Torque3D/Engine/source/ts/tsMeshFit.cpp

1026 lines
33 KiB
C++
Raw Normal View History

2012-09-19 15:15:01 +00:00
//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "console/consoleTypes.h"
#include "core/resourceManager.h"
#include "ts/tsShapeConstruct.h"
#include "console/engineAPI.h"
2024-05-12 02:07:59 +00:00
#define ENABLE_VHACD_IMPLEMENTATION 1
#define VHACD_DISABLE_THREADING 0
#include <VHACD.H>
#include <FloatMath.h>
2012-09-19 15:15:01 +00:00
//-----------------------------------------------------------------------------
2012-09-19 15:15:01 +00:00
static const Point3F sFacePlanes[] = {
Point3F( -1.0f, 0.0f, 0.0f ),
Point3F( 1.0f, 0.0f, 0.0f ),
Point3F( 0.0f, -1.0f, 0.0f ),
Point3F( 0.0f, 1.0f, 0.0f ),
Point3F( 0.0f, 0.0f, -1.0f ),
Point3F( 0.0f, 0.0f, 1.0f ),
};
static const Point3F sXEdgePlanes[] = {
Point3F( 0.0f, -0.7071f, -0.7071f ),
Point3F( 0.0f, -0.7071f, 0.7071f ),
Point3F( 0.0f, 0.7071f, -0.7071f ),
Point3F( 0.0f, 0.7071f, 0.7071f ),
};
static const Point3F sYEdgePlanes[] = {
Point3F( -0.7071f, 0.0f, -0.7071f ),
Point3F( -0.7071f, 0.0f, 0.7071f ),
Point3F( 0.7071f, 0.0f, -0.7071f ),
Point3F( 0.7071f, 0.0f, 0.7071f ),
};
static const Point3F sZEdgePlanes[] = {
Point3F( -0.7071f, -0.7071f, 0.0f ),
Point3F( -0.7071f, 0.7071f, 0.0f ),
Point3F( 0.7071f, -0.7071f, 0.0f ),
Point3F( 0.7071f, 0.7071f, 0.0f ),
};
static const Point3F sCornerPlanes[] = {
Point3F( -0.5774f, -0.5774f, -0.5774f ),
Point3F( -0.5774f, -0.5774f, 0.5774f ),
Point3F( -0.5774f, 0.5774f, -0.5774f ),
Point3F( -0.5774f, 0.5774f, 0.5774f ),
Point3F( 0.5774f, -0.5774f, -0.5774f ),
Point3F( 0.5774f, -0.5774f, 0.5774f ),
Point3F( 0.5774f, 0.5774f, -0.5774f ),
Point3F( 0.5774f, 0.5774f, 0.5774f ),
};
//-----------------------------------------------------------------------------
/** A helper class for fitting primitives (Box, Sphere, Capsule) to a triangulated mesh */
struct PrimFit
{
MatrixF mBoxTransform;
Point3F mBoxSides;
Point3F mSphereCenter;
F32 mSphereRadius;
MatrixF mCapTransform;
F32 mCapRadius;
F32 mCapHeight;
public:
PrimFit() :
mBoxTransform(true), mBoxSides(1,1,1),
mSphereCenter(0,0,0), mSphereRadius(1),
mCapTransform(true), mCapRadius(1), mCapHeight(1)
{
}
inline F32 getBoxVolume() const { return mBoxSides.x * mBoxSides.y * mBoxSides.z; }
inline F32 getSphereVolume() const { return 4.0f / 3.0f * M_PI * mPow( mSphereRadius, 3 ); }
inline F32 getCapsuleVolume() const { return 2 * M_PI * mPow( mCapRadius, 2 ) * (4.0f / 3.0f * mCapRadius + mCapHeight); }
void fitBox( U32 vertCount, const F32* verts )
{
FLOAT_MATH::fm_computeBestFitOBB( vertCount, verts, sizeof(F32)*3, (F32*)mBoxSides, (F32*)mBoxTransform, false );
2012-09-19 15:15:01 +00:00
mBoxTransform.transpose();
}
void fitSphere( U32 vertCount, const F32* verts )
{
mSphereRadius = FLOAT_MATH::fm_computeBestFitSphere( vertCount, verts, sizeof(F32)*3, (F32*)mSphereCenter );
2012-09-19 15:15:01 +00:00
}
void fitCapsule( U32 vertCount, const F32* verts )
{
FLOAT_MATH::fm_computeBestFitCapsule( vertCount, verts, sizeof(F32)*3, mCapRadius, mCapHeight, (F32*)mCapTransform );
2012-09-19 15:15:01 +00:00
mCapTransform.transpose();
}
};
class MeshFit
{
public:
enum eMeshType
{
Box = 0,
Sphere,
Capsule,
Hull,
};
struct Mesh
{
eMeshType type;
MatrixF transform;
TSMesh *tsmesh;
};
private:
TSShape *mShape; ///!< Source geometry shape
Vector<Point3F> mVerts; ///!< Source geometry verts (all meshes)
Vector<U32> mIndices; ///!< Source geometry indices (triangle lists, all meshes)
bool mIsReady; ///!< Flag indicating whether we are ready to fit/create meshes
Vector<Mesh> mMeshes; ///!< Fitted meshes
void addSourceMesh( const TSShape::Object& obj, const TSMesh* mesh );
TSMesh* initMeshFromFile( const String& filename ) const;
TSMesh* createTriMesh( F32* verts, S32 numVerts, U32* indices, S32 numTris ) const;
