diff --git a/PSLauncher/PSLauncher.csproj b/PSLauncher/PSLauncher.csproj index 958fbce..a4c296c 100644 --- a/PSLauncher/PSLauncher.csproj +++ b/PSLauncher/PSLauncher.csproj @@ -1,5 +1,5 @@  - + Debug x86 @@ -10,8 +10,9 @@ Properties PSLauncher PSForever_Launcher - v4.0 - Client + v4.8 + + 512 false @@ -41,6 +42,7 @@ DEBUG;TRACE prompt 4 + false x86 @@ -50,6 +52,7 @@ TRACE prompt 4 + false bin\x86\LiveSupport\ @@ -66,6 +69,7 @@ true ;C:\Program Files (x86)\Microsoft Visual Studio 10.0\Team Tools\Static Analysis Tools\FxCop\\Rules true + false true @@ -82,6 +86,7 @@ true ;C:\Program Files (x86)\Microsoft Visual Studio 10.0\Team Tools\Static Analysis Tools\FxCop\\Rules true + false bin\Release\ @@ -102,6 +107,7 @@ false 0 true + false bin\LiveSupport\ @@ -118,6 +124,7 @@ true ;C:\Program Files (x86)\Microsoft Visual Studio 10.0\Team Tools\Static Analysis Tools\FxCop\\Rules true + false 793DD622BA49EF7D3494640F6D9646D8D289304B @@ -146,12 +153,36 @@ + + ..\packages\Microsoft.WindowsAPICodePack-Core.1.1.0.0\lib\Microsoft.WindowsAPICodePack.dll + ..\Newtonsoft.Json.dll + + ..\packages\Ookii.Dialogs.WinForms.4.0.0\lib\net462\Ookii.Dialogs.WinForms.dll + + + ..\packages\System.Buffers.4.5.1\lib\net461\System.Buffers.dll + + + + ..\packages\System.Memory.4.5.4\lib\net461\System.Memory.dll + + + + ..\packages\System.Numerics.Vectors.4.5.0\lib\net46\System.Numerics.Vectors.dll + + + ..\packages\System.Resources.Extensions.6.0.0\lib\net461\System.Resources.Extensions.dll + + + ..\packages\System.Runtime.CompilerServices.Unsafe.4.5.3\lib\net461\System.Runtime.CompilerServices.Unsafe.dll + + @@ -213,6 +244,7 @@ SettingsForm.cs + SettingsSingleFileGenerator diff --git a/PSLauncher/Properties/Resources.Designer.cs b/PSLauncher/Properties/Resources.Designer.cs index 17ceffe..6ad1c3b 100644 --- a/PSLauncher/Properties/Resources.Designer.cs +++ b/PSLauncher/Properties/Resources.Designer.cs @@ -19,7 +19,7 @@ namespace PSLauncher.Properties { // class via a tool like ResGen or Visual Studio. // To add or remove a member, edit your .ResX file then rerun ResGen // with the /str option, or rebuild your VS project. - [global::System.CodeDom.Compiler.GeneratedCodeAttribute("System.Resources.Tools.StronglyTypedResourceBuilder", "4.0.0.0")] + [global::System.CodeDom.Compiler.GeneratedCodeAttribute("System.Resources.Tools.StronglyTypedResourceBuilder", "17.0.0.0")] [global::System.Diagnostics.DebuggerNonUserCodeAttribute()] [global::System.Runtime.CompilerServices.CompilerGeneratedAttribute()] internal class Resources { diff --git a/PSLauncher/Properties/Settings.Designer.cs b/PSLauncher/Properties/Settings.Designer.cs index 885ea84..ea51ed5 100644 --- a/PSLauncher/Properties/Settings.Designer.cs +++ b/PSLauncher/Properties/Settings.Designer.cs @@ -12,7 +12,7 @@ namespace PSLauncher.Properties { [global::System.Runtime.CompilerServices.CompilerGeneratedAttribute()] - [global::System.CodeDom.Compiler.GeneratedCodeAttribute("Microsoft.VisualStudio.Editors.SettingsDesigner.SettingsSingleFileGenerator", "14.0.0.0")] + [global::System.CodeDom.Compiler.GeneratedCodeAttribute("Microsoft.VisualStudio.Editors.SettingsDesigner.SettingsSingleFileGenerator", "17.1.0.0")] internal sealed partial class Settings : global::System.Configuration.ApplicationSettingsBase { private static Settings defaultInstance = ((Settings)(global::System.Configuration.ApplicationSettingsBase.Synchronized(new Settings()))); diff --git a/PSLauncher/SettingsForm.Designer.cs b/PSLauncher/SettingsForm.Designer.cs index fc24a36..0886813 100644 --- a/PSLauncher/SettingsForm.Designer.cs +++ b/PSLauncher/SettingsForm.Designer.cs @@ -34,7 +34,7 @@ this.launchArgs = new System.Windows.Forms.TextBox(); this.label10 = new System.Windows.Forms.Label(); this.planetsideVersion = new System.Windows.Forms.Label(); - this.findPTRDirDialogue = new System.Windows.Forms.FolderBrowserDialog(); + this.findPTRDirDialogue = new Ookii.Dialogs.WinForms.VistaFolderBrowserDialog(); this.clearOnLaunch = new System.Windows.Forms.CheckBox(); this.button1 = new System.Windows.Forms.Button(); this.coreCombat = new System.Windows.Forms.CheckBox(); @@ -186,11 +186,11 @@ private System.Windows.Forms.TextBox launchArgs; private System.Windows.Forms.Label label10; private System.Windows.Forms.Label planetsideVersion; - private System.Windows.Forms.FolderBrowserDialog findPTRDirDialogue; + private Ookii.Dialogs.WinForms.VistaFolderBrowserDialog findPTRDirDialogue; private System.Windows.Forms.CheckBox clearOnLaunch; private System.Windows.Forms.Button button1; private System.Windows.Forms.CheckBox coreCombat; private System.Windows.Forms.Button editServerList; private System.Windows.Forms.CheckBox generateClientIni; } -} \ No newline at end of file +} diff --git a/PSLauncher/SettingsForm.cs b/PSLauncher/SettingsForm.cs index 144abeb..ee98fc2 100644 --- a/PSLauncher/SettingsForm.cs +++ b/PSLauncher/SettingsForm.cs @@ -38,7 +38,6 @@ namespace PSLauncher findPTRDirDialogue.SelectedPath = planetsidePathTextField.Text; DialogResult r = findPTRDirDialogue.ShowDialog(this); - if (r == DialogResult.OK) { // combine the folder name with the standard PS.exe name diff --git a/PSLauncher/app.config b/PSLauncher/app.config index 75d594a..233a0ad 100644 --- a/PSLauncher/app.config +++ b/PSLauncher/app.config @@ -1,17 +1,17 @@ - + - -
+ +
- + - + False @@ -27,8 +27,7 @@ - + PSForever,play.psforever.net,51000 @@ -41,4 +40,4 @@ - \ No newline at end of file + diff --git a/PSLauncher/packages.config b/PSLauncher/packages.config new file mode 100644 index 0000000..aa38d8a --- /dev/null +++ b/PSLauncher/packages.config @@ -0,0 +1,10 @@ + + + + + + + + + + \ No newline at end of file diff --git a/packages/Microsoft.WindowsAPICodePack-Core.1.1.0.0/.signature.p7s b/packages/Microsoft.WindowsAPICodePack-Core.1.1.0.0/.signature.p7s new file mode 100644 index 0000000..b242b9c Binary files /dev/null and b/packages/Microsoft.WindowsAPICodePack-Core.1.1.0.0/.signature.p7s differ diff --git a/packages/Microsoft.WindowsAPICodePack-Core.1.1.0.0/Microsoft.WindowsAPICodePack-Core.1.1.0.0.nupkg b/packages/Microsoft.WindowsAPICodePack-Core.1.1.0.0/Microsoft.WindowsAPICodePack-Core.1.1.0.0.nupkg new file mode 100644 index 0000000..668f7fe Binary files /dev/null and b/packages/Microsoft.WindowsAPICodePack-Core.1.1.0.0/Microsoft.WindowsAPICodePack-Core.1.1.0.0.nupkg differ diff --git a/packages/Microsoft.WindowsAPICodePack-Core.1.1.0.0/lib/Microsoft.WindowsAPICodePack.XML b/packages/Microsoft.WindowsAPICodePack-Core.1.1.0.0/lib/Microsoft.WindowsAPICodePack.XML new file mode 100644 index 0000000..d9eda0a --- /dev/null +++ b/packages/Microsoft.WindowsAPICodePack-Core.1.1.0.0/lib/Microsoft.WindowsAPICodePack.XML @@ -0,0 +1,2934 @@ + + + + Microsoft.WindowsAPICodePack + + + + + Provides access to the Application Restart and Recovery + features available in Windows Vista or higher. Application Restart and Recovery lets an + application do some recovery work to save data before the process exits. + + + + + Registers an application for recovery by Application Restart and Recovery. + + An object that specifies + the callback method, an optional parameter to pass to the callback + method and a time interval. + + The registration failed due to an invalid parameter. + + + The registration failed. + The time interval is the period of time within + which the recovery callback method + calls the method to indicate + that it is still performing recovery work. + + + + Removes an application's recovery registration. + + + The attempt to unregister for recovery failed. + + + + Removes an application's restart registration. + + + The attempt to unregister for restart failed. + + + + Called by an application's method + to indicate that it is still performing recovery work. + + A value indicating whether the user + canceled the recovery. + + This method must be called from a registered callback method. + + + + Called by an application's method to + indicate that the recovery work is complete. + + + This should + be the last call made by the method because + Windows Error Reporting will terminate the application + after this method is invoked. + + true to indicate the the program was able to complete its recovery + work before terminating; otherwise false. + + + + Registers an application for automatic restart if + the application + is terminated by Windows Error Reporting. + + An object that specifies + the command line arguments used to restart the + application, and + the conditions under which the application should not be + restarted. + Registration failed due to an invalid parameter. + The attempt to register failed. + A registered application will not be restarted if it executed for less than 60 seconds before terminating. + + + + This exception is thrown when there are problems with registering, unregistering or updating + applications using Application Restart Recovery. + + + + + Default constructor. + + + + + Initializes an exception with a custom message. + + A custom message for the exception. + + + + Initializes an exception with custom message and inner exception. + + A custom message for the exception. + Inner exception. + + + + Initializes an exception with custom message and error code. + + A custom message for the exception. + An error code (hresult) from which to generate the exception. + + + + Initializes an exception from serialization info and a context. + + Serialization info from which to create exception. + Streaming context from which to create exception. + + + + The that represents the callback method invoked + by the system when an application has registered for + application recovery. + + An application-defined state object that is passed to the callback method. + The callback method will be invoked + prior to the application being terminated by Windows Error Reporting (WER). To keep WER from terminating the application before + the callback method completes, the callback method must + periodically call the method. + + + + + Defines a class that contains a callback delegate and properties of the application + as defined by the user. + + + + + Initializes a recovery data wrapper with a callback method and the current + state of the application. + + The callback delegate. + The current state of the application. + + + + Invokes the recovery callback function. + + + + + Gets or sets a value that determines the recovery callback function. + + + + + Gets or sets a value that determines the application state. + + + + + Defines methods and properties for recovery settings, and specifies options for an application that attempts + to perform final actions after a fatal event, such as an + unhandled exception. + + This class is used to register for application recovery. + See the class. + + + + + Initializes a new instance of the RecoverySettings class. + + A recovery data object that contains the callback method (invoked by the system + before Windows Error Reporting terminates the application) and an optional state object. + The time interval within which the + callback method must invoke to + prevent WER from terminating the application. + + + + + Returns a string representation of the current state + of this object. + + A object. + + + + Gets the recovery data object that contains the callback method and an optional + parameter (usually the state of the application) to be passed to the + callback method. + + A object. + + + + Gets the time interval for notifying Windows Error Reporting. + The method must invoke + within this interval to prevent WER from terminating the application. + + + The recovery ping interval is specified in milliseconds. + By default, the interval is 5 seconds. + If you specify zero, the default interval is used. + + + + + Specifies the conditions when Windows Error Reporting + should not restart an application that has registered + for automatic restart. + + + + + Always restart the application. + + + + + Do not restart when the application has crashed. + + + + + Do not restart when the application is hung. + + + + + Do not restart when the application is terminated + due to a system update. + + + + + Do not restart when the application is terminated + because of a system reboot. + + + + + Specifies the options for an application to be automatically + restarted by Windows Error Reporting. + + Regardless of these + settings, the application + will not be restarted if it executed for less than 60 seconds before + terminating. + + + + Creates a new instance of the RestartSettings class. + + The command line arguments + used to restart the application. + A bitwise combination of the RestartRestrictions + values that specify + when the application should not be restarted. + + + + + Returns a string representation of the current state + of this object. + + A that displays + the command line arguments + and restrictions for restarting the application. + + + + Gets the command line arguments used to restart the application. + + A object. + + + + Gets the set of conditions when the application + should not be restarted. + + A set of values. + + + + This exception is thrown when there are problems with getting piece of data within PowerManager. + + + + + Default constructor. + + + + + Initializes an excpetion with a custom message. + + A custom message for the exception. + + + + Initializes an exception with custom message and inner exception. + + A custom message for the exception. + An inner exception on which to base this exception. + + + + Initializes an exception from serialization info and a context. + + SerializationInfo for