Torque3D/Engine/lib/convexDecomp/NvStanHull.cpp

3465 lines
87 KiB
C++
Raw Normal View History

2012-09-19 15:15:01 +00:00
/*
NvStanHull.cpp : A convex hull generator written by Stan Melax
*/
/*!
**
** Copyright (c) 2009 by John W. Ratcliff mailto:jratcliffscarab@gmail.com
**
** Portions of this source has been released with the PhysXViewer application, as well as
** Rocket, CreateDynamics, ODF, and as a number of sample code snippets.
**
** If you find this code useful or you are feeling particularily generous I would
** ask that you please go to http://www.amillionpixels.us and make a donation
** to Troy DeMolay.
**
** DeMolay is a youth group for young men between the ages of 12 and 21.
** It teaches strong moral principles, as well as leadership skills and
** public speaking. The donations page uses the 'pay for pixels' paradigm
** where, in this case, a pixel is only a single penny. Donations can be
** made for as small as $4 or as high as a $100 block. Each person who donates
** will get a link to their own site as well as acknowledgement on the
** donations blog located here http://www.amillionpixels.blogspot.com/
**
** If you wish to contact me you can use the following methods:
**
** Skype ID: jratcliff63367
** Yahoo: jratcliff63367
** AOL: jratcliff1961
** email: jratcliffscarab@gmail.com
**
**
** The MIT license:
**
** Permission is hereby granted, free of charge, to any person obtaining a copy
** of this software and associated documentation files (the "Software"), to deal
** in the Software without restriction, including without limitation the rights
** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
** copies of the Software, and to permit persons to whom the Software is furnished
** to do so, subject to the following conditions:
**
** The above copyright notice and this permission notice shall be included in all
** copies or substantial portions of the Software.
** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
** IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
** FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
** AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
** WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
** CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <float.h>
#include <stdarg.h>
#include <setjmp.h>
#include "NvStanHull.h"
namespace CONVEX_DECOMPOSITION
{
//*****************************************************
//*** DARRAY.H
//*****************************************************
template <class Type> class ArrayRet;
template <class Type> class Array
{
public:
Array(NxI32 s=0);
Array(Array<Type> &array);
Array(ArrayRet<Type> &array);
~Array();
void allocate(NxI32 s);
void SetSize(NxI32 s);
void Pack();
Type& Add(Type);
void AddUnique(Type);
NxI32 Contains(Type);
void Insert(Type,NxI32);
NxI32 IndexOf(Type);
void Remove(Type);
void DelIndex(NxI32 i);
Type * element;
NxI32 count;
NxI32 array_size;
const Type &operator[](NxI32 i) const { assert(i>=0 && i<count); return element[i]; }
Type &operator[](NxI32 i) { assert(i>=0 && i<count); return element[i]; }
Type &Pop() { assert(count); count--; return element[count]; }
Array<Type> &operator=(Array<Type> &array);
Array<Type> &operator=(ArrayRet<Type> &array);
// operator ArrayRet<Type> &() { return *(ArrayRet<Type> *)this;} // this worked but i suspect could be dangerous
};
template <class Type> class ArrayRet:public Array<Type>
{
};
template <class Type> Array<Type>::Array(NxI32 s)
{
count=0;
array_size = 0;
element = NULL;
if(s)
{
allocate(s);
}
}
template <class Type> Array<Type>::Array(Array<Type> &array)
{
count=0;
array_size = 0;
element = NULL;
for(NxI32 i=0;i<array.count;i++)
{
Add(array[i]);
}
}
template <class Type> Array<Type>::Array(ArrayRet<Type> &array)
{
*this = array;
}
template <class Type> Array<Type> &Array<Type>::operator=(ArrayRet<Type> &array)
{
count=array.count;
array_size = array.array_size;
element = array.element;
array.element=NULL;
array.count=0;
array.array_size=0;
return *this;
}
template <class Type> Array<Type> &Array<Type>::operator=(Array<Type> &array)
{
count=0;
for(NxI32 i=0;i<array.count;i++)
{
Add(array[i]);
}
return *this;
}
template <class Type> Array<Type>::~Array()
{
if (element != NULL)
{
MEMALLOC_FREE(element);
}
count=0;array_size=0;element=NULL;
}
template <class Type> void Array<Type>::allocate(NxI32 s)
{
assert(s>0);
assert(s>=count);
Type *old = element;
array_size =s;
element = (Type *) MEMALLOC_MALLOC( sizeof(Type)*array_size );
assert(element);
for(NxI32 i=0;i<count;i++)
{
element[i]=old[i];
}
if(old)
{
MEMALLOC_FREE(old);
}
}
template <class Type> void Array<Type>::SetSize(NxI32 s)
{
if(s==0)
{
if(element)
{
MEMALLOC_FREE(element);
element = NULL;
}
array_size = s;
}
else
{
allocate(s);
}
count=s;
}
template <class Type> void Array<Type>::Pack()
{
allocate(count);
}
template <class Type> Type& Array<Type>::Add(Type t)
{
assert(count<=array_size);
if(count==array_size)
{
allocate((array_size)?array_size *2:16);
}
element[count++] = t;
return element[count-1];
}
template <class Type> NxI32 Array<Type>::Contains(Type t)
{
NxI32 i;
NxI32 found=0;
for(i=0;i<count;i++)
{
if(element[i] == t) found++;
}
return found;
}
template <class Type> void Array<Type>::AddUnique(Type t)
{
if(!Contains(t)) Add(t);
}
template <class Type> void Array<Type>::DelIndex(NxI32 i)
{
assert(i<count);
count--;
while(i<count)
{
element[i] = element[i+1];
i++;
}
}
template <class Type> void Array<Type>::Remove(Type t)
{
NxI32 i;
for(i=0;i<count;i++)
{
if(element[i] == t)
{
break;
}
}
assert(i<count); // assert object t is in the array.
DelIndex(i);
for(i=0;i<count;i++)
{
assert(element[i] != t);
}
}
template <class Type> void Array<Type>::Insert(Type t,NxI32 k)
{
NxI32 i=count;
Add(t); // to allocate space
while(i>k)
{
element[i]=element[i-1];
i--;
}
assert(i==k);
element[k]=t;
}
template <class Type> NxI32 Array<Type>::IndexOf(Type t)
{
NxI32 i;
for(i=0;i<count;i++)
{
if(element[i] == t)
{
return i;
}
}
assert(0);
return -1;
}
//****************************************************
//** VECMATH.H
//****************************************************
#define PI (3.1415926535897932384626433832795f)
#define DEG2RAD (PI / 180.0f)
#define RAD2DEG (180.0f / PI)
#define SQRT_OF_2 (1.4142135f)
#define OFFSET(Class,Member) (((char*) (&(((Class*)NULL)-> Member )))- ((char*)NULL))
NxI32 argmin(NxF32 a[],NxI32 n);
2023-05-12 09:42:06 +00:00
NxF32 sqr(NxF32 a);
2012-09-19 15:15:01 +00:00
NxF32 clampf(NxF32 a) ;
NxF32 Round(NxF32 a,NxF32 precision);
NxF32 Interpolate(const NxF32 &f0,const NxF32 &f1,NxF32 alpha) ;
template <class T>
2023-05-12 09:42:06 +00:00
void Swap(T &a,T &b)
2012-09-19 15:15:01 +00:00
{
T tmp = a;
a=b;
b=tmp;
}
template <class T>
2023-05-12 09:42:06 +00:00
T Max(const T &a,const T &b)
2012-09-19 15:15:01 +00:00
{
return (a>b)?a:b;
}
template <class T>
2023-05-12 09:42:06 +00:00
T Min(const T &a,const T &b)
2012-09-19 15:15:01 +00:00
{
return (a<b)?a:b;
}
//----------------------------------
class int3 : public Memalloc
{
public:
NxI32 x,y,z;
int3(){};
int3(NxI32 _x,NxI32 _y, NxI32 _z){x=_x;y=_y;z=_z;}
const NxI32& operator[](NxI32 i) const {return (&x)[i];}
NxI32& operator[](NxI32 i) {return (&x)[i];}
};
//-------- 2D --------
class float2 : public Memalloc
{
public:
NxF32 x,y;
float2(){x=0;y=0;};
float2(NxF32 _x,NxF32 _y){x=_x;y=_y;}
NxF32& operator[](NxI32 i) {assert(i>=0&&i<2);return ((NxF32*)this)[i];}
const NxF32& operator[](NxI32 i) const {assert(i>=0&&i<2);return ((NxF32*)this)[i];}
};
inline float2 operator-( const float2& a, const float2& b ){return float2(a.x-b.x,a.y-b.y);}
inline float2 operator+( const float2& a, const float2& b ){return float2(a.x+b.x,a.y+b.y);}
//--------- 3D ---------
class float3 : public Memalloc // 3D
{
public:
NxF32 x,y,z;
float3(){x=0;y=0;z=0;};
float3(NxF32 _x,NxF32 _y,NxF32 _z){x=_x;y=_y;z=_z;};
//operator NxF32 *() { return &x;};
NxF32& operator[](NxI32 i) {assert(i>=0&&i<3);return ((NxF32*)this)[i];}
const NxF32& operator[](NxI32 i) const {assert(i>=0&&i<3);return ((NxF32*)this)[i];}
};
float3& operator+=( float3 &a, const float3& b );
float3& operator-=( float3 &a ,const float3& b );
float3& operator*=( float3 &v ,const NxF32 s );
float3& operator/=( float3 &v, const NxF32 s );
NxF32 magnitude( const float3& v );
float3 normalize( const float3& v );
float3 safenormalize(const float3 &v);
float3 vabs(const float3 &v);
float3 operator+( const float3& a, const float3& b );
float3 operator-( const float3& a, const float3& b );
float3 operator-( const float3& v );
float3 operator*( const float3& v, const NxF32 s );
float3 operator*( const NxF32 s, const float3& v );
float3 operator/( const float3& v, const NxF32 s );
inline NxI32 operator==( const float3 &a, const float3 &b ) { return (a.x==b.x && a.y==b.y && a.z==b.z); }
inline NxI32 operator!=( const float3 &a, const float3 &b ) { return (a.x!=b.x || a.y!=b.y || a.z!=b.z); }
// due to ambiguity and inconsistent standards ther are no overloaded operators for mult such as va*vb.
NxF32 dot( const float3& a, const float3& b );
float3 cmul( const float3 &a, const float3 &b);
float3 cross( const float3& a, const float3& b );
float3 Interpolate(const float3 &v0,const float3 &v1,NxF32 alpha);
float3 Round(const float3& a,NxF32 precision);
float3 VectorMax(const float3 &a, const float3 &b);
float3 VectorMin(const float3 &a, const float3 &b);
class float3x3 : public Memalloc
{
public:
float3 x,y,z; // the 3 rows of the Matrix
float3x3(){}
float3x3(NxF32 xx,NxF32 xy,NxF32 xz,NxF32 yx,NxF32 yy,NxF32 yz,NxF32 zx,NxF32 zy,NxF32 zz):x(xx,xy,xz),y(yx,yy,yz),z(zx,zy,zz){}
float3x3(float3 _x,float3 _y,float3 _z):x(_x),y(_y),z(_z){}
float3& operator[](NxI32 i) {assert(i>=0&&i<3);return (&x)[i];}
const float3& operator[](NxI32 i) const {assert(i>=0&&i<3);return (&x)[i];}
NxF32& operator()(NxI32 r, NxI32 c) {assert(r>=0&&r<3&&c>=0&&c<3);return ((&x)[r])[c];}
const NxF32& operator()(NxI32 r, NxI32 c) const {assert(r>=0&&r<3&&c>=0&&c<3);return ((&x)[r])[c];}
2023-05-12 09:42:06 +00:00
};
2012-09-19 15:15:01 +00:00
float3x3 Transpose( const float3x3& m );
float3 operator*( const float3& v , const float3x3& m );
float3 operator*( const float3x3& m , const float3& v );
float3x3 operator*( const float3x3& m , const NxF32& s );
float3x3 operator*( const float3x3& ma, const float3x3& mb );
float3x3 operator/( const float3x3& a, const NxF32& s ) ;
float3x3 operator+( const float3x3& a, const float3x3& b );
float3x3 operator-( const float3x3& a, const float3x3& b );
float3x3 &operator+=( float3x3& a, const float3x3& b );
float3x3 &operator-=( float3x3& a, const float3x3& b );
float3x3 &operator*=( float3x3& a, const NxF32& s );
NxF32 Determinant(const float3x3& m );
float3x3 Inverse(const float3x3& a); // its just 3x3 so we simply do that cofactor method
//-------- 4D Math --------
class float4 : public Memalloc
{
public:
NxF32 x,y,z,w;
float4(){x=0;y=0;z=0;w=0;};
float4(NxF32 _x,NxF32 _y,NxF32 _z,NxF32 _w){x=_x;y=_y;z=_z;w=_w;}
float4(const float3 &v,NxF32 _w){x=v.x;y=v.y;z=v.z;w=_w;}
//operator NxF32 *() { return &x;};
NxF32& operator[](NxI32 i) {assert(i>=0&&i<4);return ((NxF32*)this)[i];}
const NxF32& operator[](NxI32 i) const {assert(i>=0&&i<4);return ((NxF32*)this)[i];}
const float3& xyz() const { return *((float3*)this);}
float3& xyz() { return *((float3*)this);}
};
2023-05-12 09:42:06 +00:00