F32 maxDot( const VectorF& v ) const;
void fitK_DOP( const Vector<Point3F>& planes );
public:
MeshFit(TSShape* shape) : mShape(shape), mIsReady(false) { }
void setReady() { mIsReady = true; }
bool isReady() const { return mIsReady; }
void initSourceGeometry( const String& target );
S32 getMeshCount() const { return mMeshes.size(); }
Mesh* getMesh( S32 index ) { return &(mMeshes[index]); }
// Box
void addBox( const Point3F& sides, const MatrixF& mat );
void fitOBB();
// Sphere
void addSphere( F32 radius, const Point3F& center );
void fitSphere();
// Capsule
void addCapsule( F32 radius, F32 height, const MatrixF& mat );
void fitCapsule();
// k-DOP
void fit10_DOP_X();
void fit10_DOP_Y();
void fit10_DOP_Z();
void fit18_DOP();
void fit26_DOP();
// Convex Hulls
void fitConvexHulls( U32 depth, F32 mergeThreshold, F32 concavityThreshold, U32 maxHullVerts,
F32 boxMaxError, F32 sphereMaxError, F32 capsuleMaxError );
};
void MeshFit::initSourceGeometry( const String& target )
{
mMeshes.clear();
mVerts.clear();
mIndices.clear();
if ( target.equal( "bounds", String::NoCase ) )
{
// Add all geometry in the highest detail level
S32 dl = 0;
2015-03-04 00:55:30 +00:00
S32 ss = mShape->details[dl].subShapeNum;
2012-09-19 15:15:01 +00:00
if ( ss < 0 )
return;
2015-03-04 00:55:30 +00:00
S32 od = mShape->details[dl].objectDetailNum;
S32 start = mShape->subShapeFirstObject[ss];
S32 end = start + mShape->subShapeNumObjects[ss];
2012-09-19 15:15:01 +00:00
for ( S32 i = start; i < end; i++ )
{
2015-03-04 00:55:30 +00:00
const TSShape::Object &obj = mShape->objects[i];
const TSMesh* mesh = ( od < obj.numMeshes ) ? mShape->meshes[obj.startMeshIndex + od] : NULL;
2012-09-19 15:15:01 +00:00
if ( mesh )
addSourceMesh( obj, mesh );
}
}
else
{
// Add highest detail mesh from this object
S32 objIndex = mShape->findObject( target );
if ( objIndex == -1 )
return;
2015-03-04 00:55:30 +00:00
const TSShape::Object &obj = mShape->objects[objIndex];
2012-09-19 15:15:01 +00:00
for ( S32 i = 0; i < obj.numMeshes; i++ )
{
2015-03-04 00:55:30 +00:00
const TSMesh* mesh = mShape->meshes[obj.startMeshIndex + i];
2012-09-19 15:15:01 +00:00
if ( mesh )
{
addSourceMesh( obj, mesh );
break;
}
}
}
mIsReady = ( !mVerts.empty() && !mIndices.empty() );
}
void MeshFit::addSourceMesh( const TSShape::Object& obj, const TSMesh* mesh )
{
// Add indices
S32 indicesBase = mIndices.size();
for ( S32 i = 0; i < mesh->mPrimitives.size(); i++ )
2012-09-19 15:15:01 +00:00
{
const TSDrawPrimitive& draw = mesh->mPrimitives[i];
2012-09-19 15:15:01 +00:00
if ( (draw.matIndex & TSDrawPrimitive::TypeMask) == TSDrawPrimitive::Triangles )
{
mIndices.merge( &mesh->mIndices[draw.start], draw.numElements );
2012-09-19 15:15:01 +00:00
}
else
{
U32 idx0 = mesh->mIndices[draw.start + 0];
2012-09-19 15:15:01 +00:00
U32 idx1;
U32 idx2 = mesh->mIndices[draw.start + 1];
2012-09-19 15:15:01 +00:00
U32 *nextIdx = &idx1;
for ( S32 j = 2; j < draw.numElements; j++ )
{
*nextIdx = idx2;
nextIdx = (U32*) ( (dsize_t)nextIdx ^ (dsize_t)&idx0 ^ (dsize_t)&idx1);
idx2 = mesh->mIndices[draw.start + j];
2012-09-19 15:15:01 +00:00
if ( idx0 == idx1 || idx0 == idx2 || idx1 == idx2 )
continue;
mIndices.push_back( idx0 );
mIndices.push_back( idx1 );
mIndices.push_back( idx2 );
}
}
}
// Offset indices for already added verts
for ( S32 j = indicesBase; j < mIndices.size(); j++ )
mIndices[j] += mVerts.size();
// Add verts
S32 count, stride;
U8* pVert;
if ( mesh->mVertexData.isReady() && mesh->mVerts.size() == 0 )
2012-09-19 15:15:01 +00:00
{
count = mesh->mVertexData.size();
stride = mesh->mVertexData.vertSize();
pVert = (U8*)mesh->mVertexData.address();
}
else
{
count = mesh->mVerts.size();
2012-09-19 15:15:01 +00:00
stride = sizeof(Point3F);
pVert = (U8*)mesh->mVerts.address();
2012-09-19 15:15:01 +00:00
