Torque3D/Engine/source/materials/processedMaterial.cpp

481 lines
16 KiB
C++
Raw Normal View History

2012-09-19 15:15:01 +00:00
//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "materials/processedMaterial.h"
#include "materials/sceneData.h"
#include "materials/materialParameters.h"
#include "materials/matTextureTarget.h"
#include "materials/materialFeatureTypes.h"
#include "materials/materialManager.h"
#include "scene/sceneRenderState.h"
#include "gfx/gfxPrimitiveBuffer.h"
#include "gfx/gfxTextureManager.h"
2012-09-19 15:15:01 +00:00
#include "gfx/sim/cubemapData.h"
RenderPassData::RenderPassData()
{
reset();
}
void RenderPassData::reset()
{
for( U32 i = 0; i < Material::MAX_TEX_PER_PASS; ++ i )
destructInPlace( &mTexSlot[ i ] );
dMemset( &mTexSlot, 0, sizeof(mTexSlot) );
dMemset( &mTexType, 0, sizeof(mTexType) );
mCubeMap = NULL;
mNumTex = mNumTexReg = mStageNum = 0;
mGlow = false;
mBlendOp = Material::None;
mFeatureData.clear();
for (U32 i = 0; i < STATE_MAX; i++)
mRenderStates[i] = NULL;
}
String RenderPassData::describeSelf() const
{
String desc;
// Now write all the textures.
String texName;
for ( U32 i=0; i < Material::MAX_TEX_PER_PASS; i++ )
{
if ( mTexType[i] == Material::TexTarget )
texName = ( mTexSlot[i].texTarget ) ? mTexSlot[i].texTarget->getName() : "null_texTarget";
else if ( mTexType[i] == Material::Cube && mCubeMap )
texName = mCubeMap->getPath();
else if ( mTexSlot[i].texObject )
texName = mTexSlot[i].texObject->getPath();
else
continue;
desc += String::ToString( "TexSlot %d: %d, %s\n", i, mTexType[i], texName.c_str() );
}
// Write out the first render state which is the
// basis for all the other states and shoud be
// enough to define the pass uniquely.
desc += mRenderStates[0]->getDesc().describeSelf();
return desc;
}
ProcessedMaterial::ProcessedMaterial()
: mMaterial( NULL ),
mCurrentParams( NULL ),
mHasSetStageData( false ),
mHasGlow( false ),
mMaxStages( 0 ),
mVertexFormat( NULL ),
mUserObject( NULL )
{
VECTOR_SET_ASSOCIATION( mPasses );
}
ProcessedMaterial::~ProcessedMaterial()
{
for_each( mPasses.begin(), mPasses.end(), delete_pointer() );
}
void ProcessedMaterial::_setBlendState(Material::BlendOp blendOp, GFXStateBlockDesc& desc )
{
switch( blendOp )
{
case Material::Add:
{
desc.blendSrc = GFXBlendOne;
desc.blendDest = GFXBlendOne;
break;
}
case Material::AddAlpha:
{
desc.blendSrc = GFXBlendSrcAlpha;
desc.blendDest = GFXBlendOne;
break;
}
case Material::Mul:
{
desc.blendSrc = GFXBlendDestColor;
desc.blendDest = GFXBlendZero;
break;
}
case Material::LerpAlpha:
{
desc.blendSrc = GFXBlendSrcAlpha;
desc.blendDest = GFXBlendInvSrcAlpha;
break;
}
default:
{
// default to LerpAlpha
desc.blendSrc = GFXBlendSrcAlpha;
desc.blendDest = GFXBlendInvSrcAlpha;
break;
}
}
}
void ProcessedMaterial::setBuffers(GFXVertexBufferHandleBase* vertBuffer, GFXPrimitiveBufferHandle* primBuffer)
{
GFX->setVertexBuffer( *vertBuffer );
GFX->setPrimitiveBuffer( *primBuffer );
}
bool ProcessedMaterial::stepInstance()
{
AssertFatal( false, "ProcessedMaterial::stepInstance() - This type of material doesn't support instancing!" );
return false;
}
String ProcessedMaterial::_getTexturePath(const String& filename)
{
// if '/', then path is specified, use it.