the exception. + StreamingContext for the exception. + + + + Abstract base class for all dialog controls + + + + + Creates a new instance of a dialog control + + + + + Creates a new instance of a dialog control with the specified name. + + The name for this dialog. + + + + Calls the hosting dialog, if it exists, to check whether the + property can be set in the dialog's current state. + The host should throw an exception if the change is not supported. + Note that if the dialog isn't set yet, + there are no restrictions on setting the property. + + The name of the property that is changing + + + + Calls the hosting dialog, if it exists, to + to indicate that a property has changed, and that + the dialog should do whatever is necessary + to propagate the change to the native control. + Note that if the dialog isn't set yet, + there are no restrictions on setting the property. + + The name of the property that is changing. + + + + Compares two objects to determine whether they are equal + + The object to compare against. + A value. + + + + Serves as a hash function for a particular type. + + An hash code for this control. + + + + The native dialog that is hosting this control. This property is null is + there is not associated dialog + + + + + Gets the name for this control. + + A value. + + + + Gets the identifier for this control. + + An value. + + + + Strongly typed collection for dialog controls. + + DialogControl + + + + Inserts an dialog control at the specified index. + + The location to insert the control. + The item to insert. + A control with + the same name already exists in this collection -or- + the control is being hosted by another dialog -or- the associated dialog is + showing and cannot be modified. + + + + Removes the control at the specified index. + + The location of the control to remove. + + The associated dialog is + showing and cannot be modified. + + + + Searches for the control who's id matches the value + passed in the parameter. + + + An integer containing the identifier of the + control being searched for. + + A DialogControl who's id matches the value of the + parameter. + + + + Defines the indexer that supports accessing controls by name. + + + Control names are case sensitive. + This indexer is useful when the dialog is created in XAML + rather than constructed in code. + + The name cannot be null or a zero-length string. + If there is more than one control with the same name, only the first control will be returned. + + + + Indicates that the implementing class is a dialog that can host + customizable dialog controls (subclasses of DialogControl). + + + + + Returns if changes to the collection are allowed. + + true if collection change is allowed. + + + + Applies changes to the collection. + + + + + Handle notifications of individual child + pseudo-controls' properties changing.. + Prefilter should throw if the property + cannot be set in the dialog's current state. + PostProcess should pass on changes to native control, + if appropriate. + + The name of the property. + The control propertyName applies to. + true if the property change is allowed. + + + + Called when a control currently in the collection + has a property changed. + + The name of the property changed. + The control whose property has changed. + + + + HRESULT Wrapper + + + + + S_OK + + + + + S_FALSE + + + + + E_INVALIDARG + + + + + E_OUTOFMEMORY + + + + + E_NOINTERFACE + + + + + E_FAIL + + + + + E_ELEMENTNOTFOUND + + + + + TYPE_E_ELEMENTNOTFOUND + + + + + NO_OBJECT + + + + + Win32 Error code: ERROR_CANCELLED + + + + + ERROR_CANCELLED + + + + + The requested resource is in use + + + + + The requested resources is read-only. + + + + + Provide Error Message Helper Methods. + This is intended for Library Internal use only. + + + + + This is intended for Library Internal use only. + + + + + This is intended for Library Internal use only. + + + + + This is intended for Library Internal use only. + + The Windows API error code. + The equivalent HRESULT. + + + + This is intended for Library Internal use only. + + The error code. + True if the error code indicates success. + + + + This is intended for Library Internal use only. + + The error code. + True if the error code indicates success. + + + + This is intended for Library Internal use only. + + The error code. + True if the error code indicates failure. + + + + This is intended for Library Internal use only. + + The error code. + True if the error code indicates failure. + + + + This is intended for Library Internal use only. + + The COM error code. + The Win32 error code. + Inticates that the Win32 error code corresponds to the COM error code. + + + + Common Helper methods + + + + + Throws PlatformNotSupportedException if the application is not running on Windows XP + + + + + Throws PlatformNotSupportedException if the application is not running on Windows Vista + + + + + Throws PlatformNotSupportedException if the application is not running on Windows 7 + + + + + Get a string resource given a resource Id + + The resource Id + The string resource corresponding to the given resource Id. Returns null if the resource id + is invalid or the string cannot be retrieved for any other reason. + + + + Determines if the application is running on XP + + + + + Determines if the application is running on Vista + + + + + Determines if the application is running on Windows 7 + + + + + Wrappers for Native Methods and Structs. + This type is intended for internal use only + + + + + Places (posts) a message in the message queue associated with the thread that created + the specified window and returns without waiting for the thread to process the message. + + Handle to the window whose window procedure will receive the message. + If this parameter is HWND_BROADCAST, the message is sent to all top-level windows in the system, + including disabled or invisible unowned windows, overlapped windows, and pop-up windows; + but the message is not sent to child windows. + + Specifies the message to be sent. + Specifies additional message-specific information. + Specifies additional message-specific information. + A return code specific to the message being sent. + + + + Sends the specified message to a window or windows. The SendMessage function calls + the window procedure for the specified window and does not return until the window + procedure has processed the message. + + Handle to the window whose window procedure will receive the message. + If this parameter is HWND_BROADCAST, the message is sent to all top-level windows in the system, + including disabled or invisible unowned windows, overlapped windows, and pop-up windows; + but the message is not sent to child windows. + + Specifies the message to be sent. + Specifies additional message-specific information. + Specifies additional message-specific information. + A return code specific to the message being sent. + + + + Sends the specified message to a window or windows. The SendMessage function calls + the window procedure for the specified window and does not return until the window + procedure has processed the message. + + Handle to the window whose window procedure will receive the message. + If this parameter is HWND_BROADCAST, the message is sent to all top-level windows in the system, + including disabled or invisible unowned windows, overlapped windows, and pop-up windows; + but the message is not sent to child windows. + + Specifies the message to be sent. + Specifies additional message-specific information. + Specifies additional message-specific information. + A return code specific to the message being sent. + + + + Sends the specified message to a window or windows. The SendMessage function calls + the window procedure for the specified window and does not return until the window + procedure has processed the message. + + Handle to the window whose window procedure will receive the message. + If this parameter is HWND_BROADCAST, the message is sent to all top-level windows in the system, + including disabled or invisible unowned windows, overlapped windows, and pop-up windows; + but the message is not sent to child windows. + + Specifies the message to be sent. + Specifies additional message-specific information. + Specifies additional message-specific information. + A return code specific to the message being sent. + + + + Sends the specified message to a window or windows. The SendMessage function calls + the window procedure for the specified window and does not return until the window + procedure has processed the message. + + Handle to the window whose window procedure will receive the message. + If this parameter is HWND_BROADCAST, the message is sent to all top-level windows in the system, + including disabled or invisible unowned windows, overlapped windows, and pop-up windows; + but the message is not sent to child windows. + + Specifies the message to be sent. + Specifies additional message-specific information. + Specifies additional message-specific information. + A return code specific to the message being sent. + + + + Sends the specified message to a window or windows. The SendMessage function calls + the window procedure for the specified window and does not return until the window + procedure has processed the message. + + Handle to the window whose window procedure will receive the message. + If this parameter is HWND_BROADCAST, the message is sent to all top-level windows in the system, + including disabled or invisible unowned windows, overlapped windows, and pop-up windows; + but the message is not sent to child windows. + + Specifies the message to be sent. + Specifies additional message-specific information. + Specifies additional message-specific information. + A return code specific to the message being sent. + + + + Destroys an icon and frees any memory the icon occupied. + + Handle to the icon to be destroyed. The icon must not be in use. + If the function succeeds, the return value is nonzero. If the function fails, the return value is zero. To get extended error information, call GetLastError. + + + + Gets the HiWord + + The value to get the hi word from. + Size + The upper half of the dword. + + + + Gets the LoWord + + The value to get the low word from. + The lower half of the dword. + + + + A Wrapper for a SIZE struct + + + + + Width + + + + + Height + + + + + Dialog Show State + + + + + Pre Show + + + + + Currently Showing + + + + + Currently Closing + + + + + Closed + + + + + Gets the Guid relating to the currently active power scheme. + + Reserved for future use, this must be set to IntPtr.Zero + Returns a Guid referring to the currently active power scheme. + + + + Encapsulates the native logic required to create, + configure, and show a TaskDialog, + via the TaskDialogIndirect() Win32 function. + + A new instance of this class should + be created for each messagebox show, as + the HWNDs for TaskDialogs do not remain constant + across calls to TaskDialogIndirect. + + + + + Encapsulates additional configuration needed by NativeTaskDialog + that it can't get from the TASKDIALOGCONFIG struct. + + + + + Internal class containing most native interop declarations used + throughout the library. + Functions that are not performance intensive belong in this class. + + + + + Gets the handle to the Icon + + + + + Represents a network on the local machine. + It can also represent a collection of network + connections with a similar network signature. + + + Instances of this class are obtained by calling + methods on the class. + + + + + Gets or sets the category of a network. The + categories are trusted, untrusted, or + authenticated. + + A value. + + + + Gets the local date and time when the network + was connected. + + A object. + + + + Gets the network connections for the network. + + A object. + + + + Gets the connectivity state of the network. + + A value. + Connectivity provides information on whether + the network is connected, and the protocols + in use for network traffic. + + + + Gets the local date and time when the + network was created. + + A object. + + + + Gets or sets a description for the network. + + A value. + + + + Gets the domain type of the network. + + A value. + The domain + indictates whether the network is an Active + Directory Network, and whether the machine + has been authenticated by Active Directory. + + + + Gets a value that indicates whether there is + network connectivity. + + A value. + + + + Gets a value that indicates whether there is + Internet connectivity. + + A value. + + + + Gets or sets the name of the network. + + A value. + + + + Gets a unique identifier for the network. + + A value. + + + + An enumerable collection of objects. + + + + + Returns the strongly typed enumerator for this collection. + + An object. + + + + Returns the enumerator for this collection. + + An object. + + + + Represents a connection to a network. + + A collection containing instances of this class is obtained by calling + the property. + + + + Retrieves an object that represents the network + associated with this connection. + + A object. + + + + Gets the adapter identifier for this connection. + + A object. + + + + Gets the unique identifier for this connection. + + A object. + + + + Gets a value that indicates the connectivity of this connection. + + A value. + + + + Gets a value that indicates whether the network associated + with this connection is + an Active Directory network and whether the machine + has been authenticated by Active Directory. + + A value. + + + + Gets