struct D3DXMATRIX;
2012-09-19 15:15:01 +00:00
class float4x4 : public Memalloc
{
public:
float4 x,y,z,w; // the 4 rows
float4x4(){}
float4x4(const float4 &_x, const float4 &_y, const float4 &_z, const float4 &_w):x(_x),y(_y),z(_z),w(_w){}
2023-05-12 09:42:06 +00:00
float4x4(NxF32 m00, NxF32 m01, NxF32 m02, NxF32 m03,
NxF32 m10, NxF32 m11, NxF32 m12, NxF32 m13,
NxF32 m20, NxF32 m21, NxF32 m22, NxF32 m23,
2012-09-19 15:15:01 +00:00
NxF32 m30, NxF32 m31, NxF32 m32, NxF32 m33 )
:x(m00,m01,m02,m03),y(m10,m11,m12,m13),z(m20,m21,m22,m23),w(m30,m31,m32,m33){}
NxF32& operator()(NxI32 r, NxI32 c) {assert(r>=0&&r<4&&c>=0&&c<4);return ((&x)[r])[c];}
const NxF32& operator()(NxI32 r, NxI32 c) const {assert(r>=0&&r<4&&c>=0&&c<4);return ((&x)[r])[c];}
operator NxF32* () {return &x.x;}
operator const NxF32* () const {return &x.x;}
operator struct D3DXMATRIX* () { return (struct D3DXMATRIX*) this;}
operator const struct D3DXMATRIX* () const { return (struct D3DXMATRIX*) this;}
};
NxI32 operator==( const float4 &a, const float4 &b );
float4 Homogenize(const float3 &v3,const NxF32 &w=1.0f); // Turns a 3D float3 4D vector4 by appending w
float4 cmul( const float4 &a, const float4 &b);
float4 operator*( const float4 &v, NxF32 s);
float4 operator*( NxF32 s, const float4 &v);
float4 operator+( const float4 &a, const float4 &b);
float4 operator-( const float4 &a, const float4 &b);
float4x4 operator*( const float4x4& a, const float4x4& b );
float4 operator*( const float4& v, const float4x4& m );
float4x4 Inverse(const float4x4 &m);
float4x4 MatrixRigidInverse(const float4x4 &m);
float4x4 MatrixTranspose(const float4x4 &m);
float4x4 MatrixPerspectiveFov(NxF32 fovy, NxF32 Aspect, NxF32 zn, NxF32 zf );
float4x4 MatrixTranslation(const float3 &t);
float4x4 MatrixRotationZ(const NxF32 angle_radians);
float4x4 MatrixLookAt(const float3& eye, const float3& at, const float3& up);
NxI32 operator==( const float4x4 &a, const float4x4 &b );
//-------- Quaternion ------------
class Quaternion :public float4
{
public:
Quaternion() { x = y = z = 0.0f; w = 1.0f; }
Quaternion( float3 v, NxF32 t ) { v = normalize(v); w = cosf(t/2.0f); v = v*sinf(t/2.0f); x = v.x; y = v.y; z = v.z; }
Quaternion(NxF32 _x, NxF32 _y, NxF32 _z, NxF32 _w){x=_x;y=_y;z=_z;w=_w;}
NxF32 angle() const { return acosf(w)*2.0f; }
float3 axis() const { float3 a(x,y,z); if(fabsf(angle())<0.0000001f) return float3(1,0,0); return a*(1/sinf(angle()/2.0f)); }
float3 xdir() const { return float3( 1-2*(y*y+z*z), 2*(x*y+w*z), 2*(x*z-w*y) ); }
float3 ydir() const { return float3( 2*(x*y-w*z),1-2*(x*x+z*z), 2*(y*z+w*x) ); }
float3 zdir() const { return float3( 2*(x*z+w*y), 2*(y*z-w*x),1-2*(x*x+y*y) ); }
float3x3 getmatrix() const { return float3x3( xdir(), ydir(), zdir() ); }
operator float3x3() { return getmatrix(); }
void Normalize();
};
Quaternion& operator*=(Quaternion& a, NxF32 s );
Quaternion operator*( const Quaternion& a, NxF32 s );
Quaternion operator*( const Quaternion& a, const Quaternion& b);
Quaternion operator+( const Quaternion& a, const Quaternion& b );
Quaternion normalize( Quaternion a );
NxF32 dot( const Quaternion &a, const Quaternion &b );
float3 operator*( const Quaternion& q, const float3& v );
float3 operator*( const float3& v, const Quaternion& q );
Quaternion slerp( Quaternion a, const Quaternion& b, NxF32 interp );
2023-05-12 09:42:06 +00:00
Quaternion Interpolate(const Quaternion &q0,const Quaternion &q1,NxF32 alpha);
2012-09-19 15:15:01 +00:00
Quaternion RotationArc(float3 v0, float3 v1 ); // returns quat q where q*v0=v1
Quaternion Inverse(const Quaternion &q);
float4x4 MatrixFromQuatVec(const Quaternion &q, const float3 &v);
//------ Euler Angle -----
Quaternion YawPitchRoll( NxF32 yaw, NxF32 pitch, NxF32 roll );
NxF32 Yaw( const Quaternion& q );
NxF32 Pitch( const Quaternion& q );
NxF32 Roll( Quaternion q );
NxF32 Yaw( const float3& v );
NxF32 Pitch( const float3& v );
//------- Plane ----------
2023-05-12 09:42:06 +00:00
class Plane
2012-09-19 15:15:01 +00:00
{
public:
float3 normal;
NxF32 dist; // distance below origin - the D from plane equasion Ax+By+Cz+D=0
Plane(const float3 &n,NxF32 d):normal(n),dist(d){}
Plane():normal(),dist(0){}
void Transform(const float3 &position, const Quaternion &orientation);
};
inline Plane PlaneFlip(const Plane &plane){return Plane(-plane.normal,-plane.dist);}
inline NxI32 operator==( const Plane &a, const Plane &b ) { return (a.normal==b.normal && a.dist==b.dist); }
inline NxI32 coplanar( const Plane &a, const Plane &b ) { return (a==b || a==PlaneFlip(b)); }
//--------- Utility Functions ------
float3 PlaneLineIntersection(const Plane &plane, const float3 &p0, const float3 &p1);
float3 PlaneProject(const Plane &plane, const float3 &point);
float3 LineProject(const float3 &p0, const float3 &p1, const float3 &a); // projects a onto infinite line p0p1
NxF32 LineProjectTime(const float3 &p0, const float3 &p1, const float3 &a);
float3 ThreePlaneIntersection(const Plane &p0,const Plane &p1, const Plane &p2);
NxI32 PolyHit(const float3 *vert,const NxI32 n,const float3 &v0, const float3 &v1, float3 *impact=NULL, float3 *normal=NULL);
NxI32 BoxInside(const float3 &p,const float3 &bmin, const float3 &bmax) ;
NxI32 BoxIntersect(const float3 &v0, const float3 &v1, const float3 &bmin, const float3 &bmax, float3 *impact);
NxF32 DistanceBetweenLines(const float3 &ustart, const float3 &udir, const float3 &vstart, const float3 &vdir, float3 *upoint=NULL, float3 *vpoint=NULL);
float3 TriNormal(const float3 &v0, const float3 &v1, const float3 &v2);
float3 NormalOf(const float3 *vert, const NxI32 n);
Quaternion VirtualTrackBall(const float3 &cop, const float3 &cor, const float3 &dir0, const float3 &dir1);
//*****************************************************
// ** VECMATH.CPP
//*****************************************************
NxF32 sqr(NxF32 a) {return a*a;}
NxF32 clampf(NxF32 a) {return Min(1.0f,Max(0.0f,a));}
NxF32 Round(NxF32 a,NxF32 precision)
{
return floorf(0.5f+a/precision)*precision;
}
2023-05-12 09:42:06 +00:00
NxF32 Interpolate(const NxF32 &f0,const NxF32 &f1,NxF32 alpha)
2012-09-19 15:15:01 +00:00
{
return f0*(1-alpha) + f1*alpha;
}
NxI32 argmin(NxF32 a[],NxI32 n)
{
NxI32 r=0;
2023-05-12 09:42:06 +00:00
for(NxI32 i=1;i<n;i++)
2012-09-19 15:15:01 +00:00
{
2023-05-12 09:42:06 +00:00
if(a[i]<a[r])
2012-09-19 15:15:01 +00:00
{
2023-05-12 09:42:06 +00:00
r = i;
2012-09-19 15:15:01 +00:00
}
}
return r;
}
//------------ float3 (3D) --------------
2023-05-12 09:42:06 +00:00
float3 operator+( const float3& a, const float3& b )
2012-09-19 15:15:01 +00:00
{
2023-05-12 09:42:06 +00:00
return float3(a.x+b.x, a.y+b.y, a.z+b.z);
2012-09-19 15:15:01 +00:00
}
float3 operator-( const float3& a, const float3& b )
{
2023-05-12 09:42:06 +00:00
return float3( a.x-b.x, a.y-b.y, a.z-b.z );
2012-09-19 15:15:01 +00:00
}
2023-05-12 09:42:06 +00:00
float3 operator-( const float3& v )
2012-09-19 15:15:01 +00:00
{
2023-05-12 09:42:06 +00:00
return float3( -v.x, -v.y, -v.z );
2012-09-19 15:15:01 +00:00
}
2023-05-12 09:42:06 +00:00
float3 operator*( const float3& v, NxF32 s )
2012-09-19 15:15:01 +00:00
{
2023-05-12 09:42:06 +00:00
return float3( v.x*s, v.y*s, v.z*s );
2012-09-19 15:15:01 +00:00
}
2023-05-12 09:42:06 +00:00
float3 operator*( NxF32 s, const float3& v )
2012-09-19 15:15:01 +00:00
{
2023-05-12 09:42:06 +00:00
return float3( v.x*s, v.y*s, v.z*s );
2012-09-19 15:15:01 +00:00
}
float3 operator/( const float3& v, NxF32 s )
2023-05-12 09:42:06 +00:00
{
return v*(1.0f/s);
2012-09-19 15:15:01 +00:00
}
2023-05-12 09:42:06 +00:00
NxF32 dot( const float3& a, const float3& b )
2012-09-19 15:15:01 +00:00
{
2023-05-12 09:42:06 +00:00
return a.x*b.x + a.y*b.y + a.z*b.z;
2012-09-19 15:15:01 +00:00
}
2023-05-12 09:42:06 +00:00
float3 cmul( const float3 &v1, const float3 &v2)
{
return float3(v1.x*v2.x, v1.y*v2.y, v1.z*v2.z);
2012-09-19 15:15:01 +00:00
}
float3 cross( const float3& a, const float3& b )
{
return float3( a.y*b.z - a.z*b.y,
a.z*b.x - a.x*b.z,
a.x*b.y - a.y*b.x );
}
float3& operator+=( float3& a , const float3& b )
{
a.x += b.x;
a.y += b.y;
a.z += b.z;
return a;
}
float3& operator-=( float3& a , const float3& b )
{
a.x -= b.x;
a.y -= b.y;
a.z -= b.z;
return a;
}
float3& operator*=(float3& v , NxF32 s )
{
v.x *= s;
v.y *= s;
v.z *= s;
return v;
}
float3& operator/=(float3& v , NxF32 s )
{
NxF32 sinv = 1.0f / s;
v.x *= sinv;
v.y *= sinv;
v.z *= sinv;
return v;
}
float3 vabs(const float3 &v)
{
return float3(fabsf(v.x),fabsf(v.y),fabsf(v.z));
}
NxF32 magnitude( const float3& v )
{
return sqrtf(sqr(v.x) + sqr( v.y)+ sqr(v.z));
}
float3 normalize( const float3 &v )
{
// this routine, normalize, is ok, provided magnitude works!!
NxF32 d=magnitude(v);
2023-05-12 09:42:06 +00:00
if (d==0)
2012-09-19 15:15:01 +00:00
{
printf("Cant normalize ZERO vector\n");
assert(0);// yes this could go here
d=0.1f;
}
d = 1/d;
return float3(v.x*d,v.y*d,v.z*d);
}
float3 safenormalize(const float3 &v)
{
if(magnitude(v)<=0.0f)
{
return float3(1,0,0);
}
return normalize(v);
}
float3 Round(const float3 &a,NxF32 precision)
{
return float3(Round(a.x,precision),Round(a.y,precision),Round(a.z,precision));
}
2023-05-12 09:42:06 +00:00
float3 Interpolate(const float3 &v0,const float3 &v1,NxF32 alpha)
2012-09-19 15:15:01 +00:00
{
return v0*(1-alpha) + v1*alpha;
}
float3 VectorMin(const float3 &a,const float3 &b)
{
return float3(Min(a.x,b.x),Min(a.y,b.y),Min(a.z,b.z));
}
float3 VectorMax(const float3 &a,const float3 &b)
{
return float3(Max(a.x,b.x),Max(a.y,b.y),Max(a.z,b.z));
}
// the statement v1*v2 is ambiguous since there are 3 types
// of vector multiplication
// - componantwise (for example combining colors)
// - dot product
// - cross product
// Therefore we never declare/implement this function.
2023-05-12 09:42:06 +00:00
// So we will never see: float3 operator*(float3 a,float3 b)
2012-09-19 15:15:01 +00:00
//------------ float3x3 ---------------
NxF32 Determinant(const float3x3 &m)
{
2023-05-12 09:42:06 +00:00
return m.x.x*m.y.y*m.z.z + m.y.x*m.z.y*m.x.z + m.z.x*m.x.y*m.y.z
2012-09-19 15:15:01 +00:00
-m.x.x*m.z.y*m.y.z - m.y.x*m.x.y*m.z.z - m.z.x*m.y.y*m.x.z ;
}
float3x3 Inverse(const float3x3 &a)
{
float3x3 b;
NxF32 d=Determinant(a);
assert(d!=0);
2023-05-12 09:42:06 +00:00
for(NxI32 i=0;i<3;i++)
2012-09-19 15:15:01 +00:00
{
2023-05-12 09:42:06 +00:00
for(NxI32 j=0;j<3;j++)
2012-09-19 15:15:01 +00:00
{
NxI32 i1=(i+1)%3;
NxI32 i2=(i+2)%3;
NxI32 j1=(j+1)%3;
NxI32 j2=(j+2)%3;
// reverse indexs i&j to take transpose
b[j][i] = (a[i1][j1]*a[i2][j2]-a[i1][j2]*a[i2][j1])/d;
}
}
// Matrix check=a*b; // Matrix 'check' should be the identity (or close to it)
return b;
}
float3x3 Transpose( const float3x3& m )
{
return float3x3( float3(m.x.x,m.y.x,m.z.x),
float3(m.x.y,m.y.y,m.z.y),
float3(m.x.z,m.y.z,m.z.z));
}
float3 operator*(const float3& v , const float3x3 &m ) {
2023-05-12 09:42:06 +00:00
return float3((m.x.x*v.x + m.y.x*v.y + m.z.x*v.z),
(m.x.y*v.x + m.y.y*v.y + m.z.y*v.z),
2012-09-19 15:15:01 +00:00
(m.x.z*v.x + m.y.z*v.y + m.z.z*v.z));
}
2023-05-12 09:42:06 +00:00
float3 operator*(const float3x3 &m,const float3& v ) {
2012-09-19 15:15:01 +00:00
return float3(dot(m.x,v),dot(m.y,v),dot(m.z,v));
}
2023-05-12 09:42:06 +00:00
float3x3 operator*( const float3x3& a, const float3x3& b )
{
2012-09-19 15:15:01 +00:00
return float3x3(a.x*b,a.y*b,a.z*b);
}
2023-05-12 09:42:06 +00:00
