s-Normal", meshName.c_str()));
TiXmlElement* trianglesUV0InputNode = new TiXmlElement("input");
trianglesNode->LinkEndChild(trianglesUV0InputNode);
trianglesUV0InputNode->SetAttribute("semantic", "TEXCOORD");
trianglesUV0InputNode->SetAttribute("offset", "2");
trianglesUV0InputNode->SetAttribute("set", "0");
trianglesUV0InputNode->SetAttribute("source", avar("#%s-UV0", meshName.c_str()));
TiXmlElement* polyNode = new TiXmlElement("p");
trianglesNode->LinkEndChild(polyNode);
Vector<U32> tempIndices;
tempIndices.reserve(4);
for (U32 j = 0; j < mesh.mPolyList.size(); j++)
{
const OptimizedPolyList::Poly& poly = mesh.mPolyList[j];
if (poly.vertexCount < 3)
continue;
if (poly.material != i)
continue;
tempIndices.setSize(poly.vertexCount);
dMemset(tempIndices.address(), 0, poly.vertexCount);
if (poly.type == OptimizedPolyList::TriangleStrip)
{
tempIndices[0] = 0;
U32 idx = 1;
for (U32 k = 1; k < poly.vertexCount; k += 2)
tempIndices[idx++] = k;
for (U32 k = ((poly.vertexCount - 1) & (~0x1)); k > 0; k -= 2)
tempIndices[idx++] = k;
}
else if (poly.type == OptimizedPolyList::TriangleList ||
poly.type == OptimizedPolyList::TriangleFan)
{
for (U32 k = 0; k < poly.vertexCount; k++)
tempIndices[k] = k;
}
else
AssertISV(false, "ColladaUtils::exportColladaTriangles(): Unknown Poly type!");
const U32& firstIdx = mesh.mIndexList[poly.vertexStart];
const OptimizedPolyList::VertIndex& firstVertIdx = mesh.mVertexList[firstIdx];
for (U32 k = 1; k < poly.vertexCount - 1; k++)
{
const U32& secondIdx = mesh.mIndexList[poly.vertexStart + tempIndices[k]];
const U32& thirdIdx = mesh.mIndexList[poly.vertexStart + tempIndices[k + 1]];
const OptimizedPolyList::VertIndex& secondVertIdx = mesh.mVertexList[secondIdx];
const OptimizedPolyList::VertIndex& thirdVertIdx = mesh.mVertexList[thirdIdx];
// Note the reversed winding on the triangles
const char* tri = avar("%d %d %d %d %d %d %d %d %d",
thirdVertIdx.vertIdx, thirdVertIdx.normalIdx, thirdVertIdx.uv0Idx,
secondVertIdx.vertIdx, secondVertIdx.normalIdx, secondVertIdx.uv0Idx,
firstVertIdx.vertIdx, firstVertIdx.normalIdx, firstVertIdx.uv0Idx);
TiXmlText* triangleText = new TiXmlText(tri);
polyNode->LinkEndChild(triangleText);
}
}
}
}
void ColladaUtils::exportColladaMesh(TiXmlElement* rootNode, const OptimizedPolyList& mesh, const String& meshName, const Vector<String>& matNames)
{
TiXmlElement* libGeomsNode = new TiXmlElement("library_geometries");
rootNode->LinkEndChild(libGeomsNode);
TiXmlElement* geometryNode = new TiXmlElement("geometry");
libGeomsNode->LinkEndChild(geometryNode);
geometryNode->SetAttribute("id", avar("%s-lib", meshName.c_str()));
geometryNode->SetAttribute("name", avar("%sMesh", meshName.c_str()));
TiXmlElement* meshNode = new TiXmlElement("mesh");
geometryNode->LinkEndChild(meshNode);
// Save out the vertices
TiXmlElement* vertsSourceNode = new TiXmlElement("source");
meshNode->LinkEndChild(vertsSourceNode);
vertsSourceNode->SetAttribute("id", avar("%s-Position", meshName.c_str()));
TiXmlElement* vertsNode = new TiXmlElement("float_array");
vertsSourceNode->LinkEndChild(vertsNode);
vertsNode->SetAttribute("id", avar("%s-Position-array", meshName.c_str()));
vertsNode->SetAttribute("count", avar("%d", mesh.mPoints.size() * 3));
for (U32 i = 0; i < mesh.mPoints.size(); i++)
{
const Point3F& vert = mesh.mPoints[i];
TiXmlText* vertText = new TiXmlText(avar("%.4f %.4f %.4f", vert.x, vert.y, vert.z));
vertsNode->LinkEndChild(vertText);
}
// Save the vertex accessor
TiXmlElement* vertsTechNode = new TiXmlElement("technique_common");
vertsSourceNode->LinkEndChild(vertsTechNode);
TiXmlElement* vertsAccNode = new TiXmlElement("accessor");
vertsTechNode->LinkEndChild(vertsAccNode);