a value that indicates whether this + connection has Internet access. + + A value. + + + + Gets a value that indicates whether this connection has + network connectivity. + + A value. + + + + An enumerable collection of objects. + + + + + Returns the strongly typed enumerator for this collection. + + A object. + + + + Returns the enumerator for this collection. + + A object. + + + + Specifies types of network connectivity. + + + + + The underlying network interfaces have no + connectivity to any network. + + + + + There is connectivity to the Internet + using the IPv4 protocol. + + + + + There is connectivity to a routed network + using the IPv4 protocol. + + + + + There is connectivity to a network, but + the service cannot detect any IPv4 + network traffic. + + + + + There is connectivity to the local + subnet using the IPv4 protocol. + + + + + There is connectivity to the Internet + using the IPv4 protocol. + + + + + There is connectivity to a local + network using the IPv6 protocol. + + + + + There is connectivity to a network, + but the service cannot detect any + IPv6 network traffic + + + + + There is connectivity to the local + subnet using the IPv6 protocol. + + + + + Specifies the domain type of a network. + + + + + The network is not an Active Directory network. + + + + + The network is an Active Directory network, but this machine is not authenticated against it. + + + + + The network is an Active Directory network, and this machine is authenticated against it. + + + + + Specifies the trust level for a + network. + + + + + The network is a public (untrusted) network. + + + + + The network is a private (trusted) network. + + + + + The network is authenticated against an Active Directory domain. + + + + + Specifies the level of connectivity for + networks returned by the + + class. + + + + + Networks that the machine is connected to. + + + + + Networks that the machine is not connected to. + + + + + All networks. + + + + + Provides access to objects that represent networks and network connections. + + + + + Retrieves a collection of objects that represent the networks defined for this machine. + + + The that specify the connectivity level of the returned objects. + + + A of objects. + + + + + Retrieves the identified by the specified network identifier. + + + A that specifies the unique identifier for the network. + + + The that represents the network identified by the identifier. + + + + + Retrieves a collection of objects that represent the connections for this machine. + + + A containing the network connections. + + + + + Retrieves the identified by the specified connection identifier. + + + A that specifies the unique identifier for the network connection. + + + The identified by the specified identifier. + + + + + Gets a value that indicates whether this machine + has Internet connectivity. + + A value. + + + + Gets a value that indicates whether this machine + has network connectivity. + + A value. + + + + Gets the connectivity state of this machine. + + A value. + + + + A snapshot of the state of the battery. + + + + + Generates a string that represents this BatteryState object. + + A representation of this object's current state. + + + + Gets a value that indicates whether the battery charger is + operating on external power. + + A value. True indicates the battery charger is operating on AC power. + + + + Gets the maximum charge of the battery (in mW). + + An value. + + + + Gets the current charge of the battery (in mW). + + An value. + + + + Gets the rate of discharge for the battery (in mW). + + + If plugged in, fully charged: DischargeRate = 0. + If plugged in, charging: DischargeRate = positive mW per hour. + If unplugged: DischargeRate = negative mW per hour. + + An value. + + + + Gets the estimated time remaining until the battery is empty. + + A object. + + + + Gets the manufacturer's suggested battery charge level + that should cause a critical alert to be sent to the user. + + An value. + + + + Gets the manufacturer's suggested battery charge level + that should cause a warning to be sent to the user. + + An value. + + + + This class keeps track of the current state of each type of event. + The MessageManager class tracks event handlers. + This class only deals with each event type (i.e. + BatteryLifePercentChanged) as a whole. + + + + + Determines if a message should be caught, preventing + the event handler from executing. + This is needed when an event is initially registered. + + The event to check. + A boolean value. Returns true if the + message should be caught. + + + + Enumeration of execution states. + + + + + No state configured. + + + + + Forces the system to be in the working state by resetting the system idle timer. + + + + + Forces the display to be on by resetting the display idle timer. + + + + + Enables away mode. This value must be specified with ES_CONTINUOUS. + Away mode should be used only by media-recording and media-distribution applications that must perform critical background processing on desktop computers while the computer appears to be sleeping. See Remarks. + + Windows Server 2003 and Windows XP/2000: ES_AWAYMODE_REQUIRED is not supported. + + + + + Informs the system that the state being set should remain in effect until the next call that uses ES_CONTINUOUS and one of the other state flags is cleared. + + + + + This class generates .NET events based on Windows messages. + The PowerRegWindow class processes the messages from Windows. + + + + + Registers a callback for a power event. + + Guid for the event. + Event handler for the specified event. + + + + Unregisters an event handler for a power event. + + Guid for the event. + Event handler to unregister. + + + + Ensures that the hidden window is initialized and + listening for messages. + + + + + Catch Windows messages and generates events for power specific + messages. + + + + + Adds an event handler to call when Windows sends + a message for an event. + + Guid for the event. + Event handler for the event. + + + + Removes an event handler. + + Guid for the event. + Event handler to remove. + Cannot unregister + a function that is not registered. + + + + Executes any registered event handlers. + + ArrayList of event handlers. + + + + This method is called when a Windows message + is sent to this window. + The method calls the registered event handlers. + + + + + Registers the application to receive power setting notifications + for the specific power setting event. + + Handle indicating where the power setting + notifications are to be sent. + The GUID of the power setting for + which notifications are to be sent. + Returns a notification handle for unregistering + power notifications. + + + + Enables registration for + power-related event notifications and provides access to power settings. + + + + + Gets a snapshot of the current battery state. + + A instance that represents + the state of the battery at the time this method was called. + The system does not have a battery. + Requires XP/Windows Server 2003 or higher. + + + + Allows an application to inform the system that it + is in use, thereby preventing the system from entering + the sleeping power state or turning off the display + while the application is running. + + The thread's execution requirements. + Thrown if the SetThreadExecutionState call fails. + + + + Raised each time the active power scheme changes. + + The event handler specified for removal was not registered. + Requires Vista/Windows Server 2008. + + + + Raised when the power source changes. + + The event handler specified for removal was not registered. + Requires Vista/Windows Server 2008. + + + + Raised when the remaining battery life changes. + + The event handler specified for removal was not registered. + Requires Vista/Windows Server 2008. + + + + Raised when the monitor status changes. + + The event handler specified for removal was not registered. + Requires Vista/Windows Server 2008. + + + + Raised when the system will not be moving into an idle + state in the near future so applications should + perform any tasks that + would otherwise prevent the computer from entering an idle state. + + The event handler specified for removal was not registered. + Requires Vista/Windows Server 2008. + + + + Gets or sets a value that indicates whether the monitor is + set to remain active. + + Requires XP/Windows Server 2003 or higher. + The caller does not have sufficient privileges to set this property. + + This information is typically used by applications + that display information but do not require + user interaction. For example, video playback applications. + to set this property. Demand value: ; Named Permission Sets: FullTrust. + A value. True if the monitor + is required to remain on. + + + + Gets or sets a value that indicates whether the system + is required to be in the working state. + + Requires XP/Windows Server 2003 or higher. + The caller does not have sufficient privileges to set this property. + + to set this property. Demand value: ; Named Permission Sets: FullTrust. + A value. + + + + Gets a value that indicates whether a battery is present. + The battery can be a short term battery. + + Requires XP/Windows Server 2003 or higher. + A value. + + + + Gets a value that indicates whether the battery is a short term battery. + + Requires XP/Windows Server 2003 or higher. + A value. + + + + Gets a value that indicates a UPS is present to prevent + sudden loss of power. + + Requires XP/Windows Server 2003 or higher. + A value. + + + + Gets a value that indicates the current power scheme. + + Requires Vista/Windows Server 2008. + A value. + + + + Gets a value that indicates the remaining battery life + (as a percentage of the full battery charge). + This value is in the range 0-100, + where 0 is not charged and 100 is fully charged. + + The system does not have a battery. + Requires Vista/Windows Server 2008. + An value. + + + + Gets a value that indictates whether the monitor is on. + + Requires Vista/Windows Server 2008. + A value. + + + + Gets the current power source. + + Requires Vista/Windows Server 2008. + A value. + + + + Specifies the supported power personalities. + + + + + The power personality Guid does not match a known value. + + + + + Power settings designed to deliver maximum performance + at the expense of power consumption savings. + + + + + Power settings designed consume minimum power + at the expense of system performance and responsiveness. + + + + + Power settings designed to balance performance + and power consumption. + + + + + Specifies the power source currently supplying power to the system. + + Application should be aware of the power source because + some power sources provide a finite power supply. + An application might take steps to conserve power while + the system is using such a source. + + + + + The computer is powered by an AC power source + or a similar device, such as a laptop powered + by a 12V automotive adapter. + + + + + The computer is powered by a built-in battery. + A battery has a limited + amount of power; applications should conserve resources + where possible. + + + + + The computer is powered by a short-term power source + such as a UPS device. + + + + + Defines a unique key for a Shell Property + + + + + PropertyKey Constructor + + A unique GUID for the property + Property identifier (PID) + + + + PropertyKey Constructor + + A string represenstion of a GUID for the property + Property identifier (PID) + + + + Returns whether this object is equal to another. This is vital for performance of value types. + + The object to compare against. + Equality result. + + + + Returns the hash code of the object. This is vital for performance of value types. + + + + + + Returns whether this object is equal to another. This is vital for performance of value types. + + The object to compare against. + Equality result. + + + + Implements the == (equality) operator. + + First property key to compare. + Second property key to compare. + true if object a equals object b. false otherwise. + + + + Implements the != (inequality) operator. + + First property key to compare + Second property key to compare. + true if object a does not equal object b. false otherwise. + + + + Override ToString() to provide a user friendly string representation + + String representing the property key + + + + A unique GUID for the property + + + + + Property identifier (PID) + + + + + Represents the OLE struct PROPVARIANT. + This class is intended for internal use only. + + + Originally sourced from http://blogs.msdn.com/adamroot/pages/interop-with-propvariants-in-net.aspx + and modified to support additional types including vectors and ability to set values + + + + + Attempts to create a PropVariant by finding an appropriate constructor. + + Object from which PropVariant should be created. + + + + Default constrcutor + + + + + Set a string value + + + + + Set a string vector + + + + + Set a bool vector + + + + + Set a short vector + + + + + Set a short vector + + + + + Set an int vector + + + + + Set an uint vector + + + + + Set a long vector + + + + + Set a ulong vector + + + + > + Set a double vector + + + + + Set a DateTime vector + + + + + Set a bool value + + + + + Set a DateTime value + + + + + Set a byte value + + + + + Set a sbyte value + + + + + Set a short value + + + + + Set an unsigned short value + + + + + Set an int value + + + + + Set an unsigned int value + + + + + Set a decimal value + + + + + Create a PropVariant with a contained