float3x3 operator*( const float3x3& a, const NxF32& s )
{
return float3x3(a.x*s, a.y*s ,a.z*s);
2012-09-19 15:15:01 +00:00
}
2023-05-12 09:42:06 +00:00
float3x3 operator/( const float3x3& a, const NxF32& s )
{
2012-09-19 15:15:01 +00:00
NxF32 t=1/s;
2023-05-12 09:42:06 +00:00
return float3x3(a.x*t, a.y*t ,a.z*t);
2012-09-19 15:15:01 +00:00
}
float3x3 operator+( const float3x3& a, const float3x3& b )
{
return float3x3(a.x+b.x, a.y+b.y, a.z+b.z);
}
float3x3 operator-( const float3x3& a, const float3x3& b )
{
return float3x3(a.x-b.x, a.y-b.y, a.z-b.z);
}
float3x3 &operator+=( float3x3& a, const float3x3& b )
{
a.x+=b.x;
a.y+=b.y;
a.z+=b.z;
return a;
}
float3x3 &operator-=( float3x3& a, const float3x3& b )
{
a.x-=b.x;
a.y-=b.y;
a.z-=b.z;
return a;
}
float3x3 &operator*=( float3x3& a, const NxF32& s )
{
a.x*=s;
a.y*=s;
a.z*=s;
return a;
}
float3 ThreePlaneIntersection(const Plane &p0,const Plane &p1, const Plane &p2){
float3x3 mp =Transpose(float3x3(p0.normal,p1.normal,p2.normal));
float3x3 mi = Inverse(mp);
float3 b(p0.dist,p1.dist,p2.dist);
return -b * mi;
}
//--------------- 4D ----------------
float4 operator*( const float4& v, const float4x4& m )
{
return v.x*m.x + v.y*m.y + v.z*m.z + v.w*m.w; // yes this actually works
}
2023-05-12 09:42:06 +00:00
NxI32 operator==( const float4 &a, const float4 &b )
2012-09-19 15:15:01 +00:00
{
return (a.x==b.x && a.y==b.y && a.z==b.z && a.w==b.w);
}
// Dont implement m*v for now, since that might confuse us
// All our transforms are based on multiplying the "row" vector on the left
//float4 operator*(const float4x4& m , const float4& v )
//{
// return float4(dot(v,m.x),dot(v,m.y),dot(v,m.z),dot(v,m.w));
//}
2023-05-12 09:42:06 +00:00
float4 cmul( const float4 &a, const float4 &b)
2012-09-19 15:15:01 +00:00
{
return float4(a.x*b.x,a.y*b.y,a.z*b.z,a.w*b.w);
}
2023-05-12 09:42:06 +00:00
float4 operator*( const float4 &v, NxF32 s)
2012-09-19 15:15:01 +00:00
{
return float4(v.x*s,v.y*s,v.z*s,v.w*s);
}
2023-05-12 09:42:06 +00:00
float4 operator*( NxF32 s, const float4 &v)
2012-09-19 15:15:01 +00:00
{
return float4(v.x*s,v.y*s,v.z*s,v.w*s);
}
2023-05-12 09:42:06 +00:00
float4 operator+( const float4 &a, const float4 &b)
2012-09-19 15:15:01 +00:00
{
return float4(a.x+b.x,a.y+b.y,a.z+b.z,a.w+b.w);
}
2023-05-12 09:42:06 +00:00
float4 operator-( const float4 &a, const float4 &b)
2012-09-19 15:15:01 +00:00
{
return float4(a.x-b.x,a.y-b.y,a.z-b.z,a.w-b.w);
}
float4 Homogenize(const float3 &v3,const NxF32 &w)
{
return float4(v3.x,v3.y,v3.z,w);
}
float4x4 operator*( const float4x4& a, const float4x4& b )
{
return float4x4(a.x*b,a.y*b,a.z*b,a.w*b);
}
float4x4 MatrixTranspose(const float4x4 &m)
{
return float4x4(
m.x.x, m.y.x, m.z.x, m.w.x,
m.x.y, m.y.y, m.z.y, m.w.y,
m.x.z, m.y.z, m.z.z, m.w.z,
m.x.w, m.y.w, m.z.w, m.w.w );
}
float4x4 MatrixRigidInverse(const float4x4 &m)
{
float4x4 trans_inverse = MatrixTranslation(-m.w.xyz());
float4x4 rot = m;
rot.w = float4(0,0,0,1);
return trans_inverse * MatrixTranspose(rot);
}
float4x4 MatrixPerspectiveFov(NxF32 fovy, NxF32 aspect, NxF32 zn, NxF32 zf )
{
NxF32 h = 1.0f/tanf(fovy/2.0f); // view space height
NxF32 w = h / aspect ; // view space width
return float4x4(
w, 0, 0 , 0,
0, h, 0 , 0,
0, 0, zf/(zn-zf) , -1,
0, 0, zn*zf/(zn-zf) , 0 );
}
float4x4 MatrixLookAt(const float3& eye, const float3& at, const float3& up)
{
float4x4 m;
m.w.w = 1.0f;
m.w.xyz() = eye;
m.z.xyz() = normalize(eye-at);
m.x.xyz() = normalize(cross(up,m.z.xyz()));
m.y.xyz() = cross(m.z.xyz(),m.x.xyz());
return MatrixRigidInverse(m);
}
float4x4 MatrixTranslation(const float3 &t)
{
return float4x4(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
t.x,t.y,t.z,1 );
}
float4x4 MatrixRotationZ(const NxF32 angle_radians)
{
NxF32 s = sinf(angle_radians);
NxF32 c = cosf(angle_radians);
return float4x4(
c, s, 0, 0,
-s, c, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1 );
}
NxI32 operator==( const float4x4 &a, const float4x4 &b )
{
return (a.x==b.x && a.y==b.y && a.z==b.z && a.w==b.w);
}
float4x4 Inverse(const float4x4 &m)
{
float4x4 d;
NxF32 *dst = &d.x.x;
NxF32 tmp[12]; /* temp array for pairs */
NxF32 src[16]; /* array of transpose source matrix */
NxF32 det; /* determinant */
/* transpose matrix */
for ( NxI32 i = 0; i < 4; i++) {
src[i] = m(i,0) ;
src[i + 4] = m(i,1);
src[i + 8] = m(i,2);
2023-05-12 09:42:06 +00:00
src[i + 12] = m(i,3);
2012-09-19 15:15:01 +00:00
}
/* calculate pairs for first 8 elements (cofactors) */
tmp[0] = src[10] * src[15];
tmp[1] = src[11] * src[14];
tmp[2] = src[9] * src[15];
tmp[3] = src[11] * src[13];
tmp[4] = src[9] * src[14];
tmp[5] = src[10] * src[13];
tmp[6] = src[8] * src[15];
tmp[7] = src[11] * src[12];
tmp[8] = src[8] * src[14];
tmp[9] = src[10] * src[12];
tmp[10] = src[8] * src[13];
tmp[11] = src[9] * src[12];
/* calculate first 8 elements (cofactors) */
dst[0] = tmp[0]*src[5] + tmp[3]*src[6] + tmp[4]*src[7];
dst[0] -= tmp[1]*src[5] + tmp[2]*src[6] + tmp[5]*src[7];
dst[1] = tmp[1]*src[4] + tmp[6]*src[6] + tmp[9]*src[7];
dst[1] -= tmp[0]*src[4] + tmp[7]*src[6] + tmp[8]*src[7];
dst[2] = tmp[2]*src[4] + tmp[7]*src[5] + tmp[10]*src[7];
dst[2] -= tmp[3]*src[4] + tmp[6]*src[5] + tmp[11]*src[7];
dst[3] = tmp[5]*src[4] + tmp[8]*src[5] + tmp[11]*src[6];
dst[3] -= tmp[4]*src[4] + tmp[9]*src[5] + tmp[10]*src[6];
dst[4] = tmp[1]*src[1] + tmp[2]*src[2] + tmp[5]*src[3];
dst[4] -= tmp[0]*src[1] + tmp[3]*src[2] + tmp[4]*src[3];
dst[5] = tmp[0]*src[0] + tmp[7]*src[2] + tmp[8]*src[3];
dst[5] -= tmp[1]*src[0] + tmp[6]*src[2] + tmp[9]*src[3];
dst[6] = tmp[3]*src[0] + tmp[6]*src[1] + tmp[11]*src[3];
dst[6] -= tmp[2]*src[0] + tmp[7]*src[1] + tmp[10]*src[3];
dst[7] = tmp[4]*src[0] + tmp[9]*src[1] + tmp[10]*src[2];
dst[7] -= tmp[5]*src[0] + tmp[8]*src[1] + tmp[11]*src[2];
/* calculate pairs for second 8 elements (cofactors) */
tmp[0] = src[2]*src[7];
tmp[1] = src[3]*src[6];
tmp[2] = src[1]*src[7];
tmp[3] = src[3]*src[5];
tmp[4] = src[1]*src[6];
tmp[5] = src[2]*src[5];
tmp[6] = src[0]*src[7];
tmp[7] = src[3]*src[4];
tmp[8] = src[0]*src[6];
tmp[9] = src[2]*src[4];
tmp[10] = src[0]*src[5];
tmp[11] = src[1]*src[4];
/* calculate second 8 elements (cofactors) */
dst[8] = tmp[0]*src[13] + tmp[3]*src[14] + tmp[4]*src[15];
dst[8] -= tmp[1]*src[13] + tmp[2]*src[14] + tmp[5]*src[15];
dst[9] = tmp[1]*src[12] + tmp[6]*src[14] + tmp[9]*src[15];
dst[9] -= tmp[0]*src[12] + tmp[7]*src[14] + tmp[8]*src[15];
dst[10] = tmp[2]*src[12] + tmp[7]*src[13] + tmp[10]*src[15];
dst[10]-= tmp[3]*src[12] + tmp[6]*src[13] + tmp[11]*src[15];
dst[11] = tmp[5]*src[12] + tmp[8]*src[13] + tmp[11]*src[14];
dst[11]-= tmp[4]*src[12] + tmp[9]*src[13] + tmp[10]*src[14];
dst[12] = tmp[2]*src[10] + tmp[5]*src[11] + tmp[1]*src[9];
dst[12]-= tmp[4]*src[11] + tmp[0]*src[9] + tmp[3]*src[10];
dst[13] = tmp[8]*src[11] + tmp[0]*src[8] + tmp[7]*src[10];
dst[13]-= tmp[6]*src[10] + tmp[9]*src[11] + tmp[1]*src[8];
dst[14] = tmp[6]*src[9] + tmp[11]*src[11] + tmp[3]*src[8];
dst[14]-= tmp[10]*src[11] + tmp[2]*src[8] + tmp[7]*src[9];
dst[15] = tmp[10]*src[10] + tmp[4]*src[8] + tmp[9]*src[9];
dst[15]-= tmp[8]*src[9] + tmp[11]*src[10] + tmp[5]*src[8];
/* calculate determinant */
det=src[0]*dst[0]+src[1]*dst[1]+src[2]*dst[2]+src[3]*dst[3];
/* calculate matrix inverse */
det = 1/det;
for ( NxI32 j = 0; j < 16; j++)
dst[j] *= det;
return d;
}
//--------- Quaternion --------------
2023-05-12 09:42:06 +00:00
2012-09-19 15:15:01 +00:00
Quaternion operator*( const Quaternion& a, const Quaternion& b )
{
Quaternion c;
2023-05-12 09:42:06 +00:00
c.w = a.w*b.w - a.x*b.x - a.y*b.y - a.z*b.z;
c.x = a.w*b.x + a.x*b.w + a.y*b.z - a.z*b.y;
c.y = a.w*b.y - a.x*b.z + a.y*b.w + a.z*b.x;
c.z = a.w*b.z + a.x*b.y - a.y*b.x + a.z*b.w;
2012-09-19 15:15:01 +00:00
return c;
}
Quaternion operator*( const Quaternion& a, NxF32 b )
{
return Quaternion(a.x*b, a.y*b, a.z*b ,a.w*b);
}
Quaternion Inverse(const Quaternion &q)
{
return Quaternion(-q.x,-q.y,-q.z,q.w);
}
Quaternion& operator*=( Quaternion& q, const NxF32 s )
{
q.x *= s;
q.y *= s;
q.z *= s;
q.w *= s;
return q;
}
void Quaternion::Normalize()
{
NxF32 m = sqrtf(sqr(w)+sqr(x)+sqr(y)+sqr(z));
if(m<0.000000001f) {
w=1.0f;
x=y=z=0.0f;
return;
}
(*this) *= (1.0f/m);
}
float3 operator*( const Quaternion& q, const float3& v )
{
2023-05-12 09:42:06 +00:00
// The following is equivalent to:
//return (q.getmatrix() * v);
2012-09-19 15:15:01 +00:00
NxF32 qx2 = q.x*q.x;
NxF32 qy2 = q.y*q.y;
NxF32 qz2 = q.z*q.z;
NxF32 qxqy = q.x*q.y;
NxF32 qxqz = q.x*q.z;
NxF32 qxqw = q.x*q.w;
NxF32 qyqz = q.y*q.z;
NxF32 qyqw = q.y*q.w;
NxF32 qzqw = q.z*q.w;
return float3(
(1-2*(qy2+qz2))*v.x + (2*(qxqy-qzqw))*v.y + (2*(qxqz+qyqw))*v.z ,
(2*(qxqy+qzqw))*v.x + (1-2*(qx2+qz2))*v.y + (2*(qyqz-qxqw))*v.z ,
(2*(qxqz-qyqw))*v.x + (2*(qyqz+qxqw))*v.y + (1-2*(qx2+qy2))*v.z );
}
Quaternion operator+( const Quaternion& a, const Quaternion& b )
{
return Quaternion(a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w);
}
NxF32 dot( const Quaternion &a,const Quaternion &b )
{
2023-05-12 09:42:06 +00:00
return (a.w*b.w + a.x*b.x + a.y*b.y + a.z*b.z);
2012-09-19 15:15:01 +00:00
}
Quaternion normalize( Quaternion a )
{
NxF32 m = sqrtf(sqr(a.w)+sqr(a.x)+sqr(a.y)+sqr(a.z));
2023-05-12 09:42:06 +00:00
if(m<0.000000001)
{
2012-09-19 15:15:01 +00:00
a.w=1;
a.x=a.y=a.z=0;
return a;
}
return a * (1/m);
}
Quaternion slerp( Quaternion a, const Quaternion& b, NxF32 interp )
{
2023-05-12 09:42:06 +00:00
if(dot(a,b) <0.0)
2012-09-19 15:15:01 +00:00
{
a.w=-a.w;
a.x=-a.x;
a.y=-a.y;
a.z=-a.z;
}
NxF32 d = dot(a,b);
if(d>=1.0) {
return a;
}
NxF32 theta = acosf(d);
if(theta==0.0f) { return(a);}
return a*(sinf(theta-interp*theta)/sinf(theta)) + b*(sinf(interp*theta)/sinf(theta));
}
Quaternion Interpolate(const Quaternion &q0,const Quaternion &q1,NxF32 alpha) {
return slerp(q0,q1,alpha);
}
2023-05-12 09:42:06 +00:00
Quaternion YawPitchRoll( NxF32 yaw, NxF32 pitch, NxF32 roll )
2012-09-19 15:15:01 +00:00
{
roll *= DEG2RAD;
yaw *= DEG2RAD;
pitch *= DEG2RAD;
return Quaternion(float3(0.0f,0.0f,1.0f),yaw)*Quaternion(float3(1.0f,0.0f,0.0f),pitch)*Quaternion(float3(0.0f,1.0f,0.0f),roll);
}
NxF32 Yaw( const Quaternion& q )
{
static float3 v;
v=q.ydir();
return (v.y==0.0&&v.x==0.0) ? 0.0f: atan2f(-v.x,v.y)*RAD2DEG;
}
NxF32 Pitch( const Quaternion& q )
{
static float3 v;
v=q.ydir();
return atan2f(v.z,sqrtf(sqr(v.x)+sqr(v.y)))*RAD2DEG;
}
NxF32 Roll( Quaternion q )
{
q = Quaternion(float3(0.0f,0.0f,1.0f),-Yaw(q)*DEG2RAD) *q;
q = Quaternion(float3(1.0f,0.0f,0.0f),-Pitch(q)*DEG2RAD) *q;
return atan2f(-q.xdir().z,q.xdir().x)*RAD2DEG;
}
NxF32 Yaw( const float3& v )
{
return (v.y==0.0&&v.x==0.0) ? 0.0f: atan2f(-v.x,v.y)*RAD2DEG;
}
NxF32 Pitch( const float3& v )
{
return atan2f(v.z,sqrtf(sqr(v.x)+sqr(v.y)))*RAD2DEG;
}
//------------- Plane --------------
void Plane::Transform(const float3 &position, const Quaternion &orientation) {
2023-05-12 09:42:06 +00:00
// Transforms the plane to the space defined by the
2012-09-19 15:15:01 +00:00
// given position/orientation.
static float3 newnormal;
static float3 origin;
newnormal = Inverse(orientation)*normal;
origin = Inverse(orientation)*(-normal*dist - position);
normal = newnormal;
dist = -dot(newnormal, origin);
}
//--------- utility functions -------------
// RotationArc()
// Given two vectors v0 and v1 this function
// returns quaternion q where q*v0==v1.
// Routine taken from game programming gems.