}
MatrixF objMat;
mShape->getNodeWorldTransform( obj.nodeIndex, &objMat );
mVerts.reserve( mVerts.size() + count );
for ( S32 j = 0; j < count; j++, pVert += stride )
{
mVerts.increment();
objMat.mulP( *(Point3F*)pVert, &mVerts.last() );
}
}
TSMesh* MeshFit::initMeshFromFile( const String& filename ) const
{
// Open the source shape file and make a copy of the mesh
Resource<TSShape> hShape = ResourceManager::get().load(filename);
2015-03-04 00:55:30 +00:00
if (!bool(hShape) || !((TSShape*)hShape)->meshes.size())
2012-09-19 15:15:01 +00:00
{
Con::errorf("TSShape::createMesh: Could not load source mesh from %s", filename.c_str());
return NULL;
}
2015-03-04 00:55:30 +00:00
TSMesh* srcMesh = ((TSShape*)hShape)->meshes[0];
2012-09-19 15:15:01 +00:00
return mShape->copyMesh( srcMesh );
}
TSMesh* MeshFit::createTriMesh( F32* verts, S32 numVerts, U32* indices, S32 numTris ) const
{
TSMesh* mesh = mShape->copyMesh( NULL );
2015-03-04 00:55:30 +00:00
mesh->numFrames = 1;
mesh->numMatFrames = 1;
mesh->vertsPerFrame = numVerts;
2012-09-19 15:15:01 +00:00
mesh->setFlags(0);
mesh->mNumVerts = numVerts;
mesh->mIndices.reserve( numTris * 3 );
2012-09-19 15:15:01 +00:00
for ( S32 i = 0; i < numTris; i++ )
{
mesh->mIndices.push_back( indices[i*3 + 0] );
mesh->mIndices.push_back( indices[i*3 + 2] );
mesh->mIndices.push_back( indices[i*3 + 1] );
2012-09-19 15:15:01 +00:00
}
mesh->mVerts.set( verts, numVerts );
2012-09-19 15:15:01 +00:00
// Compute mesh normals
mesh->mNorms.setSize( mesh->mVerts.size() );
for (S32 iNorm = 0; iNorm < mesh->mNorms.size(); iNorm++)
mesh->mNorms[iNorm] = Point3F::Zero;
2012-09-19 15:15:01 +00:00
// Sum triangle normals for each vertex
for (S32 iInd = 0; iInd < mesh->mIndices.size(); iInd += 3)
2012-09-19 15:15:01 +00:00
{
// Compute the normal for this triangle
S32 idx0 = mesh->mIndices[iInd + 0];
S32 idx1 = mesh->mIndices[iInd + 1];
S32 idx2 = mesh->mIndices[iInd + 2];
2012-09-19 15:15:01 +00:00
const Point3F& v0 = mesh->mVerts[idx0];
const Point3F& v1 = mesh->mVerts[idx1];
const Point3F& v2 = mesh->mVerts[idx2];
2012-09-19 15:15:01 +00:00
Point3F n;
mCross(v2 - v0, v1 - v0, &n);
n.normalize(); // remove this to use 'weighted' normals (large triangles will have more effect)
mesh->mNorms[idx0] += n;
mesh->mNorms[idx1] += n;
mesh->mNorms[idx2] += n;
2012-09-19 15:15:01 +00:00
}
// Normalize the vertex normals (this takes care of averaging the triangle normals)
for (S32 iNorm = 0; iNorm < mesh->mNorms.size(); iNorm++)
mesh->mNorms[iNorm].normalize();
2012-09-19 15:15:01 +00:00
// Set some dummy UVs
mesh->mTverts.setSize( numVerts );
for ( S32 j = 0; j < mesh->mTverts.size(); j++ )
mesh->mTverts[j].set( 0, 0 );
2012-09-19 15:15:01 +00:00
// Add a single triangle-list primitive
mesh->mPrimitives.increment();
mesh->mPrimitives.last().start = 0;
mesh->mPrimitives.last().numElements = mesh->mIndices.size();
mesh->mPrimitives.last().matIndex = TSDrawPrimitive::Triangles |
2012-09-19 15:15:01 +00:00
TSDrawPrimitive::Indexed |
TSDrawPrimitive::NoMaterial;
mesh->createTangents( mesh->mVerts, mesh->mNorms);
mesh->mEncodedNorms.set( NULL,0 );
2012-09-19 15:15:01 +00:00
return mesh;
}
F32 MeshFit::maxDot( const VectorF& v ) const
{
F32 maxDot = -FLT_MAX;
for ( S32 i = 0; i < mVerts.size(); i++ )
maxDot = getMax( maxDot, mDot( v, mVerts[i] ) );
return maxDot;
}
//---------------------------
// Best-fit oriented bounding box
void MeshFit::addBox( const Point3F& sides, const MatrixF& mat )
{
TSMesh* mesh = initMeshFromFile( TSShapeConstructor::getCubeShapePath() );
2012-09-19 15:15:01 +00:00
if ( !mesh )
return;
if (mesh->mVerts.size() > 0)
{
for (S32 i = 0; i < mesh->mVerts.size(); i++)
{
Point3F v = mesh->mVerts[i];
v.convolve(sides);
mesh->mVerts[i] = v;
}
mesh->mVertexData.setReady(false);
}
else