if( filename.find('/') != String::NPos )
{
return filename;
}
// otherwise, construct path
return mMaterial->getPath() + filename;
}
GFXTexHandle ProcessedMaterial::_createTexture( const char* filename, GFXTextureProfile *profile)
{
return GFXTexHandle( _getTexturePath(filename), profile, avar("%s() - NA (line %d)", __FUNCTION__, __LINE__) );
}
void ProcessedMaterial::addStateBlockDesc(const GFXStateBlockDesc& sb)
{
mUserDefined = sb;
}
void ProcessedMaterial::_initStateBlockTemplates(GFXStateBlockDesc& stateTranslucent, GFXStateBlockDesc& stateGlow, GFXStateBlockDesc& stateReflect)
{
// Translucency
stateTranslucent.blendDefined = true;
stateTranslucent.blendEnable = mMaterial->mTranslucentBlendOp != Material::None;
_setBlendState(mMaterial->mTranslucentBlendOp, stateTranslucent);
stateTranslucent.zDefined = true;
stateTranslucent.zWriteEnable = mMaterial->mTranslucentZWrite;
stateTranslucent.alphaDefined = true;
stateTranslucent.alphaTestEnable = mMaterial->mAlphaTest;
stateTranslucent.alphaTestRef = mMaterial->mAlphaRef;
stateTranslucent.alphaTestFunc = GFXCmpGreaterEqual;
stateTranslucent.samplersDefined = true;
stateTranslucent.samplers[0].textureColorOp = GFXTOPModulate;
stateTranslucent.samplers[0].alphaOp = GFXTOPModulate;
stateTranslucent.samplers[0].alphaArg1 = GFXTATexture;
stateTranslucent.samplers[0].alphaArg2 = GFXTADiffuse;
// Glow
stateGlow.zDefined = true;
stateGlow.zWriteEnable = false;
// Reflect
stateReflect.cullDefined = true;
stateReflect.cullMode = mMaterial->mDoubleSided ? GFXCullNone : GFXCullCW;
}
void ProcessedMaterial::_initRenderPassDataStateBlocks()
{
for (U32 pass = 0; pass < mPasses.size(); pass++)
_initRenderStateStateBlocks( mPasses[pass] );
}
void ProcessedMaterial::_initPassStateBlock( RenderPassData *rpd, GFXStateBlockDesc &result )
{
if ( rpd->mBlendOp != Material::None )
{
result.blendDefined = true;
result.blendEnable = true;
_setBlendState( rpd->mBlendOp, result );
}
if (mMaterial->isDoubleSided())
{
result.cullDefined = true;
result.cullMode = GFXCullNone;
}
if(mMaterial->mAlphaTest)
{
result.alphaDefined = true;
result.alphaTestEnable = mMaterial->mAlphaTest;
result.alphaTestRef = mMaterial->mAlphaRef;
result.alphaTestFunc = GFXCmpGreaterEqual;
}
result.samplersDefined = true;
NamedTexTarget *texTarget;
U32 maxAnisotropy = 1;
if ( mMaterial->mUseAnisotropic[ rpd->mStageNum ] )
maxAnisotropy = MATMGR->getDefaultAnisotropy();
for( U32 i=0; i < rpd->mNumTex; i++ )
{
U32 currTexFlag = rpd->mTexType[i];
switch( currTexFlag )
{
default:
{
result.samplers[i].textureColorOp = GFXTOPModulate;
result.samplers[i].addressModeU = GFXAddressWrap;
result.samplers[i].addressModeV = GFXAddressWrap;
if ( maxAnisotropy > 1 )
{
result.samplers[i].minFilter = GFXTextureFilterAnisotropic;
result.samplers[i].magFilter = GFXTextureFilterAnisotropic;
result.samplers[i].maxAnisotropy = maxAnisotropy;
}
else
{
result.samplers[i].minFilter = GFXTextureFilterLinear;
result.samplers[i].magFilter = GFXTextureFilterLinear;
}
break;
}
case Material::Cube:
case Material::SGCube:
case Material::NormalizeCube:
{
result.samplers[i].addressModeU = GFXAddressClamp;
result.samplers[i].addressModeV = GFXAddressClamp;
result.samplers[i].addressModeW = GFXAddressClamp;
break;
}
case Material::TexTarget:
{
texTarget = mPasses[0]->mTexSlot[i].texTarget;
if ( texTarget )
texTarget->setupSamplerState( &result.samplers[i] );
break;
}
}
}
// The prepass will take care of writing to the
// zbuffer, so we don't have to by default.