Quaternion RotationArc(float3 v0,float3 v1){
static Quaternion q;
v0 = normalize(v0); // Comment these two lines out if you know its not needed.
v1 = normalize(v1); // If vector is already unit length then why do it again?
float3 c = cross(v0,v1);
NxF32 d = dot(v0,v1);
if(d<=-1.0f) { return Quaternion(1,0,0,0);} // 180 about x axis
NxF32 s = sqrtf((1+d)*2);
q.x = c.x / s;
q.y = c.y / s;
q.z = c.z / s;
q.w = s /2.0f;
return q;
}
2023-05-12 09:42:06 +00:00
float4x4 MatrixFromQuatVec(const Quaternion &q, const float3 &v)
2012-09-19 15:15:01 +00:00
{
2023-05-12 09:42:06 +00:00
// builds a 4x4 transformation matrix based on orientation q and translation v
2012-09-19 15:15:01 +00:00
NxF32 qx2 = q.x*q.x;
NxF32 qy2 = q.y*q.y;
NxF32 qz2 = q.z*q.z;
NxF32 qxqy = q.x*q.y;
NxF32 qxqz = q.x*q.z;
NxF32 qxqw = q.x*q.w;
NxF32 qyqz = q.y*q.z;
NxF32 qyqw = q.y*q.w;
NxF32 qzqw = q.z*q.w;
return float4x4(
2023-05-12 09:42:06 +00:00
1-2*(qy2+qz2),
2*(qxqy+qzqw),
2*(qxqz-qyqw),
0 ,
2*(qxqy-qzqw),
1-2*(qx2+qz2),
2*(qyqz+qxqw),
0 ,
2*(qxqz+qyqw),
2*(qyqz-qxqw),
1-2*(qx2+qy2),
0 ,
2012-09-19 15:15:01 +00:00
v.x ,
v.y ,
v.z ,
1.0f );
}
float3 PlaneLineIntersection(const Plane &plane, const float3 &p0, const float3 &p1)
{
// returns the point where the line p0-p1 intersects the plane n&d
static float3 dif;
dif = p1-p0;
NxF32 dn= dot(plane.normal,dif);
NxF32 t = -(plane.dist+dot(plane.normal,p0) )/dn;
return p0 + (dif*t);
}
float3 PlaneProject(const Plane &plane, const float3 &point)
{
return point - plane.normal * (dot(point,plane.normal)+plane.dist);
}
float3 LineProject(const float3 &p0, const float3 &p1, const float3 &a)
{
float3 w;
w = p1-p0;
NxF32 t= dot(w,(a-p0)) / (sqr(w.x)+sqr(w.y)+sqr(w.z));
return p0+ w*t;
}
NxF32 LineProjectTime(const float3 &p0, const float3 &p1, const float3 &a)
{
float3 w;
w = p1-p0;
NxF32 t= dot(w,(a-p0)) / (sqr(w.x)+sqr(w.y)+sqr(w.z));
return t;
}
float3 TriNormal(const float3 &v0, const float3 &v1, const float3 &v2)
{
// return the normal of the triangle
// inscribed by v0, v1, and v2
float3 cp=cross(v1-v0,v2-v1);
NxF32 m=magnitude(cp);
if(m==0) return float3(1,0,0);
return cp*(1.0f/m);
}
2023-05-12 09:42:06 +00:00
NxI32 BoxInside(const float3 &p, const float3 &bmin, const float3 &bmax)
2012-09-19 15:15:01 +00:00
{
2023-05-12 09:42:06 +00:00
return (p.x >= bmin.x && p.x <=bmax.x &&
p.y >= bmin.y && p.y <=bmax.y &&
2012-09-19 15:15:01 +00:00
p.z >= bmin.z && p.z <=bmax.z );
}
NxI32 BoxIntersect(const float3 &v0, const float3 &v1, const float3 &bmin, const float3 &bmax,float3 *impact)
{
if(BoxInside(v0,bmin,bmax))
{
*impact=v0;
return 1;
}
2023-05-12 09:42:06 +00:00
if(v0.x<=bmin.x && v1.x>=bmin.x)
2012-09-19 15:15:01 +00:00
{
NxF32 a = (bmin.x-v0.x)/(v1.x-v0.x);
//v.x = bmin.x;
NxF32 vy = (1-a) *v0.y + a*v1.y;
NxF32 vz = (1-a) *v0.z + a*v1.z;
2023-05-12 09:42:06 +00:00
if(vy>=bmin.y && vy<=bmax.y && vz>=bmin.z && vz<=bmax.z)
2012-09-19 15:15:01 +00:00
{
impact->x = bmin.x;
impact->y = vy;
impact->z = vz;
return 1;
}
}
2023-05-12 09:42:06 +00:00
else if(v0.x >= bmax.x && v1.x <= bmax.x)
2012-09-19 15:15:01 +00:00
{
NxF32 a = (bmax.x-v0.x)/(v1.x-v0.x);
//v.x = bmax.x;
NxF32 vy = (1-a) *v0.y + a*v1.y;
NxF32 vz = (1-a) *v0.z + a*v1.z;
2023-05-12 09:42:06 +00:00
if(vy>=bmin.y && vy<=bmax.y && vz>=bmin.z && vz<=bmax.z)
2012-09-19 15:15:01 +00:00
{
impact->x = bmax.x;
impact->y = vy;
impact->z = vz;
return 1;
}
}
2023-05-12 09:42:06 +00:00
if(v0.y<=bmin.y && v1.y>=bmin.y)
2012-09-19 15:15:01 +00:00
{
NxF32 a = (bmin.y-v0.y)/(v1.y-v0.y);
NxF32 vx = (1-a) *v0.x + a*v1.x;
//v.y = bmin.y;
NxF32 vz = (1-a) *v0.z + a*v1.z;
2023-05-12 09:42:06 +00:00
if(vx>=bmin.x && vx<=bmax.x && vz>=bmin.z && vz<=bmax.z)
2012-09-19 15:15:01 +00:00
{
impact->x = vx;
impact->y = bmin.y;
impact->z = vz;
return 1;
}
}
2023-05-12 09:42:06 +00:00
else if(v0.y >= bmax.y && v1.y <= bmax.y)
2012-09-19 15:15:01 +00:00
{
NxF32 a = (bmax.y-v0.y)/(v1.y-v0.y);
NxF32 vx = (1-a) *v0.x + a*v1.x;
// vy = bmax.y;
NxF32 vz = (1-a) *v0.z + a*v1.z;
2023-05-12 09:42:06 +00:00
if(vx>=bmin.x && vx<=bmax.x && vz>=bmin.z && vz<=bmax.z)
2012-09-19 15:15:01 +00:00
{
impact->x = vx;
impact->y = bmax.y;
impact->z = vz;
return 1;
}
}
2023-05-12 09:42:06 +00:00
if(v0.z<=bmin.z && v1.z>=bmin.z)
2012-09-19 15:15:01 +00:00
{
NxF32 a = (bmin.z-v0.z)/(v1.z-v0.z);
NxF32 vx = (1-a) *v0.x + a*v1.x;
NxF32 vy = (1-a) *v0.y + a*v1.y;
// v.z = bmin.z;
2023-05-12 09:42:06 +00:00
if(vy>=bmin.y && vy<=bmax.y && vx>=bmin.x && vx<=bmax.x)
2012-09-19 15:15:01 +00:00
{
impact->x = vx;
impact->y = vy;
impact->z = bmin.z;
return 1;
}
}
2023-05-12 09:42:06 +00:00
else if(v0.z >= bmax.z && v1.z <= bmax.z)
2012-09-19 15:15:01 +00:00
{
NxF32 a = (bmax.z-v0.z)/(v1.z-v0.z);
NxF32 vx = (1-a) *v0.x + a*v1.x;
NxF32 vy = (1-a) *v0.y + a*v1.y;
// v.z = bmax.z;
2023-05-12 09:42:06 +00:00
if(vy>=bmin.y && vy<=bmax.y && vx>=bmin.x && vx<=bmax.x)
2012-09-19 15:15:01 +00:00
{
impact->x = vx;
impact->y = vy;
impact->z = bmax.z;
return 1;
}
}
return 0;
}
NxF32 DistanceBetweenLines(const float3 &ustart, const float3 &udir, const float3 &vstart, const float3 &vdir, float3 *upoint, float3 *vpoint)
{
static float3 cp;
cp = normalize(cross(udir,vdir));
NxF32 distu = -dot(cp,ustart);
NxF32 distv = -dot(cp,vstart);
NxF32 dist = (NxF32)fabs(distu-distv);
2023-05-12 09:42:06 +00:00
if(upoint)
2012-09-19 15:15:01 +00:00
{
Plane plane;
plane.normal = normalize(cross(vdir,cp));
plane.dist = -dot(plane.normal,vstart);
*upoint = PlaneLineIntersection(plane,ustart,ustart+udir);
}
2023-05-12 09:42:06 +00:00
if(vpoint)
2012-09-19 15:15:01 +00:00
{
Plane plane;
plane.normal = normalize(cross(udir,cp));
plane.dist = -dot(plane.normal,ustart);
*vpoint = PlaneLineIntersection(plane,vstart,vstart+vdir);
}
return dist;
}
2023-05-12 09:42:06 +00:00
Quaternion VirtualTrackBall(const float3 &cop, const float3 &cor, const float3 &dir1, const float3 &dir2)
2012-09-19 15:15:01 +00:00
{
// routine taken from game programming gems.
// Implement track ball functionality to spin stuf on the screen
// cop center of projection
// cor center of rotation
2023-05-12 09:42:06 +00:00
// dir1 old mouse direction
2012-09-19 15:15:01 +00:00
// dir2 new mouse direction
// pretend there is a sphere around cor. Then find the points
// where dir1 and dir2 intersect that sphere. Find the
// rotation that takes the first point to the second.
NxF32 m;
2023-05-12 09:42:06 +00:00
// compute plane
2012-09-19 15:15:01 +00:00
float3 nrml = cor - cop;
NxF32 fudgefactor = 1.0f/(magnitude(nrml) * 0.25f); // since trackball proportional to distance from cop
nrml = normalize(nrml);
NxF32 dist = -dot(nrml,cor);
float3 u= PlaneLineIntersection(Plane(nrml,dist),cop,cop+dir1);
u=u-cor;
u=u*fudgefactor;
m= magnitude(u);
2023-05-12 09:42:06 +00:00
if(m>1)
2012-09-19 15:15:01 +00:00
{
u/=m;
}
2023-05-12 09:42:06 +00:00
else
2012-09-19 15:15:01 +00:00
{
u=u - (nrml * sqrtf(1-m*m));
}
float3 v= PlaneLineIntersection(Plane(nrml,dist),cop,cop+dir2);
v=v-cor;
v=v*fudgefactor;
m= magnitude(v);
2023-05-12 09:42:06 +00:00
if(m>1)
2012-09-19 15:15:01 +00:00
{
v/=m;
}
else
{
v=v - (nrml * sqrtf(1-m*m));
}
return RotationArc(u,v);
}
NxI32 countpolyhit=0;
NxI32 PolyHit(const float3 *vert, const NxI32 n, const float3 &v0, const float3 &v1, float3 *impact, float3 *normal)
{
countpolyhit++;
NxI32 i;
float3 nrml(0,0,0);
2023-05-12 09:42:06 +00:00
for(i=0;i<n;i++)
2012-09-19 15:15:01 +00:00
{
NxI32 i1=(i+1)%n;
NxI32 i2=(i+2)%n;
nrml = nrml + cross(vert[i1]-vert[i],vert[i2]-vert[i1]);
}
NxF32 m = magnitude(nrml);
if(m==0.0)
{
return 0;
}
nrml = nrml * (1.0f/m);
NxF32 dist = -dot(nrml,vert[0]);
NxF32 d0,d1;
2023-05-12 09:42:06 +00:00
if((d0=dot(v0,nrml)+dist) <0 || (d1=dot(v1,nrml)+dist) >0)
{
2012-09-19 15:15:01 +00:00
return 0;
}
2023-05-12 09:42:06 +00:00
static float3 the_point;
2012-09-19 15:15:01 +00:00
// By using the cached plane distances d0 and d1
// we can optimize the following:
// the_point = planelineintersection(nrml,dist,v0,v1);
NxF32 a = d0/(d0-d1);
the_point = v0*(1-a) + v1*a;
NxI32 inside=1;
2023-05-12 09:42:06 +00:00
for(NxI32 j=0;inside && j<n;j++)
2012-09-19 15:15:01 +00:00
{
// let inside = 0 if outside
float3 pp1,pp2,side;
pp1 = vert[j] ;
pp2 = vert[(j+1)%n];
side = cross((pp2-pp1),(the_point-pp1));
inside = (dot(nrml,side) >= 0.0);
}
2023-05-12 09:42:06 +00:00
if(inside)
2012-09-19 15:15:01 +00:00
{
if(normal){*normal=nrml;}
if(impact){*impact=the_point;}
}
return inside;
}
//****************************************************
// HULL.H source code goes here
//****************************************************
class PHullResult
{
public:
PHullResult(void)
{
mVcount = 0;
mIndexCount = 0;
mFaceCount = 0;
mVertices = 0;
mIndices = 0;
}
NxU32 mVcount;
NxU32 mIndexCount;
NxU32 mFaceCount;
NxF32 *mVertices;
NxU32 *mIndices;
};
bool ComputeHull(NxU32 vcount,const NxF32 *vertices,PHullResult &result,NxU32 maxverts,NxF32 inflate);
void ReleaseHull(PHullResult &result);
//*****************************************************
// HULL.cpp source code goes here
//*****************************************************
#define REAL3 float3
#define REAL NxF32
#define COPLANAR (0)
#define UNDER (1)
#define OVER (2)
#define SPLIT (OVER|UNDER)
#define PAPERWIDTH (0.001f)
#define VOLUME_EPSILON (1e-20f)
NxF32 planetestepsilon = PAPERWIDTH;
class ConvexH : public Memalloc
{
public:
class HalfEdge
{
public:
short ea; // the other half of the edge (index into edges list)
NxU8 v; // the vertex at the start of this edge (index into vertices list)
NxU8 p; // the facet on which this edge lies (index into facets list)
HalfEdge(){}
HalfEdge(short _ea,NxU8 _v, NxU8 _p):ea(_ea),v(_v),p(_p){}
};
Array<REAL3> vertices;
Array<HalfEdge> edges;
Array<Plane> facets;
ConvexH(NxI32 vertices_size,NxI32 edges_size,NxI32 facets_size);
};
typedef ConvexH::HalfEdge HalfEdge;
ConvexH::ConvexH(NxI32 vertices_size,NxI32 edges_size,NxI32 facets_size)
:vertices(vertices_size)
,edges(edges_size)
,facets(facets_size)
{
vertices.count=vertices_size;
edges.count = edges_size;
facets.count = facets_size;
}
ConvexH *ConvexHDup(ConvexH *src)
{
ConvexH *dst = MEMALLOC_NEW(ConvexH)(src->vertices.count,src->edges.count,src->facets.count);
memcpy(dst->vertices.element,src->vertices.element,sizeof(float3)*src->vertices.count);
memcpy(dst->edges.element,src->edges.element,sizeof(HalfEdge)*src->edges.count);
memcpy(dst->facets.element,src->facets.element,sizeof(Plane)*src->facets.count);
return dst;
}
NxI32 PlaneTest(const Plane &p, const REAL3 &v) {
REAL a = dot(v,p.normal)+p.dist;
NxI32 flag = (a>planetestepsilon)?OVER:((a<-planetestepsilon)?UNDER:COPLANAR);
return flag;
}
NxI32 SplitTest(ConvexH &convex,const Plane &plane) {
NxI32 flag=0;
for(NxI32 i=0;i<convex.vertices.count;i++) {
flag |= PlaneTest(plane,convex.vertices[i]);
}
return flag;
}
2023-05-12 09:42:06 +00:00
class VertFlag
2012-09-19 15:15:01 +00:00
{
public:
NxU8 planetest;
NxU8 junk;
NxU8 undermap;
NxU8 overmap;
};
2023-05-12 09:42:06 +00:00
class EdgeFlag
2012-09-19 15:15:01 +00:00
{
public:
NxU8 planetest;
NxU8 fixes;
short undermap;
short overmap;
};
2023-05-12 09:42:06 +00:00
class PlaneFlag
2012-09-19 15:15:01 +00:00
{
public:
NxU8 undermap;
NxU8 overmap;
};
class Coplanar{
public:
unsigned short ea;
NxU8 v0;
NxU8 v1;
};
NxI32 AssertIntact(ConvexH &convex) {
NxI32 i;
NxI32 estart=0;
for(i=0;i<convex.edges.count;i++) {
if(convex.edges[estart].p!= convex.edges[i].p) {
estart=i;
}
NxI32 inext = i+1;
if(inext>= convex.edges.count || convex.edges[inext].p != convex.edges[i].p) {
inext = estart;
}
assert(convex.edges[inext].p == convex.edges[i].p);
NxI32 nb = convex.edges[i].ea;
assert(nb!=255);
if(nb==255 || nb==-1) return 0;
assert(nb!=-1);
assert(i== convex.edges[nb].ea);
}
for(i=0;i<convex.edges.count;i++) {
assert(COPLANAR==PlaneTest(convex.facets[convex.edges[i].p],convex.vertices[convex.edges[i].v]));