2012-09-19 15:15:01 +00:00
{
for (S32 i = 0; i < mesh->mVertexData.size(); i++)
{
TSMesh::__TSMeshVertexBase &vdata = mesh->mVertexData.getBase(i);
Point3F v = vdata.vert();
v.convolve(sides);
vdata.vert(v);
}
2012-09-19 15:15:01 +00:00
}
2012-09-19 15:15:01 +00:00
mesh->computeBounds();
mMeshes.increment();
mMeshes.last().type = MeshFit::Box;
mMeshes.last().transform = mat;
mMeshes.last().tsmesh = mesh;
}
void MeshFit::fitOBB()
{
PrimFit primFitter;
primFitter.fitBox( mVerts.size(), (F32*)mVerts.address() );
addBox( primFitter.mBoxSides, primFitter.mBoxTransform );
}
//---------------------------
// Best-fit sphere
void MeshFit::addSphere( F32 radius, const Point3F& center )
{
TSMesh* mesh = initMeshFromFile( TSShapeConstructor::getSphereShapePath() );
2012-09-19 15:15:01 +00:00
if ( !mesh )
return;
for ( S32 i = 0; i < mesh->mVertexData.size(); i++ )
{
TSMesh::__TSMeshVertexBase &vdata = mesh->mVertexData.getBase(i);
Point3F v = vdata.vert();
vdata.vert( v * radius );
2012-09-19 15:15:01 +00:00
}
mesh->computeBounds();
mMeshes.increment();
MeshFit::Mesh& lastMesh = mMeshes.last();
lastMesh.type = MeshFit::Sphere;
lastMesh.transform.identity();
lastMesh.transform.setPosition(center);
lastMesh.tsmesh = mesh;
2012-09-19 15:15:01 +00:00
}
void MeshFit::fitSphere()
{
PrimFit primFitter;
primFitter.fitSphere( mVerts.size(), (F32*)mVerts.address() );
addSphere( primFitter.mSphereRadius, primFitter.mSphereCenter );
}
//---------------------------
// Best-fit capsule
void MeshFit::addCapsule( F32 radius, F32 height, const MatrixF& mat )
{
TSMesh* mesh = initMeshFromFile( TSShapeConstructor::getCapsuleShapePath() );
2012-09-19 15:15:01 +00:00
if ( !mesh )
return;
// Translate and scale the mesh verts
height = mMax( 0, height );
F32 offset = ( height / ( 2 * radius ) ) - 0.5f;
for ( S32 i = 0; i < mesh->mVertexData.size(); i++ )
{
Point3F v = mesh->mVertexData.getBase(i).vert();
2012-09-19 15:15:01 +00:00
v.y += ( ( v.y > 0 ) ? offset : -offset );
mesh->mVertexData.getBase(i).vert( v * radius );
2012-09-19 15:15:01 +00:00
}
mesh->computeBounds();
mMeshes.increment();
mMeshes.last().type = MeshFit::Capsule;
mMeshes.last().transform = mat;
mMeshes.last().tsmesh = mesh;
}
void MeshFit::fitCapsule()
{
PrimFit primFitter;
primFitter.fitCapsule( mVerts.size(), (F32*)mVerts.address() );
addCapsule( primFitter.mCapRadius, primFitter.mCapHeight, primFitter.mCapTransform );
}
//---------------------------
// Best-fit k-discrete-oriented-polytope (where k is the number of axis-aligned planes)
// All faces + 4 edges (aligned to X axis) of the unit cube
void MeshFit::fit10_DOP_X()
{
Vector<Point3F> planes;
planes.setSize( 10 );
dCopyArray( planes.address(), sFacePlanes, 6 );
dCopyArray( planes.address()+6, sXEdgePlanes, 4 );
fitK_DOP( planes );
}
// All faces + 4 edges (aligned to Y axis) of the unit cube
void MeshFit::fit10_DOP_Y()
{
Vector<Point3F> planes;
planes.setSize( 10 );
dCopyArray( planes.address(), sFacePlanes, 6 );
dCopyArray( planes.address()+6, sYEdgePlanes, 4 );
fitK_DOP( planes );
}
// All faces + 4 edges (aligned to Z axis) of the unit cube
void MeshFit::fit10_DOP_Z()
{
Vector<Point3F> planes;
planes.setSize( 10 );
dCopyArray( planes.address(), sFacePlanes, 6 );
dCopyArray( planes.address()+6, sZEdgePlanes, 4 );
fitK_DOP( planes );
}
// All faces and edges of the unit cube
void MeshFit::fit18_DOP()
{
Vector<Point3F> planes;
planes.setSize( 18 );
dCopyArray( planes.address(), sFacePlanes, 6 );
dCopyArray( planes.address()+6, sXEdgePlanes, 4 );
dCopyArray( planes.address()+10, sYEdgePlanes, 4 );
dCopyArray( planes.address()+14, sZEdgePlanes, 4 );
fitK_DOP( planes );
}
// All faces, edges and corners of the unit cube
void MeshFit::fit26_DOP()
{
Vector<Point3F> planes;
planes.setSize( 26 );
dCopyArray( planes.address(), sFacePlanes, 6 );