// The prepass can't write to the backbuffer's zbuffer in OpenGL.
if ( MATMGR->getPrePassEnabled() &&
!GFX->getAdapterType() == OpenGL &&
!mFeatures.hasFeature(MFT_ForwardShading))
result.setZReadWrite( result.zEnable, false );
result.addDesc(mUserDefined);
}
/// Creates the default state blocks for a list of render states
void ProcessedMaterial::_initRenderStateStateBlocks( RenderPassData *rpd )
{
GFXStateBlockDesc stateTranslucent;
GFXStateBlockDesc stateGlow;
GFXStateBlockDesc stateReflect;
GFXStateBlockDesc statePass;
_initStateBlockTemplates( stateTranslucent, stateGlow, stateReflect );
_initPassStateBlock( rpd, statePass );
// Ok, we've got our templates set up, let's combine them together based on state and
// create our state blocks.
for (U32 i = 0; i < RenderPassData::STATE_MAX; i++)
{
GFXStateBlockDesc stateFinal;
if (i & RenderPassData::STATE_REFLECT)
stateFinal.addDesc(stateReflect);
if (i & RenderPassData::STATE_TRANSLUCENT)
stateFinal.addDesc(stateTranslucent);
if (i & RenderPassData::STATE_GLOW)
stateFinal.addDesc(stateGlow);
stateFinal.addDesc(statePass);
if (i & RenderPassData::STATE_WIREFRAME)
stateFinal.fillMode = GFXFillWireframe;
GFXStateBlockRef sb = GFX->createStateBlock(stateFinal);
rpd->mRenderStates[i] = sb;
}
}
U32 ProcessedMaterial::_getRenderStateIndex( const SceneRenderState *sceneState,
const SceneData &sgData )
{
// Based on what the state of the world is, get our render state block
U32 currState = 0;
// NOTE: We should only use per-material or per-pass hints to
// change the render state. This is importaint because we
// only change the state blocks between material passes.
//
// For example sgData.visibility would be bad to use
// in here without changing how RenderMeshMgr works.
if ( sgData.binType == SceneData::GlowBin )
currState |= RenderPassData::STATE_GLOW;
if ( sceneState && sceneState->isReflectPass() )
currState |= RenderPassData::STATE_REFLECT;
if ( sgData.binType != SceneData::PrePassBin &&
mMaterial->isTranslucent() )
currState |= RenderPassData::STATE_TRANSLUCENT;
if ( sgData.wireframe )
currState |= RenderPassData::STATE_WIREFRAME;
return currState;
}
void ProcessedMaterial::_setRenderState( const SceneRenderState *state,
const SceneData& sgData,
U32 pass )
{
// Make sure we have the pass
if ( pass >= mPasses.size() )
return;
U32 currState = _getRenderStateIndex( state, sgData );
GFX->setStateBlock(mPasses[pass]->mRenderStates[currState]);
}
void ProcessedMaterial::_setStageData()
{
// Only do this once
if ( mHasSetStageData )
return;
mHasSetStageData = true;
U32 i;
// Load up all the textures for every possible stage
for( i=0; i<Material::MAX_STAGES; i++ )
{
// DiffuseMap
if( mMaterial->mDiffuseMapFilename[i].isNotEmpty() )
{
mStages[i].setTex( MFT_DiffuseMap, _createTexture( mMaterial->mDiffuseMapFilename[i], &GFXDefaultStaticDiffuseProfile ) );
if (!mStages[i].getTex( MFT_DiffuseMap ))
{
mMaterial->logError("Failed to load diffuse map %s for stage %i", _getTexturePath(mMaterial->mDiffuseMapFilename[i]).c_str(), i);
// Load a debug texture to make it clear to the user
// that the texture for this stage was missing.