if(COPLANAR!=PlaneTest(convex.facets[convex.edges[i].p],convex.vertices[convex.edges[i].v])) return 0;
if(convex.edges[estart].p!= convex.edges[i].p) {
estart=i;
}
NxI32 i1 = i+1;
if(i1>= convex.edges.count || convex.edges[i1].p != convex.edges[i].p) {
i1 = estart;
}
NxI32 i2 = i1+1;
if(i2>= convex.edges.count || convex.edges[i2].p != convex.edges[i].p) {
i2 = estart;
}
if(i==i2) continue; // i sliced tangent to an edge and created 2 meaningless edges
REAL3 localnormal = TriNormal(convex.vertices[convex.edges[i ].v],
convex.vertices[convex.edges[i1].v],
convex.vertices[convex.edges[i2].v]);
//assert(dot(localnormal,convex.facets[convex.edges[i].p].normal)>0);//Commented out on Stan Melax' advice
if(dot(localnormal,convex.facets[convex.edges[i].p].normal)<=0)return 0;
}
return 1;
}
ConvexH *ConvexHCrop(ConvexH &convex,const Plane &slice)
{
NxI32 i;
NxI32 vertcountunder=0;
NxI32 vertcountover =0;
static Array<NxI32> vertscoplanar; // existing vertex members of convex that are coplanar
vertscoplanar.count=0;
static Array<NxI32> edgesplit; // existing edges that members of convex that cross the splitplane
edgesplit.count=0;
assert(convex.edges.count<480);
EdgeFlag edgeflag[512];
VertFlag vertflag[256];
PlaneFlag planeflag[128];
HalfEdge tmpunderedges[512];
Plane tmpunderplanes[128];
Coplanar coplanaredges[512];
NxI32 coplanaredges_num=0;
Array<REAL3> createdverts;
// do the side-of-plane tests
for(i=0;i<convex.vertices.count;i++) {
vertflag[i].planetest = (NxU8)PlaneTest(slice,convex.vertices[i]);
if(vertflag[i].planetest == COPLANAR) {
// ? vertscoplanar.Add(i);
vertflag[i].undermap = (NxU8)vertcountunder++;
vertflag[i].overmap = (NxU8)vertcountover++;
}
else if(vertflag[i].planetest == UNDER) {
vertflag[i].undermap = (NxU8)vertcountunder++;
}
else {
assert(vertflag[i].planetest == OVER);
vertflag[i].overmap = (NxU8)vertcountover++;
vertflag[i].undermap = (NxU8)-1; // for debugging purposes
}
}
NxI32 under_edge_count =0;
NxI32 underplanescount=0;
NxI32 e0=0;
for(NxI32 currentplane=0; currentplane<convex.facets.count; currentplane++) {
NxI32 estart =e0;
NxI32 enextface=0;
NxI32 planeside = 0;
NxI32 e1 = e0+1;
NxI32 vout=-1;
NxI32 vin =-1;
NxI32 coplanaredge = -1;
do{
if(e1 >= convex.edges.count || convex.edges[e1].p!=currentplane) {
enextface = e1;
e1=estart;
}
HalfEdge &edge0 = convex.edges[e0];
HalfEdge &edge1 = convex.edges[e1];
HalfEdge &edgea = convex.edges[edge0.ea];
planeside |= vertflag[edge0.v].planetest;
//if((vertflag[edge0.v].planetest & vertflag[edge1.v].planetest) == COPLANAR) {
// assert(ecop==-1);
// ecop=e;
//}
if(vertflag[edge0.v].planetest == OVER && vertflag[edge1.v].planetest == OVER){
// both endpoints over plane
edgeflag[e0].undermap = -1;
}
else if((vertflag[edge0.v].planetest | vertflag[edge1.v].planetest) == UNDER) {
// at least one endpoint under, the other coplanar or under
2023-05-12 09:42:06 +00:00
2012-09-19 15:15:01 +00:00
edgeflag[e0].undermap = (short)under_edge_count;
tmpunderedges[under_edge_count].v = (NxU8)vertflag[edge0.v].undermap;
tmpunderedges[under_edge_count].p = (NxU8)underplanescount;
if(edge0.ea < e0) {
// connect the neighbors
assert(edgeflag[edge0.ea].undermap !=-1);
tmpunderedges[under_edge_count].ea = edgeflag[edge0.ea].undermap;
tmpunderedges[edgeflag[edge0.ea].undermap].ea = (short)under_edge_count;
}
under_edge_count++;
}
else if((vertflag[edge0.v].planetest | vertflag[edge1.v].planetest) == COPLANAR) {
2023-05-12 09:42:06 +00:00
// both endpoints coplanar
2012-09-19 15:15:01 +00:00
// must check a 3rd point to see if UNDER
2023-05-12 09:42:06 +00:00
NxI32 e2 = e1+1;
2012-09-19 15:15:01 +00:00
if(e2>=convex.edges.count || convex.edges[e2].p!=currentplane) {
e2 = estart;
}
assert(convex.edges[e2].p==currentplane);
HalfEdge &edge2 = convex.edges[e2];
if(vertflag[edge2.v].planetest==UNDER) {
2023-05-12 09:42:06 +00:00
2012-09-19 15:15:01 +00:00
edgeflag[e0].undermap = (short)under_edge_count;
tmpunderedges[under_edge_count].v = (NxU8)vertflag[edge0.v].undermap;
tmpunderedges[under_edge_count].p = (NxU8)underplanescount;
tmpunderedges[under_edge_count].ea = -1;
// make sure this edge is added to the "coplanar" list
coplanaredge = under_edge_count;
vout = vertflag[edge0.v].undermap;
vin = vertflag[edge1.v].undermap;
under_edge_count++;
}
else {
edgeflag[e0].undermap = -1;
}
}
else if(vertflag[edge0.v].planetest == UNDER && vertflag[edge1.v].planetest == OVER) {
2023-05-12 09:42:06 +00:00
// first is under 2nd is over
2012-09-19 15:15:01 +00:00
edgeflag[e0].undermap = (short) under_edge_count;
tmpunderedges[under_edge_count].v = (NxU8)vertflag[edge0.v].undermap;
tmpunderedges[under_edge_count].p = (NxU8)underplanescount;
if(edge0.ea < e0) {
assert(edgeflag[edge0.ea].undermap !=-1);
// connect the neighbors
tmpunderedges[under_edge_count].ea = edgeflag[edge0.ea].undermap;
tmpunderedges[edgeflag[edge0.ea].undermap].ea = (short)under_edge_count;
vout = tmpunderedges[edgeflag[edge0.ea].undermap].v;
}
else {
Plane &p0 = convex.facets[edge0.p];
Plane &pa = convex.facets[edgea.p];
createdverts.Add(ThreePlaneIntersection(p0,pa,slice));
//createdverts.Add(PlaneProject(slice,PlaneLineIntersection(slice,convex.vertices[edge0.v],convex.vertices[edgea.v])));
//createdverts.Add(PlaneLineIntersection(slice,convex.vertices[edge0.v],convex.vertices[edgea.v]));
vout = vertcountunder++;
}
under_edge_count++;
2023-05-12 09:42:06 +00:00
/// hmmm something to think about: i might be able to output this edge regarless of
2012-09-19 15:15:01 +00:00
// wheter or not we know v-in yet. ok i;ll try this now:
tmpunderedges[under_edge_count].v = (NxU8)vout;
tmpunderedges[under_edge_count].p = (NxU8)underplanescount;
tmpunderedges[under_edge_count].ea = -1;
coplanaredge = under_edge_count;
under_edge_count++;
if(vin!=-1) {
// we previously processed an edge where we came under
// now we know about vout as well
// ADD THIS EDGE TO THE LIST OF EDGES THAT NEED NEIGHBOR ON PARTITION PLANE!!
}
}
else if(vertflag[edge0.v].planetest == COPLANAR && vertflag[edge1.v].planetest == OVER) {
2023-05-12 09:42:06 +00:00
// first is coplanar 2nd is over
2012-09-19 15:15:01 +00:00
edgeflag[e0].undermap = -1;
vout = vertflag[edge0.v].undermap;
// I hate this but i have to make sure part of this face is UNDER before ouputting this vert
NxI32 k=estart;
assert(edge0.p == currentplane);
while(!(planeside&UNDER) && k<convex.edges.count && convex.edges[k].p==edge0.p) {
planeside |= vertflag[convex.edges[k].v].planetest;
k++;
}
if(planeside&UNDER){
tmpunderedges[under_edge_count].v = (NxU8)vout;
tmpunderedges[under_edge_count].p = (NxU8)underplanescount;
tmpunderedges[under_edge_count].ea = -1;
coplanaredge = under_edge_count; // hmmm should make a note of the edge # for later on
under_edge_count++;
2023-05-12 09:42:06 +00:00
2012-09-19 15:15:01 +00:00
}
}
else if(vertflag[edge0.v].planetest == OVER && vertflag[edge1.v].planetest == UNDER) {
2023-05-12 09:42:06 +00:00
// first is over next is under
2012-09-19 15:15:01 +00:00
// new vertex!!!
if (vin!=-1) return NULL;
if(e0<edge0.ea) {
Plane &p0 = convex.facets[edge0.p];
Plane &pa = convex.facets[edgea.p];
createdverts.Add(ThreePlaneIntersection(p0,pa,slice));
//createdverts.Add(PlaneLineIntersection(slice,convex.vertices[edge0.v],convex.vertices[edgea.v]));
//createdverts.Add(PlaneProject(slice,PlaneLineIntersection(slice,convex.vertices[edge0.v],convex.vertices[edgea.v])));
vin = vertcountunder++;
}
else {
// find the new vertex that was created by edge[edge0.ea]
NxI32 nea = edgeflag[edge0.ea].undermap;
assert(tmpunderedges[nea].p==tmpunderedges[nea+1].p);
vin = tmpunderedges[nea+1].v;
assert(vin < vertcountunder);
}
if(vout!=-1) {
// we previously processed an edge where we went over
// now we know vin too
// ADD THIS EDGE TO THE LIST OF EDGES THAT NEED NEIGHBOR ON PARTITION PLANE!!
}
// output edge
tmpunderedges[under_edge_count].v = (NxU8)vin;
tmpunderedges[under_edge_count].p = (NxU8)underplanescount;
edgeflag[e0].undermap = (short)under_edge_count;
if(e0>edge0.ea) {
assert(edgeflag[edge0.ea].undermap !=-1);
// connect the neighbors
tmpunderedges[under_edge_count].ea = edgeflag[edge0.ea].undermap;
tmpunderedges[edgeflag[edge0.ea].undermap].ea = (short)under_edge_count;
}
assert(edgeflag[e0].undermap == under_edge_count);
under_edge_count++;
}
else if(vertflag[edge0.v].planetest == OVER && vertflag[edge1.v].planetest == COPLANAR) {
2023-05-12 09:42:06 +00:00
// first is over next is coplanar
2012-09-19 15:15:01 +00:00
edgeflag[e0].undermap = -1;
vin = vertflag[edge1.v].undermap;
if (vin==-1) return NULL;
if(vout!=-1) {
// we previously processed an edge where we came under
// now we know both endpoints
// ADD THIS EDGE TO THE LIST OF EDGES THAT NEED NEIGHBOR ON PARTITION PLANE!!
}
}
else {
assert(0);
}
2023-05-12 09:42:06 +00:00
2012-09-19 15:15:01 +00:00
e0=e1;
e1++; // do the modulo at the beginning of the loop
} while(e0!=estart) ;
e0 = enextface;
if(planeside&UNDER) {
planeflag[currentplane].undermap = (NxU8)underplanescount;
tmpunderplanes[underplanescount] = convex.facets[currentplane];
underplanescount++;
}
else {
planeflag[currentplane].undermap = 0;
}
if(vout>=0 && (planeside&UNDER)) {
assert(vin>=0);
assert(coplanaredge>=0);
assert(coplanaredge!=511);
coplanaredges[coplanaredges_num].ea = (short)coplanaredge;
coplanaredges[coplanaredges_num].v0 = (NxU8)vin;
coplanaredges[coplanaredges_num].v1 = (NxU8)vout;
coplanaredges_num++;
}
}
// add the new plane to the mix:
if(coplanaredges_num>0) {
tmpunderplanes[underplanescount++]=slice;
}
for(i=0;i<coplanaredges_num-1;i++) {
if(coplanaredges[i].v1 != coplanaredges[i+1].v0) {
NxI32 j = 0;
for(j=i+2;j<coplanaredges_num;j++) {
if(coplanaredges[i].v1 == coplanaredges[j].v0) {
Coplanar tmp = coplanaredges[i+1];
coplanaredges[i+1] = coplanaredges[j];
coplanaredges[j] = tmp;
break;
}
}
if(j>=coplanaredges_num)
{
// assert(j<coplanaredges_num);
return NULL;
}
}
}
ConvexH *punder = MEMALLOC_NEW(ConvexH)(vertcountunder,under_edge_count+coplanaredges_num,underplanescount);
ConvexH &under = *punder;
NxI32 k=0;
for(i=0;i<convex.vertices.count;i++) {
if(vertflag[i].planetest != OVER){
under.vertices[k++] = convex.vertices[i];
}
}
i=0;
while(k<vertcountunder) {
under.vertices[k++] = createdverts[i++];
}
assert(i==createdverts.count);
for(i=0;i<coplanaredges_num;i++) {
under.edges[under_edge_count+i].p = (NxU8)(underplanescount-1);
under.edges[under_edge_count+i].ea = coplanaredges[i].ea;
tmpunderedges[coplanaredges[i].ea].ea = (short)(under_edge_count+i);
under.edges[under_edge_count+i].v = coplanaredges[i].v0;
}
memcpy(under.edges.element,tmpunderedges,sizeof(HalfEdge)*under_edge_count);
memcpy(under.facets.element,tmpunderplanes,sizeof(Plane)*underplanescount);
return punder;
}
NxF32 minadjangle = 3.0f; // in degrees - result wont have two adjacent facets within this angle of each other.
static NxI32 candidateplane(Plane *planes,NxI32 planes_count,ConvexH *convex,NxF32 epsilon)
{
NxI32 p =-1;
REAL md=0;
NxI32 i,j;
NxF32 maxdot_minang = cosf(DEG2RAD*minadjangle);
for(i=0;i<planes_count;i++)
{
NxF32 d=0;
NxF32 dmax=0;
NxF32 dmin=0;
for(j=0;j<convex->vertices.count;j++)
{
dmax = Max(dmax,dot(convex->vertices[j],planes[i].normal)+planes[i].dist);
dmin = Min(dmin,dot(convex->vertices[j],planes[i].normal)+planes[i].dist);
}
NxF32 dr = dmax-dmin;
if(dr<planetestepsilon) dr=1.0f; // shouldn't happen.
d = dmax /dr;
if(d<=md) continue;
for(j=0;j<convex->facets.count;j++)
{
2023-05-12 09:42:06 +00:00
if(planes[i]==convex->facets[j])
2012-09-19 15:15:01 +00:00
{
d=0;continue;
}
if(dot(planes[i].normal,convex->facets[j].normal)>maxdot_minang)
{
for(NxI32 k=0;k<convex->edges.count;k++)
{
if(convex->edges[k].p!=j) continue;
if(dot(convex->vertices[convex->edges[k].v],planes[i].normal)+planes[i].dist<0)
{
d=0; // so this plane wont get selected.