dCopyArray( planes.address()+6, sXEdgePlanes, 4 );
dCopyArray( planes.address()+10, sYEdgePlanes, 4 );
dCopyArray( planes.address()+14, sZEdgePlanes, 4 );
dCopyArray( planes.address()+18, sCornerPlanes, 8 );
fitK_DOP( planes );
}
void MeshFit::fitK_DOP( const Vector<Point3F>& planes )
{
// Push the planes up against the mesh
Vector<F32> planeDs;
for ( S32 i = 0; i < planes.size(); i++ )
planeDs.push_back( maxDot( planes[i] ) );
// Collect the intersection points of any 3 planes that lie inside
// the maximum distances found above
Vector<Point3F> points;
2024-05-12 02:07:59 +00:00
Vector<U32> pointIndices;
2012-09-19 15:15:01 +00:00
for ( S32 i = 0; i < planes.size()-2; i++ )
{
for ( S32 j = i+1; j < planes.size()-1; j++ )
{
for ( S32 k = j+1; k < planes.size(); k++ )
{
Point3F v23 = mCross( planes[j], planes[k] );
F32 denom = mDot( planes[i], v23 );
if ( denom == 0 )
continue;
Point3F v31 = mCross( planes[k], planes[i] );
Point3F v12 = mCross( planes[i], planes[j] );
Point3F p = ( planeDs[i]*v23 + planeDs[j]*v31 + planeDs[k]*v12 ) / denom;
// Ignore intersection points outside the volume
// described by the planes
bool addPoint = true;
for ( S32 n = 0; n < planes.size(); n++ )
{
if ( ( mDot( p, planes[n] ) - planeDs[n] ) > 0.005f )
{
addPoint = false;
break;
}
}
2024-05-12 02:07:59 +00:00
if (addPoint)
{
points.push_back(p);
pointIndices.push_back(points.size() - 1);
}
2012-09-19 15:15:01 +00:00
}
}
}
2024-05-12 02:07:59 +00:00
VHACD::IVHACD::Parameters p;
p.m_fillMode = VHACD::FillMode::FLOOD_FILL;
p.m_maxNumVerticesPerCH = 64;
p.m_shrinkWrap = true;
p.m_maxRecursionDepth = 64;
p.m_minimumVolumePercentErrorAllowed = 10;
p.m_resolution = 10000;
p.m_maxConvexHulls = 1;
VHACD::IVHACD* iface = VHACD::CreateVHACD();
iface->Compute((F32*)points.address(), points.size(), (U32*)pointIndices.address(), pointIndices.size() / 3, p);
2012-09-19 15:15:01 +00:00
2024-05-12 02:07:59 +00:00
// safety loop.
while (!iface->IsReady())
{
Platform::sleep(1000);
}
// we only get the 1 in dop?
VHACD::IVHACD::ConvexHull ch;
iface->GetConvexHull(0, ch);
2012-09-19 15:15:01 +00:00
// Create TSMesh from convex hull
mMeshes.increment();
MeshFit::Mesh& lastMesh = mMeshes.last();
lastMesh.type = MeshFit::Hull;
lastMesh.transform.identity();
U32* indices = new U32[ch.m_triangles.size() * 3];
for (U32 i = 0; i < ch.m_triangles.size(); i++)
{
indices[i * 3 + 0] = ch.m_triangles[i].mI0;
indices[i * 3 + 1] = ch.m_triangles[i].mI1;
indices[i * 3 + 2] = ch.m_triangles[i].mI2;
}
F32* resultPts = new F32[ch.m_points.size() * 3];
for (U32 i = 0; i < ch.m_points.size(); i++)
{
resultPts[i * 3 + 0] = ch.m_points[i].mX;
resultPts[i * 3 + 1] = ch.m_points[i].mY;
resultPts[i * 3 + 2] = ch.m_points[i].mZ;
}
lastMesh.tsmesh = createTriMesh(resultPts, ch.m_points.size(),
indices, ch.m_triangles.size());
lastMesh.tsmesh->computeBounds();
2024-05-12 02:07:59 +00:00
iface->Release();
delete[] resultPts;
delete[] indices;
2012-09-19 15:15:01 +00:00
}
//---------------------------
// Best-fit set of convex hulls
void MeshFit::fitConvexHulls( U32 depth, F32 mergeThreshold, F32 concavityThreshold, U32 maxHullVerts,
F32 boxMaxError, F32 sphereMaxError, F32 capsuleMaxError )
{
const F32 SkinWidth = 0.0f;
const F32 SplitThreshold = 2.0f;
2024-05-12 02:07:59 +00:00
VHACD::IVHACD::Parameters p;
p.m_fillMode = VHACD::FillMode::FLOOD_FILL;
p.m_maxNumVerticesPerCH = maxHullVerts;
p.m_shrinkWrap = true;
p.m_maxRecursionDepth = 64;
p.m_minimumVolumePercentErrorAllowed = 10;
p.m_resolution = 10000;
p.m_maxConvexHulls = depth;
2012-09-19 15:15:01 +00:00
VHACD::IVHACD* iface = VHACD::CreateVHACD_ASYNC();
2024-05-12 02:07:59 +00:00
iface->Compute((F32*)mVerts.address(), mVerts.size(), mIndices.address(), mIndices.size() / 3, p);
2024-05-12 02:07:59 +00:00
// safety loop.