mStages[i].setTex( MFT_DiffuseMap, _createTexture( GFXTextureManager::getMissingTexturePath(), &GFXDefaultStaticDiffuseProfile ) );
2012-09-19 15:15:01 +00:00
}
}
// OverlayMap
if( mMaterial->mOverlayMapFilename[i].isNotEmpty() )
{
mStages[i].setTex( MFT_OverlayMap, _createTexture( mMaterial->mOverlayMapFilename[i], &GFXDefaultStaticDiffuseProfile ) );
if(!mStages[i].getTex( MFT_OverlayMap ))
mMaterial->logError("Failed to load overlay map %s for stage %i", _getTexturePath(mMaterial->mOverlayMapFilename[i]).c_str(), i);
}
// LightMap
if( mMaterial->mLightMapFilename[i].isNotEmpty() )
{
mStages[i].setTex( MFT_LightMap, _createTexture( mMaterial->mLightMapFilename[i], &GFXDefaultStaticDiffuseProfile ) );
if(!mStages[i].getTex( MFT_LightMap ))
mMaterial->logError("Failed to load light map %s for stage %i", _getTexturePath(mMaterial->mLightMapFilename[i]).c_str(), i);
}
// ToneMap
if( mMaterial->mToneMapFilename[i].isNotEmpty() )
{
mStages[i].setTex( MFT_ToneMap, _createTexture( mMaterial->mToneMapFilename[i], &GFXDefaultStaticDiffuseProfile ) );
if(!mStages[i].getTex( MFT_ToneMap ))
mMaterial->logError("Failed to load tone map %s for stage %i", _getTexturePath(mMaterial->mToneMapFilename[i]).c_str(), i);
}
// DetailMap
if( mMaterial->mDetailMapFilename[i].isNotEmpty() )
{
mStages[i].setTex( MFT_DetailMap, _createTexture( mMaterial->mDetailMapFilename[i], &GFXDefaultStaticDiffuseProfile ) );
if(!mStages[i].getTex( MFT_DetailMap ))
mMaterial->logError("Failed to load detail map %s for stage %i", _getTexturePath(mMaterial->mDetailMapFilename[i]).c_str(), i);
}
// NormalMap
if( mMaterial->mNormalMapFilename[i].isNotEmpty() )
{
mStages[i].setTex( MFT_NormalMap, _createTexture( mMaterial->mNormalMapFilename[i], &GFXDefaultStaticNormalMapProfile ) );
if(!mStages[i].getTex( MFT_NormalMap ))
mMaterial->logError("Failed to load normal map %s for stage %i", _getTexturePath(mMaterial->mNormalMapFilename[i]).c_str(), i);
}
// Detail Normal Map
if( mMaterial->mDetailNormalMapFilename[i].isNotEmpty() )
{
mStages[i].setTex( MFT_DetailNormalMap, _createTexture( mMaterial->mDetailNormalMapFilename[i], &GFXDefaultStaticNormalMapProfile ) );
if(!mStages[i].getTex( MFT_DetailNormalMap ))
mMaterial->logError("Failed to load normal map %s for stage %i", _getTexturePath(mMaterial->mDetailNormalMapFilename[i]).c_str(), i);
}
// SpecularMap
if( mMaterial->mSpecularMapFilename[i].isNotEmpty() )
{
mStages[i].setTex( MFT_SpecularMap, _createTexture( mMaterial->mSpecularMapFilename[i], &GFXDefaultStaticDiffuseProfile ) );
if(!mStages[i].getTex( MFT_SpecularMap ))
mMaterial->logError("Failed to load specular map %s for stage %i", _getTexturePath(mMaterial->mSpecularMapFilename[i]).c_str(), i);
}
// EnironmentMap
if( mMaterial->mEnvMapFilename[i].isNotEmpty() )
{
mStages[i].setTex( MFT_EnvMap, _createTexture( mMaterial->mEnvMapFilename[i], &GFXDefaultStaticDiffuseProfile ) );
if(!mStages[i].getTex( MFT_EnvMap ))
mMaterial->logError("Failed to load environment map %s for stage %i", _getTexturePath(mMaterial->mEnvMapFilename[i]).c_str(), i);
}
}
mMaterial->mCubemapData = dynamic_cast<CubemapData*>(Sim::findObject( mMaterial->mCubemapName ));
if( !mMaterial->mCubemapData )
mMaterial->mCubemapData = NULL;
// If we have a cubemap put it on stage 0 (cubemaps only supported on stage 0)
if( mMaterial->mCubemapData )
{
mMaterial->mCubemapData->createMap();
mStages[0].setCubemap( mMaterial->mCubemapData->mCubemap );
if ( !mStages[0].getCubemap() )
mMaterial->logError("Failed to load cubemap");
}
}