break;
}
}
}
}
if(d>md)
{
p=i;
md=d;
}
}
return (md>epsilon)?p:-1;
}
template<class T>
inline NxI32 maxdir(const T *p,NxI32 count,const T &dir)
{
assert(count);
NxI32 m=0;
for(NxI32 i=1;i<count;i++)
{
if(dot(p[i],dir)>dot(p[m],dir)) m=i;
}
return m;
}
template<class T>
NxI32 maxdirfiltered(const T *p,NxI32 count,const T &dir,Array<NxI32> &allow)
{
assert(count);
NxI32 m=-1;
for(NxI32 i=0;i<count;i++) if(allow[i])
{
if(m==-1 || dot(p[i],dir)>dot(p[m],dir)) m=i;
}
assert(m!=-1);
return m;
2023-05-12 09:42:06 +00:00
}
2012-09-19 15:15:01 +00:00
float3 orth(const float3 &v)
{
float3 a=cross(v,float3(0,0,1));
float3 b=cross(v,float3(0,1,0));
return normalize((magnitude(a)>magnitude(b))?a:b);
}
template<class T>
NxI32 maxdirsterid(const T *p,NxI32 count,const T &dir,Array<NxI32> &allow)
{
NxI32 m=-1;
while(m==-1)
{
m = maxdirfiltered(p,count,dir,allow);
if(allow[m]==3) return m;
T u = orth(dir);
T v = cross(u,dir);
NxI32 ma=-1;
for(NxF32 x = 0.0f ; x<= 360.0f ; x+= 45.0f)
{
NxF32 s = sinf(DEG2RAD*(x));
NxF32 c = cosf(DEG2RAD*(x));
NxI32 mb = maxdirfiltered(p,count,dir+(u*s+v*c)*0.025f,allow);
if(ma==m && mb==m)
{
allow[m]=3;
return m;
}
if(ma!=-1 && ma!=mb) // Yuck - this is really ugly
{
NxI32 mc = ma;
for(NxF32 xx = x-40.0f ; xx <= x ; xx+= 5.0f)
{
NxF32 s = sinf(DEG2RAD*(xx));
NxF32 c = cosf(DEG2RAD*(xx));
NxI32 md = maxdirfiltered(p,count,dir+(u*s+v*c)*0.025f,allow);
if(mc==m && md==m)
{
allow[m]=3;
return m;
}
mc=md;
}
}
ma=mb;
}
allow[m]=0;
m=-1;
}
assert(0);
return m;
2023-05-12 09:42:06 +00:00
}
2012-09-19 15:15:01 +00:00
2023-05-12 09:42:06 +00:00
NxI32 operator ==(const int3 &a,const int3 &b)
2012-09-19 15:15:01 +00:00
{
2023-05-12 09:42:06 +00:00
for(NxI32 i=0;i<3;i++)
2012-09-19 15:15:01 +00:00
{
if(a[i]!=b[i]) return 0;
}
return 1;
}
2023-05-12 09:42:06 +00:00
int3 roll3(int3 a)
2012-09-19 15:15:01 +00:00
{
NxI32 tmp=a[0];
a[0]=a[1];
a[1]=a[2];
a[2]=tmp;
return a;
}
2023-05-12 09:42:06 +00:00
NxI32 isa(const int3 &a,const int3 &b)
2012-09-19 15:15:01 +00:00
{
return ( a==b || roll3(a)==b || a==roll3(b) );
}
2023-05-12 09:42:06 +00:00
NxI32 b2b(const int3 &a,const int3 &b)
2012-09-19 15:15:01 +00:00
{
return isa(a,int3(b[2],b[1],b[0]));
}
2023-05-12 09:42:06 +00:00
NxI32 above(float3* vertices,const int3& t, const float3 &p, NxF32 epsilon)
2012-09-19 15:15:01 +00:00
{
float3 n=TriNormal(vertices[t[0]],vertices[t[1]],vertices[t[2]]);
return (dot(n,p-vertices[t[0]]) > epsilon); // EPSILON???
}
NxI32 hasedge(const int3 &t, NxI32 a,NxI32 b)
{
for(NxI32 i=0;i<3;i++)
{
NxI32 i1= (i+1)%3;
if(t[i]==a && t[i1]==b) return 1;
}
return 0;
}
NxI32 hasvert(const int3 &t, NxI32 v)
{
return (t[0]==v || t[1]==v || t[2]==v) ;
}
NxI32 shareedge(const int3 &a,const int3 &b)
{
NxI32 i;
for(i=0;i<3;i++)
{
NxI32 i1= (i+1)%3;
if(hasedge(a,b[i1],b[i])) return 1;
}
return 0;
}
class Tri;
static Array<Tri*> tris; // djs: For heaven's sake!!!!
class Tri : public int3
{
public:
int3 n;
NxI32 id;
NxI32 vmax;
NxF32 rise;
Tri(NxI32 a,NxI32 b,NxI32 c):int3(a,b,c),n(-1,-1,-1)
{
id = tris.count;
tris.Add(this);
vmax=-1;
rise = 0.0f;
}
~Tri()
{
assert(tris[id]==this);
tris[id]=NULL;
}
NxI32 &neib(NxI32 a,NxI32 b);
};
NxI32 &Tri::neib(NxI32 a,NxI32 b)
{
static NxI32 er=-1;
NxI32 i;
2023-05-12 09:42:06 +00:00
for(i=0;i<3;i++)
2012-09-19 15:15:01 +00:00
{
NxI32 i1=(i+1)%3;
NxI32 i2=(i+2)%3;
if((*this)[i]==a && (*this)[i1]==b) return n[i2];
if((*this)[i]==b && (*this)[i1]==a) return n[i2];
}
assert(0);
return er;
}
void b2bfix(Tri* s,Tri*t)
{
NxI32 i;
2023-05-12 09:42:06 +00:00
for(i=0;i<3;i++)
2012-09-19 15:15:01 +00:00
{
NxI32 i1=(i+1)%3;
NxI32 i2=(i+2)%3;
NxI32 a = (*s)[i1];
NxI32 b = (*s)[i2];
assert(tris[s->neib(a,b)]->neib(b,a) == s->id);
assert(tris[t->neib(a,b)]->neib(b,a) == t->id);
tris[s->neib(a,b)]->neib(b,a) = t->neib(b,a);
tris[t->neib(b,a)]->neib(a,b) = s->neib(a,b);
}
}
void removeb2b(Tri* s,Tri*t)
{
b2bfix(s,t);
delete s;
delete t;
}
void extrude(Tri *t0,NxI32 v)
{
int3 t= *t0;
NxI32 n = tris.count;
Tri* ta = MEMALLOC_NEW(Tri)(v,t[1],t[2]);
ta->n = int3(t0->n[0],n+1,n+2);
tris[t0->n[0]]->neib(t[1],t[2]) = n+0;
Tri* tb = MEMALLOC_NEW(Tri)(v,t[2],t[0]);
tb->n = int3(t0->n[1],n+2,n+0);
tris[t0->n[1]]->neib(t[2],t[0]) = n+1;
Tri* tc = MEMALLOC_NEW(Tri)(v,t[0],t[1]);
tc->n = int3(t0->n[2],n+0,n+1);
tris[t0->n[2]]->neib(t[0],t[1]) = n+2;
if(hasvert(*tris[ta->n[0]],v)) removeb2b(ta,tris[ta->n[0]]);
if(hasvert(*tris[tb->n[0]],v)) removeb2b(tb,tris[tb->n[0]]);
if(hasvert(*tris[tc->n[0]],v)) removeb2b(tc,tris[tc->n[0]]);
delete t0;
}
Tri *extrudable(NxF32 epsilon)
{
NxI32 i;
Tri *t=NULL;
for(i=0;i<tris.count;i++)
{
if(!t || (tris[i] && t->rise<tris[i]->rise))
{
t = tris[i];
}
}
return (t->rise >epsilon)?t:NULL ;
}
class int4
{
public:
NxI32 x,y,z,w;
int4(){};
int4(NxI32 _x,NxI32 _y, NxI32 _z,NxI32 _w){x=_x;y=_y;z=_z;w=_w;}
const NxI32& operator[](NxI32 i) const {return (&x)[i];}
NxI32& operator[](NxI32 i) {return (&x)[i];}
};
bool hasVolume(float3 *verts, NxI32 p0, NxI32 p1, NxI32 p2, NxI32 p3)
{
float3 result3 = cross(verts[p1]-verts[p0], verts[p2]-verts[p0]);
if (magnitude(result3) < VOLUME_EPSILON && magnitude(result3) > -VOLUME_EPSILON) // Almost collinear or otherwise very close to each other
return false;
NxF32 result = dot(normalize(result3), verts[p3]-verts[p0]);
return (result > VOLUME_EPSILON || result < -VOLUME_EPSILON); // Returns true iff volume is significantly non-zero
}
int4 FindSimplex(float3 *verts,NxI32 verts_count,Array<NxI32> &allow)
{
float3 basis[3];
2023-05-12 09:42:06 +00:00
basis[0] = float3( 0.01f, 0.02f, 1.0f );
2012-09-19 15:15:01 +00:00
NxI32 p0 = maxdirsterid(verts,verts_count, basis[0],allow);
NxI32 p1 = maxdirsterid(verts,verts_count,-basis[0],allow);
basis[0] = verts[p0]-verts[p1];
2023-05-12 09:42:06 +00:00
if(p0==p1 || basis[0]==float3(0,0,0))
2012-09-19 15:15:01 +00:00
return int4(-1,-1,-1,-1);
basis[1] = cross(float3( 1, 0.02f, 0),basis[0]);
basis[2] = cross(float3(-0.02f, 1, 0),basis[0]);
basis[1] = normalize( (magnitude(basis[1])>magnitude(basis[2])) ? basis[1]:basis[2]);
NxI32 p2 = maxdirsterid(verts,verts_count,basis[1],allow);
if(p2 == p0 || p2 == p1)
{
p2 = maxdirsterid(verts,verts_count,-basis[1],allow);
}
2023-05-12 09:42:06 +00:00
if(p2 == p0 || p2 == p1)
2012-09-19 15:15:01 +00:00
return int4(-1,-1,-1,-1);
basis[1] = verts[p2] - verts[p0];
basis[2] = normalize(cross(basis[1],basis[0]));
NxI32 p3 = maxdirsterid(verts,verts_count,basis[2],allow);
if(p3==p0||p3==p1||p3==p2||!hasVolume(verts, p0, p1, p2, p3)) p3 = maxdirsterid(verts,verts_count,-basis[2],allow);
2023-05-12 09:42:06 +00:00
if(p3==p0||p3==p1||p3==p2)
2012-09-19 15:15:01 +00:00
return int4(-1,-1,-1,-1);
assert(!(p0==p1||p0==p2||p0==p3||p1==p2||p1==p3||p2==p3));
if(dot(verts[p3]-verts[p0],cross(verts[p1]-verts[p0],verts[p2]-verts[p0])) <0) {Swap(p2,p3);}
return int4(p0,p1,p2,p3);
}
#pragma warning(push)
#pragma warning(disable:4706)
2023-05-12 09:42:06 +00:00
NxI32 calchullgen(float3 *verts,NxI32 verts_count, NxI32 vlimit)
2012-09-19 15:15:01 +00:00
{
if(verts_count <4) return 0;
if(vlimit==0) vlimit=1000000000;
NxI32 j;
float3 bmin(*verts),bmax(*verts);
Array<NxI32> isextreme(verts_count);
Array<NxI32> allow(verts_count);
2023-05-12 09:42:06 +00:00
for(j=0;j<verts_count;j++)
2012-09-19 15:15:01 +00:00
{
allow.Add(1);
isextreme.Add(0);
bmin = VectorMin(bmin,verts[j]);
bmax = VectorMax(bmax,verts[j]);
}
NxF32 epsilon = magnitude(bmax-bmin) * 0.001f;
int4 p = FindSimplex(verts,verts_count,allow);
if(p.x==-1) return 0; // simplex failed
float3 center = (verts[p[0]]+verts[p[1]]+verts[p[2]]+verts[p[3]]) /4.0f; // a valid interior point
Tri *t0 = MEMALLOC_NEW(Tri)(p[2],p[3],p[1]); t0->n=int3(2,3,1);
Tri *t1 = MEMALLOC_NEW(Tri)(p[3],p[2],p[0]); t1->n=int3(3,2,0);
Tri *t2 = MEMALLOC_NEW(Tri)(p[0],p[1],p[3]); t2->n=int3(0,1,3);
Tri *t3 = MEMALLOC_NEW(Tri)(p[1],p[0],p[2]); t3->n=int3(1,0,2);
isextreme[p[0]]=isextreme[p[1]]=isextreme[p[2]]=isextreme[p[3]]=1;
for(j=0;j<tris.count;j++)
{
Tri *t=tris[j];
assert(t);
assert(t->vmax<0);
float3 n=TriNormal(verts[(*t)[0]],verts[(*t)[1]],verts[(*t)[2]]);
t->vmax = maxdirsterid(verts,verts_count,n,allow);
t->rise = dot(n,verts[t->vmax]-verts[(*t)[0]]);
}
Tri *te;
vlimit-=4;
while(vlimit >0 && (te=extrudable(epsilon)))
{
int3 ti=*te;
NxI32 v=te->vmax;
assert(!isextreme[v]); // wtf we've already done this vertex
isextreme[v]=1;
//if(v==p0 || v==p1 || v==p2 || v==p3) continue; // done these already
j=tris.count;
while(j--) {
if(!tris[j]) continue;
int3 t=*tris[j];
if(above(verts,t,verts[v],0.01f*epsilon))
{
extrude(tris[j],v);
}
}
// now check for those degenerate cases where we have a flipped triangle or a really skinny triangle
j=tris.count;
while(j--)
{
if(!tris[j]) continue;
if(!hasvert(*tris[j],v)) break;
int3 nt=*tris[j];
if(above(verts,nt,center,0.01f*epsilon) || magnitude(cross(verts[nt[1]]-verts[nt[0]],verts[nt[2]]-verts[nt[1]]))< epsilon*epsilon*0.1f )
{
Tri *nb = tris[tris[j]->n[0]];
assert(nb);assert(!hasvert(*nb,v));assert(nb->id<j);
extrude(nb,v);
j=tris.count;
}
}
j=tris.count;
while(j--)
{
Tri *t=tris[j];
if(!t) continue;
if(t->vmax>=0) break;
float3 n=TriNormal(verts[(*t)[0]],verts[(*t)[1]],verts[(*t)[2]]);
t->vmax = maxdirsterid(verts,verts_count,n,allow);
2023-05-12 09:42:06 +00:00
if(isextreme[t->vmax])
2012-09-19 15:15:01 +00:00
{
t->vmax=-1; // already done that vertex - algorithm needs to be able to terminate.
}
else
{
t->rise = dot(n,verts[t->vmax]-verts[(*t)[0]]);
}
}
vlimit --;
}
return 1;
}
#pragma warning(pop)
2023-05-12 09:42:06 +00:00
NxI32 calchull(float3 *verts,NxI32 verts_count, NxI32 *&tris_out, NxI32 &tris_count,NxI32 vlimit)
2012-09-19 15:15:01 +00:00
{
NxI32 rc=calchullgen(verts,verts_count, vlimit) ;
if(!rc) return 0;
Array<NxI32> ts;
for(NxI32 i=0;i<tris.count;i++)if(tris[i])
{
for(NxI32 j=0;j<3;j++)ts.Add((*tris[i])[j]);
delete tris[i];
}
tris_count = ts.count/3;
tris_out = ts.element;
ts.element=NULL; ts.count=ts.array_size=0;
// please reset here, otherwise, we get a nice virtual function call (R6025) error with NxCooking library
tris.SetSize( 0 );
return 1;
}
static NxF32 area2(const float3 &v0,const float3 &v1,const float3 &v2)
{
float3 cp = cross(v0-v1,v2-v0);
return dot(cp,cp);
}
2023-05-12 09:42:06 +00:00
NxI32 calchullpbev(float3 *verts,NxI32 verts_count,NxI32 vlimit, Array<Plane> &planes,NxF32 bevangle)
2012-09-19 15:15:01 +00:00
{
NxI32 i,j;
Array<Plane> bplanes;
planes.count=0;
NxI32 rc = calchullgen(verts,verts_count,vlimit);
if(!rc) return 0;
extern NxF32 minadjangle; // default is 3.0f; // in degrees - result wont have two adjacent facets within this angle of each other.