vertsAccNode->SetAttribute("source", avar("#%s-Position-array", meshName.c_str()));
vertsAccNode->SetAttribute("count", avar("%d", mesh.mPoints.size()));
vertsAccNode->SetAttribute("stride", "3");
TiXmlElement* vertsAccXNode = new TiXmlElement("param");
vertsAccNode->LinkEndChild(vertsAccXNode);
vertsAccXNode->SetAttribute("name", "X");
vertsAccXNode->SetAttribute("type", "float");
TiXmlElement* vertsAccYNode = new TiXmlElement("param");
vertsAccNode->LinkEndChild(vertsAccYNode);
vertsAccYNode->SetAttribute("name", "Y");
vertsAccYNode->SetAttribute("type", "float");
TiXmlElement* vertsAccZNode = new TiXmlElement("param");
vertsAccNode->LinkEndChild(vertsAccZNode);
vertsAccZNode->SetAttribute("name", "Z");
vertsAccZNode->SetAttribute("type", "float");
// Save out the normals
TiXmlElement* normalsSourceNode = new TiXmlElement("source");
meshNode->LinkEndChild(normalsSourceNode);
normalsSourceNode->SetAttribute("id", avar("%s-Normal", meshName.c_str()));
TiXmlElement* normalsNode = new TiXmlElement("float_array");
normalsSourceNode->LinkEndChild(normalsNode);
normalsNode->SetAttribute("id", avar("%s-Normal-array", meshName.c_str()));
normalsNode->SetAttribute("count", avar("%d", mesh.mNormals.size() * 3));
for (U32 i = 0; i < mesh.mNormals.size(); i++)
{
const Point3F& normal = mesh.mNormals[i];
TiXmlText* normalText = new TiXmlText(avar("%.4f %.4f %.4f", normal.x, normal.y, normal.z));
normalsNode->LinkEndChild(normalText);
}
// Save the normals accessor
TiXmlElement* normalsTechNode = new TiXmlElement("technique_common");
normalsSourceNode->LinkEndChild(normalsTechNode);
TiXmlElement* normalsAccNode = new TiXmlElement("accessor");
normalsTechNode->LinkEndChild(normalsAccNode);
normalsAccNode->SetAttribute("source", avar("#%s-Normal-array", meshName.c_str()));
normalsAccNode->SetAttribute("count", avar("%d", mesh.mNormals.size()));
normalsAccNode->SetAttribute("stride", "3");
TiXmlElement* normalsAccXNode = new TiXmlElement("param");
normalsAccNode->LinkEndChild(normalsAccXNode);
normalsAccXNode->SetAttribute("name", "X");
normalsAccXNode->SetAttribute("type", "float");
TiXmlElement* normalsAccYNode = new TiXmlElement("param");
normalsAccNode->LinkEndChild(normalsAccYNode);
normalsAccYNode->SetAttribute("name", "Y");
normalsAccYNode->SetAttribute("type", "float");
TiXmlElement* normalsAccZNode = new TiXmlElement("param");
normalsAccNode->LinkEndChild(normalsAccZNode);
normalsAccZNode->SetAttribute("name", "Z");
normalsAccZNode->SetAttribute("type", "float");
// Save out the uvs
TiXmlElement* uv0SourceNode = new TiXmlElement("source");
meshNode->LinkEndChild(uv0SourceNode);
uv0SourceNode->SetAttribute("id", avar("%s-UV0", meshName.c_str()));
TiXmlElement* uv0Node = new TiXmlElement("float_array");
uv0SourceNode->LinkEndChild(uv0Node);
uv0Node->SetAttribute("id", avar("%s-UV0-array", meshName.c_str()));
uv0Node->SetAttribute("count", avar("%d", mesh.mUV0s.size() * 2));
for (U32 i = 0; i < mesh.mUV0s.size(); i++)
{
const Point2F& uv0 = mesh.mUV0s[i];
TiXmlText* uv0Text = new TiXmlText(avar("%.4f %.4f", uv0.x, 1.0f - uv0.y)); // COLLADA uvs are upside down compared to Torque
uv0Node->LinkEndChild(uv0Text);
}
// Save the uv0 accessor
TiXmlElement* uv0TechNode = new TiXmlElement("technique_common");
uv0SourceNode->LinkEndChild(uv0TechNode);
TiXmlElement* uv0AccNode = new TiXmlElement("accessor");
uv0TechNode->LinkEndChild(uv0AccNode);
uv0AccNode->SetAttribute("source", avar("#%s-UV0-array", meshName.c_str()));
uv0AccNode->SetAttribute("count", avar("%d", mesh.mUV0s.size()));
uv0AccNode->SetAttribute("stride", "2");
TiXmlElement* uv0AccSNode = new TiXmlElement("param");
uv0AccNode->LinkEndChild(uv0AccSNode);
uv0AccSNode->SetAttribute("name", "S");
uv0AccSNode->SetAttribute("type", "float");