while (!iface->IsReady())
2012-09-19 15:15:01 +00:00
{
2024-05-12 02:07:59 +00:00
Platform::sleep(1000);
2012-09-19 15:15:01 +00:00
}
// Add a TSMesh for each hull
2024-05-12 02:07:59 +00:00
for ( S32 i = 0; i < iface->GetNConvexHulls(); i++ )
2012-09-19 15:15:01 +00:00
{
2024-05-12 02:07:59 +00:00
VHACD::IVHACD::ConvexHull ch;
iface->GetConvexHull(i, ch);
2012-09-19 15:15:01 +00:00
eMeshType meshType = MeshFit::Hull;
// Check if we can use a box, sphere or capsule primitive for this hull
if (( boxMaxError > 0 ) || ( sphereMaxError > 0 ) || ( capsuleMaxError > 0 ))
{
// Compute error between actual mesh and fitted primitives
F32* points = new F32[ch.m_points.size() * 3];
for (U32 i = 0; i < ch.m_points.size(); i++)
{
points[i * 3 + 0] = ch.m_points[i].mX;
points[i * 3 + 1] = ch.m_points[i].mY;
points[i * 3 + 2] = ch.m_points[i].mZ;
}
U32* indices = new U32[ch.m_triangles.size() * 3];
for (U32 i = 0; i < ch.m_triangles.size(); i++)
{
indices[i * 3 + 0] = ch.m_triangles[i].mI0;
indices[i * 3 + 1] = ch.m_triangles[i].mI1;
indices[i * 3 + 2] = ch.m_triangles[i].mI2;
}
F32 meshVolume = FLOAT_MATH::fm_computeMeshVolume(points, ch.m_triangles.size(), indices);
2012-09-19 15:15:01 +00:00
PrimFit primFitter;
F32 boxError = 100.0f, sphereError = 100.0f, capsuleError = 100.0f;
if ( boxMaxError > 0 )
{
primFitter.fitBox(ch.m_points.size(), points);
2012-09-19 15:15:01 +00:00
boxError = 100.0f * ( 1.0f - ( meshVolume / primFitter.getBoxVolume() ) );
}
if ( sphereMaxError > 0 )
{
primFitter.fitSphere(ch.m_points.size(), points);
2012-09-19 15:15:01 +00:00
sphereError = 100.0f * ( 1.0f - ( meshVolume / primFitter.getSphereVolume() ) );
}
if ( capsuleMaxError > 0 )
{
primFitter.fitCapsule(ch.m_points.size(), points);
2012-09-19 15:15:01 +00:00
capsuleError = 100.0f * ( 1.0f - ( meshVolume / primFitter.getCapsuleVolume() ) );
}
// Use the primitive type with smallest error less than the respective
// max error, or Hull if none
F32 minError = FLT_MAX;
if ( ( boxError < boxMaxError ) && ( boxError < minError ) )
{
meshType = MeshFit::Box;
minError = boxError;
}
if ( ( sphereError < sphereMaxError ) && ( sphereError < minError ) )
{
meshType = MeshFit::Sphere;
minError = sphereError;
}
if ( ( capsuleError < capsuleMaxError ) && ( capsuleError < minError ) )
{
meshType = MeshFit::Capsule;
minError = capsuleError;
}
if ( meshType == MeshFit::Box )
addBox( primFitter.mBoxSides, primFitter.mBoxTransform );
else if ( meshType == MeshFit::Sphere )
addSphere( primFitter.mSphereRadius, primFitter.mSphereCenter );
else if ( meshType == MeshFit::Capsule )
addCapsule( primFitter.mCapRadius, primFitter.mCapHeight, primFitter.mCapTransform );
// else fall through to Hull processing
}
if ( meshType == MeshFit::Hull )
{
// Create TSMesh from convex hull
mMeshes.increment();
MeshFit::Mesh& lastMesh = mMeshes.last();
lastMesh.type = MeshFit::Hull;
lastMesh.transform.identity();
U32* indices = new U32[ch.m_triangles.size() * 3];
for (U32 i = 0; i < ch.m_triangles.size(); i++)
{
indices[i * 3 + 0] = ch.m_triangles[i].mI0;
indices[i * 3 + 1] = ch.m_triangles[i].mI1;
indices[i * 3 + 2] = ch.m_triangles[i].mI2;
}
F32* points = new F32[ch.m_points.size() * 3];
for (U32 i = 0; i < ch.m_points.size(); i++)
{
points[i * 3 + 0] = ch.m_points[i].mX;
points[i * 3 + 1] = ch.m_points[i].mY;
points[i * 3 + 2] = ch.m_points[i].mZ;
}
lastMesh.tsmesh = createTriMesh(points, ch.m_points.size(), indices, ch.m_triangles.size());
lastMesh.tsmesh->computeBounds();
delete[] points;
delete[] indices;
2012-09-19 15:15:01 +00:00
}
}
2024-05-12 02:07:59 +00:00
iface->Release();
2012-09-19 15:15:01 +00:00
}
//-----------------------------------------------------------------------------