decimal array. + + Decimal array to wrap. + + + + Create a PropVariant containing a float type. + + + + + Creates a PropVariant containing a float[] array. + + + + + Set a long + + + + + Set a ulong + + + + + Set a double + + + + + Set an IUnknown value + + The new value to set. + + + + Set a safe array value + + The new value to set. + + + + Disposes the object, calls the clear function. + + + + + Finalizer + + + + + Provides an simple string representation of the contained data and type. + + + + + + Gets or sets the variant type. + + + + + Checks if this has an empty or null value + + + + + + Gets the variant value. + + + + + A strongly-typed resource class, for looking up localized strings, etc. + + + + + Returns the cached ResourceManager instance used by this class. + + + + + Overrides the current thread's CurrentUICulture property for all + resource lookups using this strongly typed resource class. + + + + + Looks up a localized string similar to Failed to register application for restart due to bad parameters.. + + + + + Looks up a localized string similar to Application was not registered for recovery due to bad parameters.. + + + + + Looks up a localized string similar to Application failed to register for recovery.. + + + + + Looks up a localized string similar to Application failed to registered for restart.. + + + + + Looks up a localized string similar to Unregister for recovery failed.. + + + + + Looks up a localized string similar to Unregister for restart failed.. + + + + + Looks up a localized string similar to This method must be called from the registered callback method.. + + + + + Looks up a localized string similar to ACOnline: {1}{0}Max Charge: {2} mWh{0}Current Charge: {3} mWh{0}Discharge Rate: {4} mWh{0}Estimated Time Remaining: {5}{0}Suggested Critical Battery Charge: {6} mWh{0}Suggested Battery Warning Charge: {7} mWh{0}. + + + + + Looks up a localized string similar to Cancelable cannot be changed while dialog is showing.. + + + + + Looks up a localized string similar to Dialog caption cannot be changed while dialog is showing.. + + + + + Looks up a localized string similar to CheckBox text cannot be changed while dialog is showing.. + + + + + Looks up a localized string similar to Collapsed control text cannot be changed while dialog is showing.. + + + + + Looks up a localized string similar to Only supported on Windows 7 or newer.. + + + + + Looks up a localized string similar to Only supported on Windows Vista or newer.. + + + + + Looks up a localized string similar to Only supported on Windows XP or newer.. + + + + + Looks up a localized string similar to Dialog cannot have more than one control with the same name.. + + + + + Looks up a localized string similar to Dialog control must be removed from current collections first.. + + + + + Looks up a localized string similar to Control name cannot be null or zero length.. + + + + + Looks up a localized string similar to Modifying controls collection while dialog is showing is not supported.. + + + + + Looks up a localized string similar to Dialog control name cannot be empty or null.. + + + + + Looks up a localized string similar to Dialog controls cannot be renamed.. + + + + + Looks up a localized string similar to Application. + + + + + Looks up a localized string similar to . + + + + + Looks up a localized string similar to . + + + + + Looks up a localized string similar to Expanded information mode cannot be changed while dialog is showing.. + + + + + Looks up a localized string similar to Expanded control label cannot be changed while dialog is showing.. + + + + + Looks up a localized string similar to Expanding state of the dialog cannot be changed while dialog is showing.. + + + + + Looks up a localized string similar to Hyperlinks cannot be enabled/disabled while dialog is showing.. + + + + + Looks up a localized string similar to Reference path is invalid.. + + + + + Looks up a localized string similar to The specified event handler has not been registered.. + + + + + Looks up a localized string similar to An error has occurred in dialog configuration.. + + + + + Looks up a localized string similar to Invalid arguments to Win32 call.. + + + + + Looks up a localized string similar to Dialog contents too complex.. + + + + + Looks up a localized string similar to An unexpected internal error occurred in the Win32 call: {0:x}. + + + + + Looks up a localized string similar to TaskDialog feature needs to load version 6 of comctl32.dll but a different version is current loaded in memory.. + + + + + Looks up a localized string similar to Dialog owner cannot be changed while dialog is showing.. + + + + + Looks up a localized string similar to SetThreadExecutionState call failed.. + + + + + Looks up a localized string similar to The caller had insufficient access rights to get the system battery state.. + + + + + Looks up a localized string similar to The caller had insufficient access rights to get the system power capabilities.. + + + + + Looks up a localized string similar to Failed to get active power scheme.. + + + + + Looks up a localized string similar to Battery is not present on this system.. + + + + + Looks up a localized string similar to Progress bar cannot be changed while dialog is showing.. + + + + + Looks up a localized string similar to Progress bar cannot be hosted in multiple dialogs.. + + + + + Looks up a localized string similar to {0}, {1}. + + + + + Looks up a localized string similar to Unable to initialize PropVariant.. + + + + + Looks up a localized string similar to Multi-dimensional SafeArrays not supported.. + + + + + Looks up a localized string similar to String argument cannot be null or empty.. + + + + + Looks up a localized string similar to This Value type is not supported.. + + + + + Looks up a localized string similar to Cannot be cast to unsupported type.. + + + + + Looks up a localized string similar to delegate: {0}, state: {1}, ping: {2}. + + + + + Looks up a localized string similar to command: {0} restrictions: {1}. + + + + + Looks up a localized string similar to StandardButtons cannot be changed while dialog is showing.. + + + + + Looks up a localized string similar to Startup location cannot be changed while dialog is showing.. + + + + + Looks up a localized string similar to Bad button ID in closing event.. + + + + + Looks up a localized string similar to Button text must be non-empty.. + + + + + Looks up a localized string similar to Check box text must be provided to enable the dialog check box.. + + + + + Looks up a localized string similar to Attempting to close a non-showing dialog.. + + + + + Looks up a localized string similar to Application. + + + + + Looks up a localized string similar to . + + + + + Looks up a localized string similar to . + + + + + Looks up a localized string similar to Cannot have more than one default button of a given type.. + + + + + Looks up a localized string similar to Maximum value provided must be greater than the minimum value.. + + + + + Looks up a localized string similar to Minimum value provided must be a positive number.. + + + + + Looks up a localized string similar to Minimum value provided must less than the maximum value.. + + + + + Looks up a localized string similar to Value provided must be greater than equal to the minimum value and less than the maximum value.. + + + + + Looks up a localized string similar to Dialog cannot display both non-standard buttons and standard buttons.. + + + + + Looks up a localized string similar to Dialog cannot display both non-standard buttons and command links.. + + + + + Looks up a localized string similar to Unknown dialog control type.. + + + + + Base class for Safe handles with Null IntPtr as invalid + + + + + Default constructor + + + + + Determines if this is a valid handle + + + + + Safe Icon Handle + + + + + Release the handle + + true if handled is release successfully, false otherwise + + + + Safe Region Handle + + + + + Release the handle + + true if handled is release successfully, false otherwise + + + + Safe Window Handle + + + + + Release the handle + + true if handled is release successfully, false otherwise + + + + Encapsulates a new-to-Vista Win32 TaskDialog window + - a powerful successor to the MessageBox available + in previous versions of Windows. + + + + + Creates a basic TaskDialog window + + + + + Creates and shows a task dialog with the specified message text. + + The text to display. + The dialog result. + + + + Creates and shows a task dialog with the specified supporting text and main instruction. + + The supporting text to display. + The main instruction text to display. + The dialog result. + + + + Creates and shows a task dialog with the specified supporting text, main instruction, and dialog caption. + + The supporting text to display. + The main instruction text to display. + The caption for the dialog. + The dialog result. + + + + Creates and shows a task dialog. + + The dialog result. + + + + Close TaskDialog + + if TaskDialog is not showing. + + + + Close TaskDialog with a given TaskDialogResult + + TaskDialogResult to return from the TaskDialog.Show() method + if TaskDialog is not showing. + + + + Sets important text properties. + + An instance of a object. + + + + Dispose TaskDialog Resources + + + + + TaskDialog Finalizer + + + + + Dispose TaskDialog Resources + + If true, indicates that this is being called via Dispose rather than via the finalizer. + + + + Occurs when a progress bar changes. + + + + + Occurs when a user clicks a hyperlink. + + + + + Occurs when the TaskDialog is closing. + + + + + Occurs when a user clicks on Help. + + + + + Occurs when the TaskDialog is opened. + + + + + Gets or sets a value that contains the owner window's handle. + + + + + Gets or sets a value that contains the message text. + + + + + Gets or sets a value that contains the instruction text. + + + + + Gets or sets a value that contains the caption text. + + + + + Gets or sets a value that contains the footer text. + + + + + Gets or sets a value that contains the footer check box text. + + + + + Gets or sets a value that contains the expanded text in the details section. + + + + + Gets or sets a value that determines if the details section is expanded. + + + + + Gets or sets a value that contains the expanded control text. + + + + + Gets or sets a value that contains the collapsed control text. + + + + + Gets or sets a value that determines if Cancelable is set. + + + + + Gets or sets a value that contains the TaskDialog main icon. + + + + + Gets or sets a value that contains the footer icon. + + + + + Gets or sets a value that contains the standard buttons. + + + + + Gets a value that contains the TaskDialog controls. + + + + + Gets or sets a value that determines if hyperlinks are enabled. + + + + + Gets or sets a value that indicates if the footer checkbox is checked. + + + + + Gets or sets a value that contains the expansion mode for this dialog. + + + + + Gets or sets a value that contains the startup location. + + + + + Gets or sets the progress bar on the taskdialog. ProgressBar a visual representation + of the progress of a long running operation. + + + + + Indicates whether this feature is supported on the current platform. + + + + + Defines a common class for all task dialog bar controls, such as the progress and marquee bars. + + + + + Declares the abstract base class for all custom task dialog controls. + + + + + Creates a new instance of a task dialog control. + + + + + Creates a new instance of a task dialog control with the specified name. + + The name for this control. + + + + Creates a new instance of this class. + + + + + Creates a new instance of this class with the specified name. + + The name for this control. + + + + Resets the state of the control to normal. + + + + + Gets or sets the state of the progress bar. + + + + + Implements a button that can be hosted in a task dialog. + + + + + Defines the abstract base class for task dialog buttons. + Classes that inherit from this class will inherit + the Text property defined in this class. + + + + + Creates a new instance on a task dialog button. + + + + + Creates a new instance on a task dialog button with + the specified name and text. + + The name for this button. + The label for this button. + + + + Returns the Text property value for this button. + + A . + + + + Raised when the task dialog button is clicked. + + + + + Gets or sets the button text. + + + + + Gets or sets a value that determines whether the + button is enabled. The enabled state can cannot be changed + before the dialog is shown. + + + + + Gets or sets a value that indicates whether + this button is the default button. + + + + + Creates a new instance of this class. + + + + + Creates a new instance of this class with the specified property settings. + + The name of the button. + The button label. + + + + Gets or sets a value that controls whether the elevation icon is displayed. + + + + + Data associated with event. + + + + + Gets or sets the standard button that was clicked. + + + + + Gets or sets the text of the custom button that was clicked. + + + + + Represents a command-link. + + + + + Creates a new instance of this class. + + + + + Creates a new instance of this class with the specified name and label. + + The name for this button. + The label for this button. + + + + Creates a new instance of this class with the specified name,label, and instruction. + + The name for this button. + The label for this button. + The instruction for