NxF32 maxdot_minang = cosf(DEG2RAD*minadjangle);
for(i=0;i<tris.count;i++)if(tris[i])
{
Plane p;
Tri *t = tris[i];
p.normal = TriNormal(verts[(*t)[0]],verts[(*t)[1]],verts[(*t)[2]]);
p.dist = -dot(p.normal, verts[(*t)[0]]);
for(j=0;j<3;j++)
{
if(t->n[j]<t->id) continue;
Tri *s = tris[t->n[j]];
REAL3 snormal = TriNormal(verts[(*s)[0]],verts[(*s)[1]],verts[(*s)[2]]);
if(dot(snormal,p.normal)>=cos(bevangle*DEG2RAD)) continue;
REAL3 e = verts[(*t)[(j+2)%3]] - verts[(*t)[(j+1)%3]];
REAL3 n = (e!=REAL3(0,0,0))? cross(snormal,e)+cross(e,p.normal) : snormal+p.normal;
assert(n!=REAL3(0,0,0));
2023-05-12 09:42:06 +00:00
if(n==REAL3(0,0,0)) return 0;
2012-09-19 15:15:01 +00:00
n=normalize(n);
bplanes.Add(Plane(n,-dot(n,verts[maxdir(verts,verts_count,n)])));
}
}
for(i=0;i<tris.count;i++)if(tris[i])for(j=i+1;j<tris.count;j++)if(tris[i] && tris[j])
{
Tri *ti = tris[i];
Tri *tj = tris[j];
REAL3 ni = TriNormal(verts[(*ti)[0]],verts[(*ti)[1]],verts[(*ti)[2]]);
REAL3 nj = TriNormal(verts[(*tj)[0]],verts[(*tj)[1]],verts[(*tj)[2]]);
if(dot(ni,nj)>maxdot_minang)
{
// somebody has to die, keep the biggest triangle
if( area2(verts[(*ti)[0]],verts[(*ti)[1]],verts[(*ti)[2]]) < area2(verts[(*tj)[0]],verts[(*tj)[1]],verts[(*tj)[2]]))
{
delete tris[i];
}
else
{
delete tris[j];
}
}
}
for(i=0;i<tris.count;i++)if(tris[i])
{
Plane p;
Tri *t = tris[i];
p.normal = TriNormal(verts[(*t)[0]],verts[(*t)[1]],verts[(*t)[2]]);
p.dist = -dot(p.normal, verts[(*t)[0]]);
planes.Add(p);
}
for(i=0;i<bplanes.count;i++)
{
for(j=0;j<planes.count;j++)
{
if(dot(bplanes[i].normal,planes[j].normal)>maxdot_minang) break;
}
if(j==planes.count)
{
planes.Add(bplanes[i]);
}
}
for(i=0;i<tris.count;i++)if(tris[i])
{
delete tris[i];
}
tris.count = 0; //bad place to do the tris.SetSize(0) fix, this line is executed many times, and will result in a whole lot of allocations if the array is totally cleared here
return 1;
}
ConvexH *test_cube()
{
ConvexH *convex = MEMALLOC_NEW(ConvexH)(8,24,6);
convex->vertices[0] = REAL3(0,0,0);
convex->vertices[1] = REAL3(0,0,1);
convex->vertices[2] = REAL3(0,1,0);
convex->vertices[3] = REAL3(0,1,1);
convex->vertices[4] = REAL3(1,0,0);
convex->vertices[5] = REAL3(1,0,1);
convex->vertices[6] = REAL3(1,1,0);
convex->vertices[7] = REAL3(1,1,1);
convex->facets[0] = Plane(REAL3(-1,0,0),0);
convex->facets[1] = Plane(REAL3(1,0,0),-1);
convex->facets[2] = Plane(REAL3(0,-1,0),0);
convex->facets[3] = Plane(REAL3(0,1,0),-1);
convex->facets[4] = Plane(REAL3(0,0,-1),0);
convex->facets[5] = Plane(REAL3(0,0,1),-1);
convex->edges[0 ] = HalfEdge(11,0,0);
convex->edges[1 ] = HalfEdge(23,1,0);
convex->edges[2 ] = HalfEdge(15,3,0);
convex->edges[3 ] = HalfEdge(16,2,0);
convex->edges[4 ] = HalfEdge(13,6,1);
convex->edges[5 ] = HalfEdge(21,7,1);
convex->edges[6 ] = HalfEdge( 9,5,1);
convex->edges[7 ] = HalfEdge(18,4,1);
convex->edges[8 ] = HalfEdge(19,0,2);
convex->edges[9 ] = HalfEdge( 6,4,2);
convex->edges[10] = HalfEdge(20,5,2);
convex->edges[11] = HalfEdge( 0,1,2);
convex->edges[12] = HalfEdge(22,3,3);
convex->edges[13] = HalfEdge( 4,7,3);
convex->edges[14] = HalfEdge(17,6,3);
convex->edges[15] = HalfEdge( 2,2,3);
convex->edges[16] = HalfEdge( 3,0,4);
convex->edges[17] = HalfEdge(14,2,4);
convex->edges[18] = HalfEdge( 7,6,4);
convex->edges[19] = HalfEdge( 8,4,4);
convex->edges[20] = HalfEdge(10,1,5);
convex->edges[21] = HalfEdge( 5,5,5);
convex->edges[22] = HalfEdge(12,7,5);
convex->edges[23] = HalfEdge( 1,3,5);
return convex;
}
ConvexH *ConvexHMakeCube(const REAL3 &bmin, const REAL3 &bmax)
{
ConvexH *convex = test_cube();
convex->vertices[0] = REAL3(bmin.x,bmin.y,bmin.z);
convex->vertices[1] = REAL3(bmin.x,bmin.y,bmax.z);
convex->vertices[2] = REAL3(bmin.x,bmax.y,bmin.z);
convex->vertices[3] = REAL3(bmin.x,bmax.y,bmax.z);
convex->vertices[4] = REAL3(bmax.x,bmin.y,bmin.z);
convex->vertices[5] = REAL3(bmax.x,bmin.y,bmax.z);
convex->vertices[6] = REAL3(bmax.x,bmax.y,bmin.z);
convex->vertices[7] = REAL3(bmax.x,bmax.y,bmax.z);
convex->facets[0] = Plane(REAL3(-1,0,0), bmin.x);
convex->facets[1] = Plane(REAL3(1,0,0), -bmax.x);
convex->facets[2] = Plane(REAL3(0,-1,0), bmin.y);
convex->facets[3] = Plane(REAL3(0,1,0), -bmax.y);
convex->facets[4] = Plane(REAL3(0,0,-1), bmin.z);
convex->facets[5] = Plane(REAL3(0,0,1), -bmax.z);
return convex;
}
static NxI32 overhull(Plane *planes,NxI32 planes_count,float3 *verts, NxI32 verts_count,NxI32 maxplanes,
float3 *&verts_out, NxI32 &verts_count_out, NxI32 *&faces_out, NxI32 &faces_count_out ,NxF32 inflate)
{
NxI32 i,j;
2023-05-12 09:42:06 +00:00
if (verts_count < 4) return 0;
2012-09-19 15:15:01 +00:00
maxplanes = Min(maxplanes,planes_count);
float3 bmin(verts[0]),bmax(verts[0]);
for(i=0;i<verts_count;i++)
{
bmin = VectorMin(bmin,verts[i]);
bmax = VectorMax(bmax,verts[i]);
}
NxF32 diameter = magnitude(bmax-bmin);
// inflate *=diameter; // RELATIVE INFLATION
bmin -= float3(inflate*2.5f,inflate*2.5f,inflate*2.5f);
bmax += float3(inflate*2.5f,inflate*2.5f,inflate*2.5f);
// 2 is from the formula:
// D = d*|n1+n2|/(1-n1 dot n2), where d is "inflate" and
// n1 and n2 are the normals of two planes at bevelAngle to each other
// for 120 degrees, D is 2d
//bmin -= float3(inflate,inflate,inflate);
//bmax += float3(inflate,inflate,inflate);
for(i=0;i<planes_count;i++)
{
planes[i].dist -= inflate;
}
float3 emin = bmin; // VectorMin(bmin,float3(0,0,0));
float3 emax = bmax; // VectorMax(bmax,float3(0,0,0));
NxF32 epsilon = 0.01f; // size of object is taken into account within candidate plane function. Used to multiply here by magnitude(emax-emin)
planetestepsilon = magnitude(emax-emin) * PAPERWIDTH;
// todo: add bounding cube planes to force bevel. or try instead not adding the diameter expansion ??? must think.
// ConvexH *convex = ConvexHMakeCube(bmin - float3(diameter,diameter,diameter),bmax+float3(diameter,diameter,diameter));
NxF32 maxdot_minang = cosf(DEG2RAD*minadjangle);
for(j=0;j<6;j++)
{
float3 n(0,0,0);
n[j/2] = (j%2)? 1.0f : -1.0f;
for(i=0;i<planes_count;i++)
{
if(dot(n,planes[i].normal)> maxdot_minang)
{
(*((j%2)?&bmax:&bmin)) += n * (diameter*0.5f);
break;
}
}
}
ConvexH *c = ConvexHMakeCube(REAL3(bmin),REAL3(bmax));
NxI32 k;
while(maxplanes-- && (k=candidateplane(planes,planes_count,c,epsilon))>=0)
{
ConvexH *tmp = c;
c = ConvexHCrop(*tmp,planes[k]);
if(c==NULL) {c=tmp; break;} // might want to debug this case better!!!
if(!AssertIntact(*c)) {c=tmp; break;} // might want to debug this case better too!!!
delete tmp;
}
assert(AssertIntact(*c));
//return c;
faces_out = (NxI32*)MEMALLOC_MALLOC(sizeof(NxI32)*(1+c->facets.count+c->edges.count)); // new NxI32[1+c->facets.count+c->edges.count];
faces_count_out=0;
i=0;
faces_out[faces_count_out++]=-1;
k=0;
while(i<c->edges.count)
{
j=1;
while(j+i<c->edges.count && c->edges[i].p==c->edges[i+j].p) { j++; }
faces_out[faces_count_out++]=j;
while(j--)
{
faces_out[faces_count_out++] = c->edges[i].v;
i++;
}
k++;
}
faces_out[0]=k; // number of faces.
assert(k==c->facets.count);
assert(faces_count_out == 1+c->facets.count+c->edges.count);
verts_out = c->vertices.element; // new float3[c->vertices.count];
verts_count_out = c->vertices.count;
for(i=0;i<c->vertices.count;i++)
{
verts_out[i] = float3(c->vertices[i]);
}
c->vertices.count=c->vertices.array_size=0; c->vertices.element=NULL;
delete c;
return 1;
}
static NxI32 overhullv(float3 *verts, NxI32 verts_count,NxI32 maxplanes,
float3 *&verts_out, NxI32 &verts_count_out, NxI32 *&faces_out, NxI32 &faces_count_out ,NxF32 inflate,NxF32 bevangle,NxI32 vlimit)
{
if(!verts_count) return 0;
extern NxI32 calchullpbev(float3 *verts,NxI32 verts_count,NxI32 vlimit, Array<Plane> &planes,NxF32 bevangle) ;
Array<Plane> planes;
NxI32 rc=calchullpbev(verts,verts_count,vlimit,planes,bevangle) ;
if(!rc) return 0;
return overhull(planes.element,planes.count,verts,verts_count,maxplanes,verts_out,verts_count_out,faces_out,faces_count_out,inflate);
}
//*****************************************************
//*****************************************************
bool ComputeHull(NxU32 vcount,const NxF32 *vertices,PHullResult &result,NxU32 vlimit,NxF32 inflate)
{
NxI32 index_count;
NxI32 *faces;
float3 *verts_out;
NxI32 verts_count_out;
if(inflate==0.0f)
{
NxI32 *tris_out;
NxI32 tris_count;
NxI32 ret = calchull( (float3 *) vertices, (NxI32) vcount, tris_out, tris_count, vlimit );
if(!ret) return false;
result.mIndexCount = (NxU32) (tris_count*3);
result.mFaceCount = (NxU32) tris_count;
result.mVertices = (NxF32*) vertices;
result.mVcount = (NxU32) vcount;
result.mIndices = (NxU32 *) tris_out;
return true;
}
NxI32 ret = overhullv((float3*)vertices,vcount,35,verts_out,verts_count_out,faces,index_count,inflate,120.0f,vlimit);
if(!ret) {
tris.SetSize(0); //have to set the size to 0 in order to protect from a "pure virtual function call" problem
return false;
}
Array<int3> tris;
NxI32 n=faces[0];
NxI32 k=1;
for(NxI32 i=0;i<n;i++)
{
NxI32 pn = faces[k++];
for(NxI32 j=2;j<pn;j++) tris.Add(int3(faces[k],faces[k+j-1],faces[k+j]));
k+=pn;
}
assert(tris.count == index_count-1-(n*3));
MEMALLOC_FREE(faces); // PT: I added that. Is it ok ?
result.mIndexCount = (NxU32) (tris.count*3);
result.mFaceCount = (NxU32) tris.count;
result.mVertices = (NxF32*) verts_out;
result.mVcount = (NxU32) verts_count_out;
result.mIndices = (NxU32 *) tris.element;
tris.element=NULL; tris.count = tris.array_size=0;
CONVEX_DECOMPOSITION::tris.SetSize(0); //have to set the size to 0 in order to protect from a "pure virtual function call" problem
return true;
}
void ReleaseHull(PHullResult &result)
{
MEMALLOC_FREE(result.mIndices); // PT: I added that. Is it ok ?
MEMALLOC_FREE(result.mVertices); // PT: I added that. Is it ok ?
result.mVcount = 0;
result.mIndexCount = 0;
result.mIndices = 0;
result.mVertices = 0;
result.mIndices = 0;
}
//****** HULLLIB source code
HullError HullLibrary::CreateConvexHull(const HullDesc &desc, // describes the input request
HullResult &result) // contains the resulst
{
HullError ret = QE_FAIL;
PHullResult hr;
NxU32 vcount = desc.mVcount;
if ( vcount < 8 ) vcount = 8;
NxF32 *vsource = (NxF32 *) MEMALLOC_MALLOC( sizeof(NxF32)*vcount*3 );
NxF32 scale[3];
NxU32 ovcount;
bool ok = CleanupVertices(desc.mVcount,desc.mVertices, desc.mVertexStride, ovcount, vsource, desc.mNormalEpsilon, scale ); // normalize point cloud, remove duplicates!
if ( ok )
{
{
for (NxU32 i=0; i<ovcount; i++)
{
NxF32 *v = &vsource[i*3];
v[0]*=scale[0];
v[1]*=scale[1];
v[2]*=scale[2];
}
}
NxF32 skinwidth = 0;
2023-05-12 09:42:06 +00:00
if ( desc.HasHullFlag(QF_SKIN_WIDTH) )
2012-09-19 15:15:01 +00:00
skinwidth = desc.mSkinWidth;
ok = ComputeHull(ovcount,vsource,hr,desc.mMaxVertices,skinwidth);
if ( ok )
{
// re-index triangle mesh so it refers to only used vertices, rebuild a new vertex table.