DefineTSShapeConstructorMethod( addPrimitive, bool, ( const char* meshName, const char* type, const char* params, TransformF txfm, const char* nodeName ),,
( meshName, type, params, txfm, nodeName ), false,
"Add a new mesh primitive to the shape.\n"
"@param meshName full name (object name + detail size) of the new mesh. If "
"no detail size is present at the end of the name, a value of 2 is used.<br>"
"An underscore before the number at the end of the name will be interpreted as "
"a negative sign. eg. \"MyMesh_4\" will be interpreted as \"MyMesh-4\".\n"
"@param type one of: \"box\", \"sphere\", \"capsule\"\n"
"@param params mesh primitive parameters:\n"
"<ul>"
"<li>for box: \"size_x size_y size_z\"</li>"
"<li>for sphere: \"radius\"</li>"
"<li>for capsule: \"height radius\"</li>"
"</ul>"
"</ul>\n"
"@param txfm local transform offset from the node for this mesh\n"
"@param nodeName name of the node to attach the new mesh to (will change the "
"object's node if adding a new mesh to an existing object)\n"
"@return true if successful, false otherwise\n\n"
"@tsexample\n"
"%this.addMesh( \"Box4\", \"box\", \"2 4 2\", \"0 2 0 0 0 1 0\", \"eye\" );\n"
"%this.addMesh( \"Sphere256\", \"sphere\", \"2\", \"0 0 0 0 0 1 0\", \"root\" );\n"
"%this.addMesh( \"MyCapsule-1\", \"capsule\", \"2 5\", \"0 0 2 0 0 1 0\", \"base01\" );\n"
"@endtsexample\n" )
{
MeshFit fit( mShape );
if ( !dStricmp( type, "box" ) )
{
// Parse box parameters
Point3F sides;
if ( dSscanf( params, "%g %g %g", &sides.x, &sides.y, &sides.z ) == 3 )
{
fit.addBox( sides, MatrixF::Identity );
fit.setReady();
}
}
else if ( !dStricmp( type, "sphere" ) )
{
// Parse sphere parameters
F32 radius;
if ( dSscanf( params, "%g", &radius ) == 1)
{
fit.addSphere( radius, Point3F::Zero );
fit.setReady();
}
}
else if ( !dStricmp( type, "capsule" ) )
{
// Parse capsule parameters
F32 radius, height;
if ( dSscanf( params, "%g %g", &radius, &height ) == 1)
{
fit.addCapsule( radius, height, MatrixF::Identity );
fit.setReady();
}
}
if ( !fit.isReady() )
{
Con::errorf( "TSShapeConstructor::addPrimitive: Invalid params: '%s' for type '%s'",
params, type );
return false;
}
TSMesh* mesh = fit.getMesh( 0 )->tsmesh;
MatrixF mat( txfm.getMatrix() );
// Transform the mesh vertices
if ( mesh->mVertexData.isReady() && mesh->mVerts.size() == 0 )
2012-09-19 15:15:01 +00:00
{
for (S32 i = 0; i < mesh->mVertexData.size(); i++)
{
TSMesh::__TSMeshVertexBase &vdata = mesh->mVertexData.getBase(i);
2012-09-19 15:15:01 +00:00
Point3F v;
mat.mulP( vdata.vert(), &v );
vdata.vert( v );
2012-09-19 15:15:01 +00:00
}
}
else
{
for (S32 i = 0; i < mesh->mVerts.size(); i++)
2012-09-19 15:15:01 +00:00
{
Point3F v(mesh->mVerts[i]);
mat.mulP( v, &mesh->mVerts[i] );
2012-09-19 15:15:01 +00:00
}
}
// Add the mesh to the shape at the right node
mShape->addMesh( mesh, meshName );
S32 dummy;
String objName = String::GetTrailingNumber( meshName, dummy );
setObjectNode( objName, nodeName );
mShape->init();
ADD_TO_CHANGE_SET();
return true;
}}
DefineTSShapeConstructorMethod( addCollisionDetail, bool, ( S32 size, const char* type, const char* target, S32 depth, F32 merge, F32 concavity, S32 maxVerts, F32 boxMaxError, F32 sphereMaxError, F32 capsuleMaxError ), ( 4, 30, 30, 32, 0, 0, 0 ),
( size, type, target, depth, merge, concavity, maxVerts, boxMaxError, sphereMaxError, capsuleMaxError ), false,
"Autofit a mesh primitive or set of convex hulls to the shape geometry. Hulls "
"may optionally be converted to boxes, spheres and/or capsules based on their "
"volume.\n"
"@param size size for this detail level\n"
"@param type one of: box, sphere, capsule, 10-dop x, 10-dop y, 10-dop z, 18-dop, "
"26-dop, convex hulls. See the Shape Editor documentation for more details "