this command link. + + + + Returns a string representation of this object. + + A + + + + Gets or sets the instruction associated with this command link button. + + + + + Specifies the options for expand/collapse sections in dialogs. + + + + + Do not show the content. + + + + + Show the content. + + + + + Expand the footer content. + + + + + Defines event data associated with a HyperlinkClick event. + + + + + Creates a new instance of this class with the specified link text. + + The text of the hyperlink that was clicked. + + + + Gets or sets the text of the hyperlink that was clicked. + + + + + Provides a visual representation of the progress of a long running operation. + + + + + Creates a new instance of this class. + + + + + Creates a new instance of this class with the specified name. + And using the default values: Min = 0, Max = 100, Current = 0 + + The name of the control. + + + + Creates a new instance of this class with the specified + minimum, maximum and current values. + + The minimum value for this control. + The maximum value for this control. + The current value for this control. + + + + Resets the control to its minimum value. + + + + + Gets or sets the minimum value for the control. + + + + + Gets or sets the maximum value for the control. + + + + + Gets or sets the current value for the control. + + + + + Verifies that the progress bar's value is between its minimum and maximum. + + + + + Sets the state of a task dialog progress bar. + + + + + Uninitialized state, this should never occur. + + + + + Normal state. + + + + + An error occurred. + + + + + The progress is paused. + + + + + Displays marquee (indeterminate) style progress + + + + + Defines a radio button that can be hosted in by a + object. + + + + + Creates a new instance of this class. + + + + + Creates a new instance of this class with + the specified name and text. + + The name for this control. + The value for this controls + property. + + + + Indicates the various buttons and options clicked by the user on the task dialog. + + + + + No button was selected. + + + + + "OK" button was clicked + + + + + "Yes" button was clicked + + + + + "No" button was clicked + + + + + "Cancel" button was clicked + + + + + "Retry" button was clicked + + + + + "Close" button was clicked + + + + + A custom button was clicked. + + + + + Identifies one of the standard buttons that + can be displayed via TaskDialog. + + + + + No buttons on the dialog. + + + + + An "OK" button. + + + + + A "Yes" button. + + + + + A "No" button. + + + + + A "Cancel" button. + + + + + A "Retry" button. + + + + + A "Close" button. + + + + + Specifies the icon displayed in a task dialog. + + + + + Displays no icons (default). + + + + + Displays the warning icon. + + + + + Displays the error icon. + + + + + Displays the Information icon. + + + + + Displays the User Account Control shield. + + + + + Specifies the initial display location for a task dialog. + + + + + The window placed in the center of the screen. + + + + + The window centered relative to the window that launched the dialog. + + + + + The event data for a TaskDialogTick event. + + + + + Initializes the data associated with the TaskDialog tick event. + + The total number of ticks since the control was activated. + + + + Gets a value that determines the current number of ticks. + + + + diff --git a/packages/Microsoft.WindowsAPICodePack-Core.1.1.0.0/lib/Microsoft.WindowsAPICodePack.dll b/packages/Microsoft.WindowsAPICodePack-Core.1.1.0.0/lib/Microsoft.WindowsAPICodePack.dll new file mode 100644 index 0000000..4933e55 Binary files /dev/null and b/packages/Microsoft.WindowsAPICodePack-Core.1.1.0.0/lib/Microsoft.WindowsAPICodePack.dll differ diff --git a/packages/Microsoft.WindowsAPICodePack-Core.1.1.0.0/lib/Microsoft.WindowsAPICodePack.pdb b/packages/Microsoft.WindowsAPICodePack-Core.1.1.0.0/lib/Microsoft.WindowsAPICodePack.pdb new file mode 100644 index 0000000..836c2f5 Binary files /dev/null and b/packages/Microsoft.WindowsAPICodePack-Core.1.1.0.0/lib/Microsoft.WindowsAPICodePack.pdb differ diff --git a/packages/Ookii.Dialogs.WinForms.4.0.0/.signature.p7s b/packages/Ookii.Dialogs.WinForms.4.0.0/.signature.p7s new file mode 100644 index 0000000..5bcde94 Binary files /dev/null and b/packages/Ookii.Dialogs.WinForms.4.0.0/.signature.p7s differ diff --git a/packages/Ookii.Dialogs.WinForms.4.0.0/Ookii.Dialogs.WinForms.4.0.0.nupkg b/packages/Ookii.Dialogs.WinForms.4.0.0/Ookii.Dialogs.WinForms.4.0.0.nupkg new file mode 100644 index 0000000..6fad277 Binary files /dev/null and b/packages/Ookii.Dialogs.WinForms.4.0.0/Ookii.Dialogs.WinForms.4.0.0.nupkg differ diff --git a/packages/Ookii.Dialogs.WinForms.4.0.0/images/icon.png b/packages/Ookii.Dialogs.WinForms.4.0.0/images/icon.png new file mode 100644 index 0000000..ddb59a6 Binary files /dev/null and b/packages/Ookii.Dialogs.WinForms.4.0.0/images/icon.png differ diff --git a/packages/Ookii.Dialogs.WinForms.4.0.0/lib/net462/Ookii.Dialogs.WinForms.dll b/packages/Ookii.Dialogs.WinForms.4.0.0/lib/net462/Ookii.Dialogs.WinForms.dll new file mode 100644 index 0000000..25c8745 Binary files /dev/null and b/packages/Ookii.Dialogs.WinForms.4.0.0/lib/net462/Ookii.Dialogs.WinForms.dll differ diff --git a/packages/Ookii.Dialogs.WinForms.4.0.0/lib/net462/Ookii.Dialogs.WinForms.pdb b/packages/Ookii.Dialogs.WinForms.4.0.0/lib/net462/Ookii.Dialogs.WinForms.pdb new file mode 100644 index 0000000..866b4fe Binary files /dev/null and b/packages/Ookii.Dialogs.WinForms.4.0.0/lib/net462/Ookii.Dialogs.WinForms.pdb differ diff --git a/packages/Ookii.Dialogs.WinForms.4.0.0/lib/net5.0-windows7.0/Ookii.Dialogs.WinForms.dll b/packages/Ookii.Dialogs.WinForms.4.0.0/lib/net5.0-windows7.0/Ookii.Dialogs.WinForms.dll new file mode 100644 index 0000000..d5d8eaa Binary files /dev/null and b/packages/Ookii.Dialogs.WinForms.4.0.0/lib/net5.0-windows7.0/Ookii.Dialogs.WinForms.dll differ diff --git a/packages/Ookii.Dialogs.WinForms.4.0.0/lib/net5.0-windows7.0/Ookii.Dialogs.WinForms.pdb b/packages/Ookii.Dialogs.WinForms.4.0.0/lib/net5.0-windows7.0/Ookii.Dialogs.WinForms.pdb new file mode 100644 index 0000000..37e61a0 Binary files /dev/null and b/packages/Ookii.Dialogs.WinForms.4.0.0/lib/net5.0-windows7.0/Ookii.Dialogs.WinForms.pdb differ diff --git a/packages/Ookii.Dialogs.WinForms.4.0.0/lib/net6.0-windows7.0/Ookii.Dialogs.WinForms.dll b/packages/Ookii.Dialogs.WinForms.4.0.0/lib/net6.0-windows7.0/Ookii.Dialogs.WinForms.dll new file mode 100644 index 0000000..77e847a Binary files /dev/null and b/packages/Ookii.Dialogs.WinForms.4.0.0/lib/net6.0-windows7.0/Ookii.Dialogs.WinForms.dll differ diff --git a/packages/Ookii.Dialogs.WinForms.4.0.0/lib/net6.0-windows7.0/Ookii.Dialogs.WinForms.pdb b/packages/Ookii.Dialogs.WinForms.4.0.0/lib/net6.0-windows7.0/Ookii.Dialogs.WinForms.pdb new file mode 100644 index 0000000..6714100 Binary files /dev/null and b/packages/Ookii.Dialogs.WinForms.4.0.0/lib/net6.0-windows7.0/Ookii.Dialogs.WinForms.pdb differ diff --git a/packages/Ookii.Dialogs.WinForms.4.0.0/lib/netcoreapp3.1/Ookii.Dialogs.WinForms.dll b/packages/Ookii.Dialogs.WinForms.4.0.0/lib/netcoreapp3.1/Ookii.Dialogs.WinForms.dll new file mode 100644 index 0000000..0c643e8 Binary files /dev/null and b/packages/Ookii.Dialogs.WinForms.4.0.0/lib/netcoreapp3.1/Ookii.Dialogs.WinForms.dll differ diff --git a/packages/Ookii.Dialogs.WinForms.4.0.0/lib/netcoreapp3.1/Ookii.Dialogs.WinForms.pdb b/packages/Ookii.Dialogs.WinForms.4.0.0/lib/netcoreapp3.1/Ookii.Dialogs.WinForms.pdb new file mode 100644 index 0000000..13265b9 Binary files /dev/null and b/packages/Ookii.Dialogs.WinForms.4.0.0/lib/netcoreapp3.1/Ookii.Dialogs.WinForms.pdb differ diff --git a/packages/System.Buffers.4.5.1/.signature.p7s b/packages/System.Buffers.4.5.1/.signature.p7s new file mode 100644 index 0000000..1bf2285 Binary files /dev/null and b/packages/System.Buffers.4.5.1/.signature.p7s differ diff --git a/packages/System.Buffers.4.5.1/LICENSE.TXT b/packages/System.Buffers.4.5.1/LICENSE.TXT new file mode 100644 index 0000000..984713a --- /dev/null +++ b/packages/System.Buffers.4.5.1/LICENSE.TXT @@ -0,0 +1,23 @@ +The MIT License (MIT) + +Copyright (c) .NET Foundation and Contributors + +All rights reserved. + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/packages/System.Buffers.4.5.1/System.Buffers.4.5.1.nupkg b/packages/System.Buffers.4.5.1/System.Buffers.4.5.1.nupkg new file mode 100644 index 0000000..f7ee6b2 Binary files /dev/null and b/packages/System.Buffers.4.5.1/System.Buffers.4.5.1.nupkg differ diff --git a/packages/System.Buffers.4.5.1/THIRD-PARTY-NOTICES.TXT b/packages/System.Buffers.4.5.1/THIRD-PARTY-NOTICES.TXT new file mode 100644 index 0000000..db542ca --- /dev/null +++ b/packages/System.Buffers.4.5.1/THIRD-PARTY-NOTICES.TXT @@ -0,0 +1,309 @@ +.NET Core uses third-party libraries or other resources that may be +distributed under licenses different than the .NET Core software. + +In the event that we accidentally failed to list a required notice, please +bring it to our attention. Post an issue or email us: + + dotnet@microsoft.com + +The attached notices are provided for information only. + +License notice for Slicing-by-8 +------------------------------- + +http://sourceforge.net/projects/slicing-by-8/ + +Copyright (c) 2004-2006 Intel Corporation - All Rights Reserved + + +This software program is licensed subject to the BSD License, available at +http://www.opensource.org/licenses/bsd-license.html. + + +License notice for Unicode data +------------------------------- + +http://www.unicode.org/copyright.html#License + +Copyright © 1991-2017 Unicode, Inc. All rights reserved. +Distributed under the Terms of Use in http://www.unicode.org/copyright.html. + +Permission is hereby granted, free of charge, to any person obtaining +a copy of the Unicode data files and any associated documentation +(the "Data Files") or Unicode software and any associated documentation +(the "Software") to deal in the Data Files or Software +without restriction, including without limitation the rights to use, +copy, modify, merge, publish, distribute, and/or sell copies of +the Data Files or Software, and to permit persons to whom the Data Files +or Software are furnished to do so, provided that either +(a) this copyright and permission notice appear with all copies +of the Data Files or Software, or +(b) this copyright and permission notice appear in associated +Documentation. + +THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT WARRANTY OF +ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE +WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +NONINFRINGEMENT OF THIRD PARTY RIGHTS. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS +NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL +DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, +DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER +TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR +PERFORMANCE OF THE DATA FILES OR SOFTWARE. + +Except as contained in this notice, the name of a copyright holder +shall not be used in advertising or otherwise to promote the sale, +use or other dealings in these Data Files or Software without prior +written authorization of the copyright holder. + +License notice for Zlib +----------------------- + +https://github.com/madler/zlib +http://zlib.net/zlib_license.html + +/* zlib.h -- interface of the 'zlib' general purpose compression library + version 1.2.11, January 15th, 2017 + + Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler + + This software is provided 'as-is', without any express or implied + warranty. In no event will the authors be held liable for any damages + arising from the use of this software. + + Permission is granted to anyone to use this software for any purpose, + including commercial applications, and to alter it and redistribute it + freely, subject to the following restrictions: + + 1. The origin of this software must not be misrepresented; you must not + claim that you wrote the original software. If you use this software + in a product, an acknowledgment in the product documentation would be + appreciated but is not required. + 2. Altered source versions must be plainly marked as such, and must not be + misrepresented as being the original software. + 3. This notice may not be removed or altered from any source distribution. + + Jean-loup Gailly Mark Adler + jloup@gzip.org madler@alumni.caltech.edu + +*/ + +License notice for Mono +------------------------------- + +http://www.mono-project.com/docs/about-mono/ + +Copyright (c) .NET Foundation Contributors + +MIT License + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the Software), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE +LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION +WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +License notice for International Organization for Standardization +----------------------------------------------------------------- + +Portions (C) International Organization for Standardization 1986: + Permission to copy in any form is granted for use with + conforming SGML systems and applications as defined in + ISO 8879, provided this notice is included in all copies. + +License notice for Intel +------------------------ + +"Copyright (c) 2004-2006 Intel Corporation - All Rights Reserved + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this +list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, +this list of conditions and the following disclaimer in the documentation +and/or other materials provided with the distribution. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +License notice for Xamarin and Novell +------------------------------------- + +Copyright (c) 2015 Xamarin, Inc (http://www.xamarin.com) + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. + +Copyright (c) 2011 Novell, Inc (http://www.novell.com) + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. + +Third party notice for W3C +-------------------------- + +"W3C SOFTWARE AND DOCUMENT NOTICE AND LICENSE +Status: This license takes effect 13 May, 2015. +This work is being provided by the copyright holders under the following license. +License +By obtaining and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with the following terms and conditions. +Permission to copy, modify, and distribute this work, with or without modification, for any purpose and without fee or royalty is hereby granted, provided that you include the following on ALL copies of the work or portions thereof, including modifications: +The full text of this NOTICE in a location viewable to users of the redistributed or derivative work. +Any pre-existing intellectual property disclaimers, notices, or terms and conditions. If none exist, the W3C Software and Document Short Notice should be included. +Notice of any changes or modifications, through a copyright statement on the new code or document such as "This software or document includes material copied from or derived from [title and URI of the W3C document]. Copyright © [YEAR] W3C® (MIT, ERCIM, Keio, Beihang)." +Disclaimers +THIS WORK IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENT WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. +COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR DOCUMENT. +The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the work without specific, written prior permission. Title to copyright in this work will at all times remain with copyright holders." + +License notice for Bit Twiddling Hacks +-------------------------------------- + +Bit Twiddling Hacks + +By Sean Eron Anderson +seander@cs.stanford.edu + +Individually, the code snippets here are in the public domain (unless otherwise +noted) — feel free to use them however you please. The aggregate collection and +descriptions are © 1997-2005 Sean Eron Anderson. The code and descriptions are +distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY and +without even the implied warranty of merchantability or fitness for a particular +purpose. + +License notice for Brotli +-------------------------------------- + +Copyright (c) 2009, 2010, 2013-2016 by the Brotli Authors. + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. + +compress_fragment.c: +Copyright (c) 2011, Google Inc. +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: + + * Redistributions of source code must retain the above copyright +notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above +copyright notice, this list of conditions and the following disclaimer +in the documentation and/or other materials provided with the +distribution. + * Neither the name of Google Inc. nor the names of its +contributors may be used to endorse or promote products derived from +this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +""AS IS"" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +decode_fuzzer.c: +Copyright (c) 2015 The Chromium Authors. All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: + + * Redistributions of source code must retain the above copyright +notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above +copyright notice, this list of conditions and the following disclaimer +in the documentation and/or other materials provided with the +distribution. + * Neither the name of Google Inc. nor the names of its +contributors may be used to endorse or promote products derived from +this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +""AS IS"" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." + diff --git a/packages/System.Buffers.4.5.1/lib/net461/System.Buffers.dll b/packages/System.Buffers.4.5.1/lib/net461/System.Buffers.dll new file mode 100644 index 0000000..f2d83c5 Binary files /dev/null and b/packages/System.Buffers.4.5.1/lib/net461/System.Buffers.dll differ diff --git a/packages/System.Buffers.4.5.1/lib/net461/System.Buffers.xml b/packages/System.Buffers.4.5.1/lib/net461/System.Buffers.xml new file mode 100644 index 0000000..e243dce --- /dev/null +++ b/packages/System.Buffers.4.5.1/lib/net461/System.Buffers.xml @@ -0,0 +1,38 @@ + + + System.Buffers + + + + Provides a resource pool that enables reusing instances of type . + The type of the objects that are in the resource pool. + + + Initializes a new instance of the class. + + + Creates a new instance of the class. + A new instance of the class. + + + Creates a new instance of the class using the specifed configuration. + The maximum length of an array instance that may be stored in the pool. + The maximum number of array instances that may be stored in each bucket in the pool. The pool groups arrays of similar lengths into buckets for faster access. + A new instance of the class with the specified configuration. + + + Retrieves a buffer that is at least the requested length. + The minimum length of the array. + An array of type that is at least minimumLength in length. + + + Returns an array to the pool that was previously obtained using the method on the same instance. + A buffer to return to the pool that was previously obtained using the method. + Indicates whether the contents of the buffer should be cleared before reuse. If clearArray is set to true, and if the pool will store the buffer to enable subsequent reuse, the method will clear the array of its contents so that a subsequent caller using the method will not see the content of the previous caller. If clearArray is set to false or if the pool will release the buffer, the array's contents are left unchanged. + + + Gets a shared instance. + A shared instance. + + + \ No newline at end of file diff --git a/packages/System.Buffers.4.5.1/lib/netcoreapp2.0/_._ b/packages/System.Buffers.4.5.1/lib/netcoreapp2.0/_._ new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Buffers.4.5.1/lib/netstandard1.1/System.Buffers.dll b/packages/System.Buffers.4.5.1/lib/netstandard1.1/System.Buffers.dll new file mode 100644 index 0000000..14e5c53 Binary files /dev/null and b/packages/System.Buffers.4.5.1/lib/netstandard1.1/System.Buffers.dll differ diff --git a/packages/System.Buffers.4.5.1/lib/netstandard1.1/System.Buffers.xml b/packages/System.Buffers.4.5.1/lib/netstandard1.1/System.Buffers.xml new file mode 100644 index 0000000..e243dce --- /dev/null +++ b/packages/System.Buffers.4.5.1/lib/netstandard1.1/System.Buffers.xml @@ -0,0 +1,38 @@ + + + System.Buffers + + + + Provides a resource pool that enables reusing instances of type . + The type of the objects that are in the resource pool. + + + Initializes a new instance of the class. + + + Creates a new instance of the class. + A new instance of the class. + + + Creates a new instance of the class using the specifed configuration. + The maximum length of an array instance that may be stored in the pool. + The maximum number of array instances that may be stored in each bucket in the pool. The pool groups arrays of similar lengths into buckets for faster access. + A new instance of the class with the specified configuration. + + + Retrieves a buffer that is at least the requested length. + The minimum length of the array. + An array of type that is at least minimumLength in length. + + + Returns an array to the pool that was previously obtained using the method on the same instance. + A buffer to return to the pool that was previously obtained using the method. + Indicates whether the contents of the buffer should be cleared before reuse. If clearArray is set to true, and if the pool will store the buffer to enable subsequent reuse, the method will clear the array of its contents so that a subsequent caller using the method will not see the content of the previous caller. If clearArray is set to false or if the pool will release the buffer, the array's contents are left unchanged. + + + Gets a shared instance. + A shared instance. + + + \ No newline at end of file diff --git a/packages/System.Buffers.4.5.1/lib/netstandard2.0/System.Buffers.dll b/packages/System.Buffers.4.5.1/lib/netstandard2.0/System.Buffers.dll new file mode 100644 index 0000000..c0970c0 Binary files /dev/null and b/packages/System.Buffers.4.5.1/lib/netstandard2.0/System.Buffers.dll differ diff --git a/packages/System.Buffers.4.5.1/lib/netstandard2.0/System.Buffers.xml b/packages/System.Buffers.4.5.1/lib/netstandard2.0/System.Buffers.xml new file mode 100644 index 0000000..e243dce --- /dev/null +++ b/packages/System.Buffers.4.5.1/lib/netstandard2.0/System.Buffers.xml @@ -0,0 +1,38 @@ + + + System.Buffers + + + + Provides a resource pool that enables reusing instances of type . + The type of the objects that are in the resource pool. + + + Initializes a new instance of the class. + + + Creates a new instance of the class. + A new instance of the class. + + + Creates a new instance of the class using the specifed configuration. + The maximum length of an array instance that may be stored in the pool. + The maximum number of array instances that may be stored in each bucket in the pool. The pool groups arrays of similar lengths into buckets for faster access. + A new instance of the class with the specified configuration. + + + Retrieves a buffer that is at least the requested length. + The minimum length of the array. + An array of type that is at least minimumLength in length. + + + Returns an array to the pool that was previously obtained using the method on the same instance. + A buffer to return to the pool that was previously obtained using the method. + Indicates whether the contents of the buffer should be cleared before reuse. If clearArray is set to true, and if the pool will store the buffer to enable subsequent reuse, the method will clear the array of its contents so that a subsequent caller using the method will not see the content of the previous caller. If clearArray is set to false or if the pool will release the buffer, the array's contents are left unchanged. + + + Gets a shared instance. + A shared instance. + + + \ No newline at end of file diff --git a/packages/System.Buffers.4.5.1/lib/uap10.0.16299/_._ b/packages/System.Buffers.4.5.1/lib/uap10.0.16299/_._ new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Buffers.4.5.1/ref/net45/System.Buffers.dll b/packages/System.Buffers.4.5.1/ref/net45/System.Buffers.dll new file mode 100644 index 0000000..022667e Binary files /dev/null and b/packages/System.Buffers.4.5.1/ref/net45/System.Buffers.dll differ diff --git a/packages/System.Buffers.4.5.1/ref/net45/System.Buffers.xml b/packages/System.Buffers.4.5.1/ref/net45/System.Buffers.xml new file mode 100644 index 0000000..e243dce --- /dev/null +++ b/packages/System.Buffers.4.5.1/ref/net45/System.Buffers.xml @@ -0,0 +1,38 @@ + + + System.Buffers + + + + Provides a resource pool that enables reusing instances of type . + The type of the objects that are in the resource pool. + + + Initializes a new instance of the class. + + + Creates a new instance of the class. + A new instance of the class. + + + Creates a new instance of the class using the specifed configuration. + The maximum length of an array instance that may be stored in the pool. + The maximum number of array instances that may be stored in each bucket in the pool. The pool groups arrays of similar lengths into buckets for faster access. + A new instance of the class with the specified configuration. + + + Retrieves a buffer that is at least the requested length. + The minimum length of the array. + An array of type that is at least minimumLength in length. + + + Returns an array to the pool that was previously obtained using the method on the same instance. + A buffer to return to the pool that was previously obtained using the method. + Indicates whether the contents of the buffer should be cleared before reuse. If clearArray is set to true, and if the pool will store the buffer to enable subsequent reuse, the method will clear the array of its contents so that a subsequent caller using the method will not see the content of the previous caller. If clearArray is set to false or if the pool will release the buffer, the array's contents are left unchanged. + + + Gets a shared instance. + A shared instance. + + + \ No newline at end of file diff --git a/packages/System.Buffers.4.5.1/ref/netcoreapp2.0/_._ b/packages/System.Buffers.4.5.1/ref/netcoreapp2.0/_._ new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Buffers.4.5.1/ref/netstandard1.1/System.Buffers.dll b/packages/System.Buffers.4.5.1/ref/netstandard1.1/System.Buffers.dll new file mode 100644 index 0000000..9daa056 Binary files /dev/null and b/packages/System.Buffers.4.5.1/ref/netstandard1.1/System.Buffers.dll differ diff --git a/packages/System.Buffers.4.5.1/ref/netstandard1.1/System.Buffers.xml b/packages/System.Buffers.4.5.1/ref/netstandard1.1/System.Buffers.xml new file mode 100644 index 0000000..e243dce --- /dev/null +++ b/packages/System.Buffers.4.5.1/ref/netstandard1.1/System.Buffers.xml @@ -0,0 +1,38 @@ + + + System.Buffers + + + + Provides a resource pool that enables reusing instances of type . + The type of the objects that are in the resource pool. + + + Initializes a new instance of the class. + + + Creates a new instance of the class. + A new instance