NxF32 *vscratch = (NxF32 *) MEMALLOC_MALLOC( sizeof(NxF32)*hr.mVcount*3);
BringOutYourDead(hr.mVertices,hr.mVcount, vscratch, ovcount, hr.mIndices, hr.mIndexCount );
ret = QE_OK;
if ( desc.HasHullFlag(QF_TRIANGLES) ) // if he wants the results as triangle!
{
result.mPolygons = false;
result.mNumOutputVertices = ovcount;
result.mOutputVertices = (NxF32 *)MEMALLOC_MALLOC( sizeof(NxF32)*ovcount*3);
result.mNumFaces = hr.mFaceCount;
result.mNumIndices = hr.mIndexCount;
result.mIndices = (NxU32 *) MEMALLOC_MALLOC( sizeof(NxU32)*hr.mIndexCount);
memcpy(result.mOutputVertices, vscratch, sizeof(NxF32)*3*ovcount );
if ( desc.HasHullFlag(QF_REVERSE_ORDER) )
{
const NxU32 *source = hr.mIndices;
NxU32 *dest = result.mIndices;
for (NxU32 i=0; i<hr.mFaceCount; i++)
{
dest[0] = source[2];
dest[1] = source[1];
dest[2] = source[0];
dest+=3;
source+=3;
}
}
else
{
memcpy(result.mIndices, hr.mIndices, sizeof(NxU32)*hr.mIndexCount);
}
}
else
{
result.mPolygons = true;
result.mNumOutputVertices = ovcount;
result.mOutputVertices = (NxF32 *)MEMALLOC_MALLOC( sizeof(NxF32)*ovcount*3);
result.mNumFaces = hr.mFaceCount;
result.mNumIndices = hr.mIndexCount+hr.mFaceCount;
result.mIndices = (NxU32 *) MEMALLOC_MALLOC( sizeof(NxU32)*result.mNumIndices);
memcpy(result.mOutputVertices, vscratch, sizeof(NxF32)*3*ovcount );
{
const NxU32 *source = hr.mIndices;
NxU32 *dest = result.mIndices;
for (NxU32 i=0; i<hr.mFaceCount; i++)
{
dest[0] = 3;
if ( desc.HasHullFlag(QF_REVERSE_ORDER) )
{
dest[1] = source[2];
dest[2] = source[1];
dest[3] = source[0];
}
else
{
dest[1] = source[0];
dest[2] = source[1];
dest[3] = source[2];
}
dest+=4;
source+=3;
}
}
}
// ReleaseHull frees memory for hr.mVertices, which can be the
// same pointer as vsource, so be sure to set it to NULL if necessary
if ( hr.mVertices == vsource) vsource = NULL;
ReleaseHull(hr);
if ( vscratch )
{
MEMALLOC_FREE(vscratch);
}
}
}
// this pointer is usually freed in ReleaseHull()
if ( vsource )
{
MEMALLOC_FREE(vsource);
}
return ret;
}
HullError HullLibrary::ReleaseResult(HullResult &result) // release memory allocated for this result, we are done with it.
{
if ( result.mOutputVertices )
{
MEMALLOC_FREE(result.mOutputVertices);
result.mOutputVertices = 0;
}
if ( result.mIndices )
{
MEMALLOC_FREE(result.mIndices);
result.mIndices = 0;
}
return QE_OK;
}
static void AddPoint(NxU32 &vcount,NxF32 *p,NxF32 x,NxF32 y,NxF32 z)
{
NxF32 *dest = &p[vcount*3];
dest[0] = x;
dest[1] = y;
dest[2] = z;
vcount++;
}
NxF32 GetDist(NxF32 px,NxF32 py,NxF32 pz,const NxF32 *p2)
{
NxF32 dx = px - p2[0];
NxF32 dy = py - p2[1];
NxF32 dz = pz - p2[2];
return dx*dx+dy*dy+dz*dz;
}
bool HullLibrary::CleanupVertices(NxU32 svcount,
const NxF32 *svertices,
NxU32 stride,
NxU32 &vcount, // output number of vertices
NxF32 *vertices, // location to store the results.
NxF32 normalepsilon,
NxF32 *scale)
{
if ( svcount == 0 ) return false;
#define EPSILON 0.000001f // close enough to consider two floating point numbers to be 'the same'.
vcount = 0;
NxF32 recip[3];
if ( scale )
{
scale[0] = 1;
scale[1] = 1;
scale[2] = 1;
}
NxF32 bmin[3] = { FLT_MAX, FLT_MAX, FLT_MAX };
NxF32 bmax[3] = { -FLT_MAX, -FLT_MAX, -FLT_MAX };
const char *vtx = (const char *) svertices;
{
for (NxU32 i=0; i<svcount; i++)
{
const NxF32 *p = (const NxF32 *) vtx;
vtx+=stride;
for (NxI32 j=0; j<3; j++)
{
if ( p[j] < bmin[j] ) bmin[j] = p[j];
if ( p[j] > bmax[j] ) bmax[j] = p[j];
}
}
}
NxF32 dx = bmax[0] - bmin[0];
NxF32 dy = bmax[1] - bmin[1];
NxF32 dz = bmax[2] - bmin[2];
NxF32 center[3];
center[0] = dx*0.5f + bmin[0];
center[1] = dy*0.5f + bmin[1];
center[2] = dz*0.5f + bmin[2];
if ( dx < EPSILON || dy < EPSILON || dz < EPSILON || svcount < 3 )
{
NxF32 len = FLT_MAX;
if ( dx > EPSILON && dx < len ) len = dx;
if ( dy > EPSILON && dy < len ) len = dy;
if ( dz > EPSILON && dz < len ) len = dz;
if ( len == FLT_MAX )
{
dx = dy = dz = 0.01f; // one centimeter
}
else
{
if ( dx < EPSILON ) dx = len * 0.05f; // 1/5th the shortest non-zero edge.
if ( dy < EPSILON ) dy = len * 0.05f;
if ( dz < EPSILON ) dz = len * 0.05f;
}
NxF32 x1 = center[0] - dx;
NxF32 x2 = center[0] + dx;
NxF32 y1 = center[1] - dy;
NxF32 y2 = center[1] + dy;
NxF32 z1 = center[2] - dz;
NxF32 z2 = center[2] + dz;
AddPoint(vcount,vertices,x1,y1,z1);
AddPoint(vcount,vertices,x2,y1,z1);
AddPoint(vcount,vertices,x2,y2,z1);
AddPoint(vcount,vertices,x1,y2,z1);
AddPoint(vcount,vertices,x1,y1,z2);
AddPoint(vcount,vertices,x2,y1,z2);
AddPoint(vcount,vertices,x2,y2,z2);
AddPoint(vcount,vertices,x1,y2,z2);
return true; // return cube
}
else
{
if ( scale )
{
scale[0] = dx;
scale[1] = dy;
scale[2] = dz;
recip[0] = 1 / dx;
recip[1] = 1 / dy;
recip[2] = 1 / dz;
center[0]*=recip[0];
center[1]*=recip[1];
center[2]*=recip[2];
}
}
vtx = (const char *) svertices;
for (NxU32 i=0; i<svcount; i++)
{
const NxF32 *p = (const NxF32 *)vtx;
vtx+=stride;
NxF32 px = p[0];
NxF32 py = p[1];
NxF32 pz = p[2];
if ( scale )
{
px = px*recip[0]; // normalize
py = py*recip[1]; // normalize
pz = pz*recip[2]; // normalize
}
{
NxU32 j;
for (j=0; j<vcount; j++)
{
NxF32 *v = &vertices[j*3];
NxF32 x = v[0];
NxF32 y = v[1];
NxF32 z = v[2];
NxF32 dx = fabsf(x - px );
NxF32 dy = fabsf(y - py );
NxF32 dz = fabsf(z - pz );
if ( dx < normalepsilon && dy < normalepsilon && dz < normalepsilon )
{
// ok, it is close enough to the old one
// now let us see if it is further from the center of the point cloud than the one we already recorded.
// in which case we keep this one instead.
NxF32 dist1 = GetDist(px,py,pz,center);
NxF32 dist2 = GetDist(v[0],v[1],v[2],center);
if ( dist1 > dist2 )
{
v[0] = px;
v[1] = py;
v[2] = pz;
}
break;
}
}
if ( j == vcount )
{
NxF32 *dest = &vertices[vcount*3];
dest[0] = px;
dest[1] = py;
dest[2] = pz;
vcount++;
}
}
}
// ok..now make sure we didn't prune so many vertices it is now invalid.
{
NxF32 bmin[3] = { FLT_MAX, FLT_MAX, FLT_MAX };
NxF32 bmax[3] = { -FLT_MAX, -FLT_MAX, -FLT_MAX };
for (NxU32 i=0; i<vcount; i++)
{
const NxF32 *p = &vertices[i*3];
for (NxI32 j=0; j<3; j++)
{
if ( p[j] < bmin[j] ) bmin[j] = p[j];
if ( p[j] > bmax[j] ) bmax[j] = p[j];
}
}
NxF32 dx = bmax[0] - bmin[0];
NxF32 dy = bmax[1] - bmin[1];
NxF32 dz = bmax[2] - bmin[2];
if ( dx < EPSILON || dy < EPSILON || dz < EPSILON || vcount < 3)
{
NxF32 cx = dx*0.5f + bmin[0];
NxF32 cy = dy*0.5f + bmin[1];
NxF32 cz = dz*0.5f + bmin[2];
NxF32 len = FLT_MAX;
if ( dx >= EPSILON && dx < len ) len = dx;
if ( dy >= EPSILON && dy < len ) len = dy;
if ( dz >= EPSILON && dz < len ) len = dz;
if ( len == FLT_MAX )
{
dx = dy = dz = 0.01f; // one centimeter
}
else
{
if ( dx < EPSILON ) dx = len * 0.05f; // 1/5th the shortest non-zero edge.
if ( dy < EPSILON ) dy = len * 0.05f;
if ( dz < EPSILON ) dz = len * 0.05f;
}
NxF32 x1 = cx - dx;
NxF32 x2 = cx + dx;
NxF32 y1 = cy - dy;
NxF32 y2 = cy + dy;
NxF32 z1 = cz - dz;
NxF32 z2 = cz + dz;
vcount = 0; // add box
AddPoint(vcount,vertices,x1,y1,z1);
AddPoint(vcount,vertices,x2,y1,z1);
AddPoint(vcount,vertices,x2,y2,z1);
AddPoint(vcount,vertices,x1,y2,z1);
AddPoint(vcount,vertices,x1,y1,z2);
AddPoint(vcount,vertices,x2,y1,z2);
AddPoint(vcount,vertices,x2,y2,z2);
AddPoint(vcount,vertices,x1,y2,z2);
return true;
}
}
return true;
}
void HullLibrary::BringOutYourDead(const NxF32 *verts,NxU32 vcount, NxF32 *overts,NxU32 &ocount,NxU32 *indices,NxU32 indexcount)
{
NxU32 *used = (NxU32 *)MEMALLOC_MALLOC(sizeof(NxU32)*vcount);
memset(used,0,sizeof(NxU32)*vcount);
ocount = 0;
for (NxU32 i=0; i<indexcount; i++)
{
NxU32 v = indices[i]; // original array index
assert( v < vcount );
if ( used[v] ) // if already remapped
{
indices[i] = used[v]-1; // index to new array
}
else
{
indices[i] = ocount; // new index mapping
overts[ocount*3+0] = verts[v*3+0]; // copy old vert to new vert array
overts[ocount*3+1] = verts[v*3+1];
overts[ocount*3+2] = verts[v*3+2];
ocount++; // increment output vert count
assert( ocount <= vcount );
used[v] = ocount; // assign new index remapping
}
}
MEMALLOC_FREE(used);
}
//==================================================================================
HullError HullLibrary::CreateTriangleMesh(HullResult &answer,ConvexHullTriangleInterface *iface)
{
HullError ret = QE_FAIL;
const NxF32 *p = answer.mOutputVertices;
const NxU32 *idx = answer.mIndices;
NxU32 fcount = answer.mNumFaces;
if ( p && idx && fcount )
{
ret = QE_OK;
for (NxU32 i=0; i<fcount; i++)
{
NxU32 pcount = *idx++;
NxU32 i1 = *idx++;
NxU32 i2 = *idx++;
NxU32 i3 = *idx++;
const NxF32 *p1 = &p[i1*3];
const NxF32 *p2 = &p[i2*3];
const NxF32 *p3 = &p[i3*3];
AddConvexTriangle(iface,p1,p2,p3);
pcount-=3;
while ( pcount )
{
i3 = *idx++;
p2 = p3;
p3 = &p[i3*3];
AddConvexTriangle(iface,p1,p2,p3);
pcount--;
}
}
}
return ret;
}
//==================================================================================
void HullLibrary::AddConvexTriangle(ConvexHullTriangleInterface *callback,const NxF32 *p1,const NxF32 *p2,const NxF32 *p3)
{
ConvexHullVertex v1,v2,v3;
#define TSCALE1 (1.0f/4.0f)
v1.mPos[0] = p1[0];
v1.mPos[1] = p1[1];
v1.mPos[2] = p1[2];
v2.mPos[0] = p2[0];
v2.mPos[1] = p2[1];
v2.mPos[2] = p2[2];
v3.mPos[0] = p3[0];
v3.mPos[1] = p3[1];
v3.mPos[2] = p3[2];
NxF32 n[3];
ComputeNormal(n,p1,p2,p3);
v1.mNormal[0] = n[0];
v1.mNormal[1] = n[1];
v1.mNormal[2] = n[2];
v2.mNormal[0] = n[0];
v2.mNormal[1] = n[1];
v2.mNormal[2] = n[2];
v3.mNormal[0] = n[0];
v3.mNormal[1] = n[1];
v3.mNormal[2] = n[2];
const NxF32 *tp1 = p1;
const NxF32 *tp2 = p2;
const NxF32 *tp3 = p3;
NxI32 i1 = 0;
NxI32 i2 = 0;
NxF32 nx = fabsf(n[0]);
NxF32 ny = fabsf(n[1]);
NxF32 nz = fabsf(n[2]);
if ( nx <= ny && nx <= nz )
i1 = 0;
if ( ny <= nx && ny <= nz )
i1 = 1;
if ( nz <= nx && nz <= ny )
i1 = 2;
switch ( i1 )
{
case 0:
if ( ny < nz )
i2 = 1;
else
i2 = 2;
break;
case 1:
if ( nx < nz )
i2 = 0;
else
i2 = 2;
break;
case 2:
if ( nx < ny )
i2 = 0;
else
i2 = 1;
break;
}
v1.mTexel[0] = tp1[i1]*TSCALE1;
v1.mTexel[1] = tp1[i2]*TSCALE1;
v2.mTexel[0] = tp2[i1]*TSCALE1;
v2.mTexel[1] = tp2[i2]*TSCALE1;
v3.mTexel[0] = tp3[i1]*TSCALE1;
v3.mTexel[1] = tp3[i2]*TSCALE1;
callback->ConvexHullTriangle(v3,v2,v1);
}
//==================================================================================
NxF32 HullLibrary::ComputeNormal(NxF32 *n,const NxF32 *A,const NxF32 *B,const NxF32 *C)
{
NxF32 vx,vy,vz,wx,wy,wz,vw_x,vw_y,vw_z,mag;
vx = (B[0] - C[0]);
vy = (B[1] - C[1]);
vz = (B[2] - C[2]);
wx = (A[0] - B[0]);
wy = (A[1] - B[1]);
wz = (A[2] - B[2]);
vw_x = vy * wz - vz * wy;
vw_y = vz * wx - vx * wz;
vw_z = vx * wy - vy * wx;
mag = sqrtf((vw_x * vw_x) + (vw_y * vw_y) + (vw_z * vw_z));
if ( mag < 0.000001f )
{
mag = 0;
}
else
{
mag = 1.0f/mag;
}
n[0] = vw_x * mag;
n[1] = vw_y * mag;
n[2] = vw_z * mag;
return mag;
}
}; // End of namespace