TiXmlElement* uv0AccTNode = new TiXmlElement("param");
uv0AccNode->LinkEndChild(uv0AccTNode);
uv0AccTNode->SetAttribute("name", "T");
uv0AccTNode->SetAttribute("type", "float");
// Define the vertices position array
TiXmlElement* verticesNode = new TiXmlElement("vertices");
meshNode->LinkEndChild(verticesNode);
verticesNode->SetAttribute("id", avar("%s-Vertex", meshName.c_str()));
TiXmlElement* verticesInputNode = new TiXmlElement("input");
verticesNode->LinkEndChild(verticesInputNode);
verticesInputNode->SetAttribute("semantic", "POSITION");
verticesInputNode->SetAttribute("source", avar("#%s-Position", meshName.c_str()));
exportColladaTriangles(meshNode, mesh, meshName, matNames);
}
void ColladaUtils::exportColladaScene(TiXmlElement* rootNode, const String& meshName, const Vector<String>& matNames)
{
TiXmlElement* libSceneNode = new TiXmlElement("library_visual_scenes");
rootNode->LinkEndChild(libSceneNode);
TiXmlElement* visSceneNode = new TiXmlElement("visual_scene");
libSceneNode->LinkEndChild(visSceneNode);
visSceneNode->SetAttribute("id", "RootNode");
visSceneNode->SetAttribute("name", "RootNode");
TiXmlElement* nodeNode = new TiXmlElement("node");
visSceneNode->LinkEndChild(nodeNode);
nodeNode->SetAttribute("id", avar("%s", meshName.c_str()));
nodeNode->SetAttribute("name", avar("%s", meshName.c_str()));
TiXmlElement* instanceGeomNode = new TiXmlElement("instance_geometry");
nodeNode->LinkEndChild(instanceGeomNode);
instanceGeomNode->SetAttribute("url", avar("#%s-lib", meshName.c_str()));
TiXmlElement* bindMatNode = new TiXmlElement("bind_material");
instanceGeomNode->LinkEndChild(bindMatNode);
TiXmlElement* techniqueNode = new TiXmlElement("technique_common");
bindMatNode->LinkEndChild(techniqueNode);
// Bind the materials
for (U32 i = 0; i < matNames.size(); i++)
{
TiXmlElement* instMatNode = new TiXmlElement("instance_material");
techniqueNode->LinkEndChild(instMatNode);
instMatNode->SetAttribute("symbol", avar("%s", matNames[i].c_str()));
instMatNode->SetAttribute("target", avar("#%s", matNames[i].c_str()));
}
TiXmlElement* sceneNode = new TiXmlElement("scene");
rootNode->LinkEndChild(sceneNode);
TiXmlElement* instVisSceneNode = new TiXmlElement("instance_visual_scene");
sceneNode->LinkEndChild(instVisSceneNode);
instVisSceneNode->SetAttribute("url", "#RootNode");
}
void ColladaUtils::exportToCollada(const Torque::Path& colladaFile, const OptimizedPolyList& mesh, const String& meshName)
{
// Get the mesh name
String outMeshName = meshName;
if (outMeshName.isEmpty())
outMeshName = colladaFile.getFileName();
// The XML document that will hold all of our data
TiXmlDocument doc;
// Add a standard XML declaration to the top
TiXmlDeclaration* xmlDecl = new TiXmlDeclaration("1.0", "utf-8", "");
doc.LinkEndChild(xmlDecl);
// Create our Collada root node and populate a couple standard attributes
TiXmlElement* rootNode = new TiXmlElement("COLLADA");
rootNode->SetAttribute("xmlns", "http://www.collada.org/2005/11/COLLADASchema");
rootNode->SetAttribute("version", "1.4.0");
// Add the root node to the document
doc.LinkEndChild(rootNode);
// Save out our header info
exportColladaHeader(rootNode);
// Save out the materials
Vector<String> mapNames;
exportColladaMaterials(rootNode, mesh, mapNames, colladaFile);
// Save out our geometry
exportColladaMesh(rootNode, mesh, outMeshName, mapNames);
// Save out our scene nodes
exportColladaScene(rootNode, outMeshName, mapNames);
// Write out the actual Collada file
char fullPath[MAX_PATH_LENGTH];
Platform::makeFullPathName(colladaFile.getFullPath(), fullPath, MAX_PATH_LENGTH);
if (!doc.SaveFile(fullPath))
Con::errorf("ColladaUtils::exportToCollada(): Unable to export to %s", fullPath);
}