of the class. + + + Creates a new instance of the class using the specifed configuration. + The maximum length of an array instance that may be stored in the pool. + The maximum number of array instances that may be stored in each bucket in the pool. The pool groups arrays of similar lengths into buckets for faster access. + A new instance of the class with the specified configuration. + + + Retrieves a buffer that is at least the requested length. + The minimum length of the array. + An array of type that is at least minimumLength in length. + + + Returns an array to the pool that was previously obtained using the method on the same instance. + A buffer to return to the pool that was previously obtained using the method. + Indicates whether the contents of the buffer should be cleared before reuse. If clearArray is set to true, and if the pool will store the buffer to enable subsequent reuse, the method will clear the array of its contents so that a subsequent caller using the method will not see the content of the previous caller. If clearArray is set to false or if the pool will release the buffer, the array's contents are left unchanged. + + + Gets a shared instance. + A shared instance. + + + \ No newline at end of file diff --git a/packages/System.Buffers.4.5.1/ref/netstandard2.0/System.Buffers.dll b/packages/System.Buffers.4.5.1/ref/netstandard2.0/System.Buffers.dll new file mode 100644 index 0000000..a294e52 Binary files /dev/null and b/packages/System.Buffers.4.5.1/ref/netstandard2.0/System.Buffers.dll differ diff --git a/packages/System.Buffers.4.5.1/ref/netstandard2.0/System.Buffers.xml b/packages/System.Buffers.4.5.1/ref/netstandard2.0/System.Buffers.xml new file mode 100644 index 0000000..e243dce --- /dev/null +++ b/packages/System.Buffers.4.5.1/ref/netstandard2.0/System.Buffers.xml @@ -0,0 +1,38 @@ + + + System.Buffers + + + + Provides a resource pool that enables reusing instances of type . + The type of the objects that are in the resource pool. + + + Initializes a new instance of the class. + + + Creates a new instance of the class. + A new instance of the class. + + + Creates a new instance of the class using the specifed configuration. + The maximum length of an array instance that may be stored in the pool. + The maximum number of array instances that may be stored in each bucket in the pool. The pool groups arrays of similar lengths into buckets for faster access. + A new instance of the class with the specified configuration. + + + Retrieves a buffer that is at least the requested length. + The minimum length of the array. + An array of type that is at least minimumLength in length. + + + Returns an array to the pool that was previously obtained using the method on the same instance. + A buffer to return to the pool that was previously obtained using the method. + Indicates whether the contents of the buffer should be cleared before reuse. If clearArray is set to true, and if the pool will store the buffer to enable subsequent reuse, the method will clear the array of its contents so that a subsequent caller using the method will not see the content of the previous caller. If clearArray is set to false or if the pool will release the buffer, the array's contents are left unchanged. + + + Gets a shared instance. + A shared instance. + + + \ No newline at end of file diff --git a/packages/System.Buffers.4.5.1/ref/uap10.0.16299/_._ b/packages/System.Buffers.4.5.1/ref/uap10.0.16299/_._ new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Buffers.4.5.1/useSharedDesignerContext.txt b/packages/System.Buffers.4.5.1/useSharedDesignerContext.txt new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Buffers.4.5.1/version.txt b/packages/System.Buffers.4.5.1/version.txt new file mode 100644 index 0000000..8d6cdd6 --- /dev/null +++ b/packages/System.Buffers.4.5.1/version.txt @@ -0,0 +1 @@ +7601f4f6225089ffb291dc7d58293c7bbf5c5d4f diff --git a/packages/System.Memory.4.5.4/.signature.p7s b/packages/System.Memory.4.5.4/.signature.p7s new file mode 100644 index 0000000..abb2a57 Binary files /dev/null and b/packages/System.Memory.4.5.4/.signature.p7s differ diff --git a/packages/System.Memory.4.5.4/LICENSE.TXT b/packages/System.Memory.4.5.4/LICENSE.TXT new file mode 100644 index 0000000..984713a --- /dev/null +++ b/packages/System.Memory.4.5.4/LICENSE.TXT @@ -0,0 +1,23 @@ +The MIT License (MIT) + +Copyright (c) .NET Foundation and Contributors + +All rights reserved. + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/packages/System.Memory.4.5.4/System.Memory.4.5.4.nupkg b/packages/System.Memory.4.5.4/System.Memory.4.5.4.nupkg new file mode 100644 index 0000000..6844e92 Binary files /dev/null and b/packages/System.Memory.4.5.4/System.Memory.4.5.4.nupkg differ diff --git a/packages/System.Memory.4.5.4/THIRD-PARTY-NOTICES.TXT b/packages/System.Memory.4.5.4/THIRD-PARTY-NOTICES.TXT new file mode 100644 index 0000000..db542ca --- /dev/null +++ b/packages/System.Memory.4.5.4/THIRD-PARTY-NOTICES.TXT @@ -0,0 +1,309 @@ +.NET Core uses third-party libraries or other resources that may be +distributed under licenses different than the .NET Core software. + +In the event that we accidentally failed to list a required notice, please +bring it to our attention. Post an issue or email us: + + dotnet@microsoft.com + +The attached notices are provided for information only. + +License notice for Slicing-by-8 +------------------------------- + +http://sourceforge.net/projects/slicing-by-8/ + +Copyright (c) 2004-2006 Intel Corporation - All Rights Reserved + + +This software program is licensed subject to the BSD License, available at +http://www.opensource.org/licenses/bsd-license.html. + + +License notice for Unicode data +------------------------------- + +http://www.unicode.org/copyright.html#License + +Copyright © 1991-2017 Unicode, Inc. All rights reserved. +Distributed under the Terms of Use in http://www.unicode.org/copyright.html. + +Permission is hereby granted, free of charge, to any person obtaining +a copy of the Unicode data files and any associated documentation +(the "Data Files") or Unicode software and any associated documentation +(the "Software") to deal in the Data Files or Software +without restriction, including without limitation the rights to use, +copy, modify, merge, publish, distribute, and/or sell copies of +the Data Files or Software, and to permit persons to whom the Data Files +or Software are furnished to do so, provided that either +(a) this copyright and permission notice appear with all copies +of the Data Files or Software, or +(b) this copyright and permission notice appear in associated +Documentation. + +THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT WARRANTY OF +ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE +WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +NONINFRINGEMENT OF THIRD PARTY RIGHTS. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS +NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL +DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, +DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER +TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR +PERFORMANCE OF THE DATA FILES OR SOFTWARE. + +Except as contained in this notice, the name of a copyright holder +shall not be used in advertising or otherwise to promote the sale, +use or other dealings in these Data Files or Software without prior +written authorization of the copyright holder. + +License notice for Zlib +----------------------- + +https://github.com/madler/zlib +http://zlib.net/zlib_license.html + +/* zlib.h -- interface of the 'zlib' general purpose compression library + version 1.2.11, January 15th, 2017 + + Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler + + This software is provided 'as-is', without any express or implied + warranty. In no event will the authors be held liable for any damages + arising from the use of this software. + + Permission is granted to anyone to use this software for any purpose, + including commercial applications, and to alter it and redistribute it + freely, subject to the following restrictions: + + 1. The origin of this software must not be misrepresented; you must not + claim that you wrote the original software. If you use this software + in a product, an acknowledgment in the product documentation would be + appreciated but is not required. + 2. Altered source versions must be plainly marked as such, and must not be + misrepresented as being the original software. + 3. This notice may not be removed or altered from any source distribution. + + Jean-loup Gailly Mark Adler + jloup@gzip.org madler@alumni.caltech.edu + +*/ + +License notice for Mono +------------------------------- + +http://www.mono-project.com/docs/about-mono/ + +Copyright (c) .NET Foundation Contributors + +MIT License + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the Software), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE +LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION +WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +License notice for International Organization for Standardization +----------------------------------------------------------------- + +Portions (C) International Organization for Standardization 1986: + Permission to copy in any form is granted for use with + conforming SGML systems and applications as defined in + ISO 8879, provided this notice is included in all copies. + +License notice for Intel +------------------------ + +"Copyright (c) 2004-2006 Intel Corporation - All Rights Reserved + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this +list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, +this list of conditions and the following disclaimer in the documentation +and/or other materials provided with the distribution. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +License notice for Xamarin and Novell +------------------------------------- + +Copyright (c) 2015 Xamarin, Inc (http://www.xamarin.com) + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. + +Copyright (c) 2011 Novell, Inc (http://www.novell.com) + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. + +Third party notice for W3C +-------------------------- + +"W3C SOFTWARE AND DOCUMENT NOTICE AND LICENSE +Status: This license takes effect 13 May, 2015. +This work is being provided by the copyright holders under the following license. +License +By obtaining and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with the following terms and conditions. +Permission to copy, modify, and distribute this work, with or without modification, for any purpose and without fee or royalty is hereby granted, provided that you include the following on ALL copies of the work or portions thereof, including modifications: +The full text of this NOTICE in a location viewable to users of the redistributed or derivative work. +Any pre-existing intellectual property disclaimers, notices, or terms and conditions. If none exist, the W3C Software and Document Short Notice should be included. +Notice of any changes or modifications, through a copyright statement on the new code or document such as "This software or document includes material copied from or derived from [title and URI of the W3C document]. Copyright © [YEAR] W3C® (MIT, ERCIM, Keio, Beihang)." +Disclaimers +THIS WORK IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENT WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. +COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR DOCUMENT. +The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the work without specific, written prior permission. Title to copyright in this work will at all times remain with copyright holders." + +License notice for Bit Twiddling Hacks +-------------------------------------- + +Bit Twiddling Hacks + +By Sean Eron Anderson +seander@cs.stanford.edu + +Individually, the code snippets here are in the public domain (unless otherwise +noted) — feel free to use them however you please. The aggregate collection and +descriptions are © 1997-2005 Sean Eron Anderson. The code and descriptions are +distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY and +without even the implied warranty of merchantability or fitness for a particular +purpose. + +License notice for Brotli +-------------------------------------- + +Copyright (c) 2009, 2010, 2013-2016 by the Brotli Authors. + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. + +compress_fragment.c: +Copyright (c) 2011, Google Inc. +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: + + * Redistributions of source code must retain the above copyright +notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above +copyright notice, this list of conditions and the following disclaimer +in the documentation and/or other materials provided with the +distribution. + * Neither the name of Google Inc. nor the names of its +contributors may be used to endorse or promote products derived from +this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +""AS IS"" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +decode_fuzzer.c: +Copyright (c) 2015 The Chromium Authors. All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: + + * Redistributions of source code must retain the above copyright +notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above +copyright notice, this list of conditions and the following disclaimer +in the documentation and/or other materials provided with the +distribution. + * Neither the name of Google