"about these types.\n"
"@param target geometry to fit collision mesh(es) to; either \"bounds\" (for the "
"whole shape), or the name of an object in the shape\n"
"@param depth maximum split recursion depth (hulls only)\n"
"@param merge volume % threshold used to merge hulls together (hulls only)\n"
"@param concavity volume % threshold used to detect concavity (hulls only)\n"
"@param maxVerts maximum number of vertices per hull (hulls only)\n"
"@param boxMaxError max % volume difference for a hull to be converted to a "
"box (hulls only)\n"
"@param sphereMaxError max % volume difference for a hull to be converted to "
"a sphere (hulls only)\n"
"@param capsuleMaxError max % volume difference for a hull to be converted to "
"a capsule (hulls only)\n"
"@return true if successful, false otherwise\n\n"
"@tsexample\n"
"%this.addCollisionDetail( -1, \"box\", \"bounds\" );\n"
"%this.addCollisionDetail( -1, \"convex hulls\", \"bounds\", 4, 30, 30, 32, 0, 0, 0 );\n"
"%this.addCollisionDetail( -1, \"convex hulls\", \"bounds\", 4, 30, 30, 32, 50, 50, 50 );\n"
"@endtsexample\n" )
{
MeshFit fit( mShape );
fit.initSourceGeometry( target );
if ( !fit.isReady() )
{
Con::errorf( "TSShapeConstructor::addCollisionDetail: Failed to initialise mesh fitter "
"using target: %s", target );
return false;
}
if ( !dStricmp( type, "box" ) )
fit.fitOBB();
else if ( !dStricmp( type, "sphere" ) )
fit.fitSphere();
else if ( !dStricmp( type, "capsule" ) )
fit.fitCapsule();
else if ( !dStricmp( type, "10-dop x" ) )
fit.fit10_DOP_X();
else if ( !dStricmp( type, "10-dop y" ) )
fit.fit10_DOP_Y();
else if ( !dStricmp( type, "10-dop z" ) )
fit.fit10_DOP_Z();
else if ( !dStricmp( type, "18-dop" ) )
fit.fit18_DOP();
else if ( !dStricmp( type, "26-dop" ) )
fit.fit26_DOP();
else if ( !dStricmp( type, "convex hulls" ) )
{
fit.fitConvexHulls( depth, merge, concavity, maxVerts,
boxMaxError, sphereMaxError, capsuleMaxError );
}
else
{
Con::errorf( "TSShape::addCollisionDetail: Invalid type: '%s'", type );
return false;
}
// Now add the fitted meshes to the shape:
// - primitives (box, sphere, capsule) need their own node (with appropriate
// transform set) so that we can use the mesh bounds to compute the real
// collision primitive at load time without having to examine the geometry.
// - convex meshes may be added at the default node, with identity transform
// - since all meshes are in the same detail level, they all get a unique
// object name
const String colNodeName( String::ToString( "Col%d", size ) );
// Add the default node with identity transform
S32 nodeIndex = mShape->findNode( colNodeName );
if ( nodeIndex == -1 )
{
addNode( colNodeName, "" );
}
else
{
MatrixF mat;
mShape->getNodeWorldTransform( nodeIndex, &mat );
if ( !mat.isIdentity() )
setNodeTransform( colNodeName, TransformF::Identity );
}
// Add the meshes to the shape =>
for ( S32 i = 0; i < fit.getMeshCount(); i++ )
{
MeshFit::Mesh* mesh = fit.getMesh( i );
// Determine a unique name for this mesh
String objName;
switch ( mesh->type )
{
case MeshFit::Box: objName = "ColBox"; break;
case MeshFit::Sphere: objName = "ColSphere"; break;
case MeshFit::Capsule: objName = "ColCapsule"; break;
default: objName = "ColConvex"; break;
}
for ( S32 suffix = i; suffix != 0; suffix /= 26 )
objName += ('A' + ( suffix % 26 ) );
String meshName = objName + String::ToString( "%d", size );
mShape->addMesh( mesh->tsmesh, meshName );
// Add a node for this object if needed (non-identity transform)
if ( mesh->transform.isIdentity() )
{
mShape->setObjectNode( objName, colNodeName );
}
else
{
addNode( meshName, colNodeName, TransformF( mesh->transform ) );
mShape->setObjectNode( objName, meshName );
}
}
mShape->init();
ADD_TO_CHANGE_SET();
return true;
}}