Inc. nor the names of its +contributors may be used to endorse or promote products derived from +this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +""AS IS"" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." + diff --git a/packages/System.Memory.4.5.4/lib/net461/System.Memory.dll b/packages/System.Memory.4.5.4/lib/net461/System.Memory.dll new file mode 100644 index 0000000..5d19470 Binary files /dev/null and b/packages/System.Memory.4.5.4/lib/net461/System.Memory.dll differ diff --git a/packages/System.Memory.4.5.4/lib/net461/System.Memory.xml b/packages/System.Memory.4.5.4/lib/net461/System.Memory.xml new file mode 100644 index 0000000..4d12fd7 --- /dev/null +++ b/packages/System.Memory.4.5.4/lib/net461/System.Memory.xml @@ -0,0 +1,355 @@ + + + System.Memory + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/packages/System.Memory.4.5.4/lib/netcoreapp2.1/_._ b/packages/System.Memory.4.5.4/lib/netcoreapp2.1/_._ new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Memory.4.5.4/lib/netstandard1.1/System.Memory.dll b/packages/System.Memory.4.5.4/lib/netstandard1.1/System.Memory.dll new file mode 100644 index 0000000..98f1c5d Binary files /dev/null and b/packages/System.Memory.4.5.4/lib/netstandard1.1/System.Memory.dll differ diff --git a/packages/System.Memory.4.5.4/lib/netstandard1.1/System.Memory.xml b/packages/System.Memory.4.5.4/lib/netstandard1.1/System.Memory.xml new file mode 100644 index 0000000..4d12fd7 --- /dev/null +++ b/packages/System.Memory.4.5.4/lib/netstandard1.1/System.Memory.xml @@ -0,0 +1,355 @@ + + + System.Memory + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/packages/System.Memory.4.5.4/lib/netstandard2.0/System.Memory.dll b/packages/System.Memory.4.5.4/lib/netstandard2.0/System.Memory.dll new file mode 100644 index 0000000..953a9d2 Binary files /dev/null and b/packages/System.Memory.4.5.4/lib/netstandard2.0/System.Memory.dll differ diff --git a/packages/System.Memory.4.5.4/lib/netstandard2.0/System.Memory.xml b/packages/System.Memory.4.5.4/lib/netstandard2.0/System.Memory.xml new file mode 100644 index 0000000..4d12fd7 --- /dev/null +++ b/packages/System.Memory.4.5.4/lib/netstandard2.0/System.Memory.xml @@ -0,0 +1,355 @@ + + + System.Memory + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/packages/System.Memory.4.5.4/ref/netcoreapp2.1/_._ b/packages/System.Memory.4.5.4/ref/netcoreapp2.1/_._ new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Memory.4.5.4/useSharedDesignerContext.txt b/packages/System.Memory.4.5.4/useSharedDesignerContext.txt new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Memory.4.5.4/version.txt b/packages/System.Memory.4.5.4/version.txt new file mode 100644 index 0000000..8d6cdd6 --- /dev/null +++ b/packages/System.Memory.4.5.4/version.txt @@ -0,0 +1 @@ +7601f4f6225089ffb291dc7d58293c7bbf5c5d4f diff --git a/packages/System.Numerics.Vectors.4.5.0/.signature.p7s b/packages/System.Numerics.Vectors.4.5.0/.signature.p7s new file mode 100644 index 0000000..a945f63 Binary files /dev/null and b/packages/System.Numerics.Vectors.4.5.0/.signature.p7s differ diff --git a/packages/System.Numerics.Vectors.4.5.0/LICENSE.TXT b/packages/System.Numerics.Vectors.4.5.0/LICENSE.TXT new file mode 100644 index 0000000..984713a --- /dev/null +++ b/packages/System.Numerics.Vectors.4.5.0/LICENSE.TXT @@ -0,0 +1,23 @@ +The MIT License (MIT) + +Copyright (c) .NET Foundation and Contributors + +All rights reserved. + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/packages/System.Numerics.Vectors.4.5.0/System.Numerics.Vectors.4.5.0.nupkg b/packages/System.Numerics.Vectors.4.5.0/System.Numerics.Vectors.4.5.0.nupkg new file mode 100644 index 0000000..0ef4637 Binary files /dev/null and b/packages/System.Numerics.Vectors.4.5.0/System.Numerics.Vectors.4.5.0.nupkg differ diff --git a/packages/System.Numerics.Vectors.4.5.0/THIRD-PARTY-NOTICES.TXT b/packages/System.Numerics.Vectors.4.5.0/THIRD-PARTY-NOTICES.TXT new file mode 100644 index 0000000..db542ca --- /dev/null +++ b/packages/System.Numerics.Vectors.4.5.0/THIRD-PARTY-NOTICES.TXT @@ -0,0 +1,309 @@ +.NET Core uses third-party libraries or other resources that may be +distributed under licenses different than the .NET Core software. + +In the event that we accidentally failed to list a required notice, please +bring it to our attention. Post an issue or email us: + + dotnet@microsoft.com + +The attached notices are provided for information only. + +License notice for Slicing-by-8 +------------------------------- + +http://sourceforge.net/projects/slicing-by-8/ + +Copyright (c) 2004-2006 Intel Corporation - All Rights Reserved + + +This software program is licensed subject to the BSD License, available at +http://www.opensource.org/licenses/bsd-license.html. + + +License notice for Unicode data +------------------------------- + +http://www.unicode.org/copyright.html#License + +Copyright © 1991-2017 Unicode, Inc. All rights reserved. +Distributed under the Terms of Use in http://www.unicode.org/copyright.html. + +Permission is hereby granted, free of charge, to any person obtaining +a copy of the Unicode data files and any associated documentation +(the "Data Files") or Unicode software and any associated documentation +(the "Software") to deal in the Data Files or Software +without restriction, including without limitation the rights to use, +copy, modify, merge, publish, distribute, and/or sell copies of +the Data Files or Software, and to permit persons to whom the Data Files +or Software are furnished to do so, provided that either +(a) this copyright and permission notice appear with all copies +of the Data Files or Software, or +(b) this copyright and permission notice appear in associated +Documentation. + +THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT WARRANTY OF +ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE +WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +NONINFRINGEMENT OF THIRD PARTY RIGHTS. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS +NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL +DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, +DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER +TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR +PERFORMANCE OF THE DATA FILES OR SOFTWARE. + +Except as contained in this notice, the name of a copyright holder +shall not be used in advertising or otherwise to promote the sale, +use or other dealings in these Data Files or Software without prior +written authorization of the copyright holder. + +License notice for Zlib +----------------------- + +https://github.com/madler/zlib +http://zlib.net/zlib_license.html + +/* zlib.h -- interface of the 'zlib' general purpose compression library + version 1.2.11, January 15th, 2017 + + Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler + + This software is provided 'as-is', without any express or implied + warranty. In no event will the authors be held liable for any damages + arising from the use of this software. + + Permission is granted to anyone to use this software for any purpose, + including commercial applications, and to alter it and redistribute it + freely, subject to the following restrictions: + + 1. The origin of this software must not be misrepresented; you must not + claim that you wrote the original software. If you use this software + in a product, an acknowledgment in the product documentation would be + appreciated but is not required. + 2. Altered source versions must be plainly marked as such, and must not be + misrepresented as being the original software. + 3. This notice may not be removed or altered from any source distribution. + + Jean-loup Gailly Mark Adler + jloup@gzip.org madler@alumni.caltech.edu + +*/ + +License notice for Mono +------------------------------- + +http://www.mono-project.com/docs/about-mono/ + +Copyright (c) .NET Foundation Contributors + +MIT License + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the Software), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE +LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION +WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +License notice for International Organization for Standardization +----------------------------------------------------------------- + +Portions (C) International Organization for Standardization 1986: + Permission to copy in any form is granted for use with + conforming SGML systems and applications as defined in + ISO 8879, provided this notice is included in all copies. + +License notice for Intel +------------------------ + +"Copyright (c) 2004-2006 Intel Corporation - All Rights Reserved + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this +list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, +this list of conditions and the following disclaimer in the documentation +and/or other materials provided with the distribution. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +License notice for Xamarin and Novell +------------------------------------- + +Copyright (c) 2015 Xamarin, Inc (http://www.xamarin.com) + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. + +Copyright (c) 2011 Novell, Inc (http://www.novell.com) + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. + +Third party notice for W3C +-------------------------- + +"W3C SOFTWARE AND DOCUMENT NOTICE AND LICENSE +Status: This license takes effect 13 May, 2015. +This work is being provided by the copyright holders under the following license. +License +By obtaining and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with the following terms and conditions. +Permission to copy, modify, and distribute this work, with or without modification, for any purpose and without fee or royalty is hereby granted, provided that you include the following on ALL copies of the work or portions thereof, including modifications: +The full text of this NOTICE in a location viewable to users of the redistributed or derivative work. +Any pre-existing intellectual property disclaimers, notices, or terms and conditions. If none exist, the W3C Software and Document Short Notice should be included. +Notice of any changes or modifications, through a copyright statement on the new code or document such as "This software or document includes material copied from or derived from [title and URI of the W3C document]. Copyright © [YEAR] W3C® (MIT, ERCIM, Keio, Beihang)." +Disclaimers +THIS WORK IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENT WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. +COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR DOCUMENT. +The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the work without specific, written prior permission. Title to copyright in this work will at all times remain with copyright holders." + +License notice for Bit Twiddling Hacks +-------------------------------------- + +Bit Twiddling Hacks + +By Sean Eron Anderson +seander@cs.stanford.edu + +Individually, the code snippets here are in the public domain (unless otherwise +noted) — feel free to use them however you please. The aggregate collection and +descriptions are © 1997-2005 Sean Eron Anderson. The code and descriptions are +distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY and +without even the implied warranty of merchantability or fitness for a particular +purpose. + +License notice for Brotli +-------------------------------------- + +Copyright (c) 2009, 2010, 2013-2016 by the Brotli Authors. + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. + +compress_fragment.c: +Copyright (c) 2011, Google Inc. +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: + + * Redistributions of source code must retain the above copyright +notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above +copyright notice, this list of conditions and the following disclaimer +in the documentation and/or other materials provided with the +distribution. + * Neither the name of Google Inc. nor the names of its +contributors may be used to endorse or promote products derived from +this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +""AS IS"" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +decode_fuzzer.c: +Copyright (c) 2015 The Chromium Authors. All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: + + * Redistributions of source code must retain the above copyright +notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above +copyright notice, this list of conditions and the following disclaimer +in the documentation and/or other materials provided with the +distribution. + * Neither the name of Google Inc. nor the names of its +contributors may be used to endorse or promote products derived from +this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +""AS IS"" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." + diff --git a/packages/System.Numerics.Vectors.4.5.0/lib/MonoAndroid10/_._ b/packages/System.Numerics.Vectors.4.5.0/lib/MonoAndroid10/_._ new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Numerics.Vectors.4.5.0/lib/MonoTouch10/_._ b/packages/System.Numerics.Vectors.4.5.0/lib/MonoTouch10/_._ new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Numerics.Vectors.4.5.0/lib/net46/System.Numerics.Vectors.dll b/packages/System.Numerics.Vectors.4.5.0/lib/net46/System.Numerics.Vectors.dll new file mode 100644 index 0000000..0865972 Binary files /dev/null and b/packages/System.Numerics.Vectors.4.5.0/lib/net46/System.Numerics.Vectors.dll differ diff --git a/packages/System.Numerics.Vectors.4.5.0/lib/net46/System.Numerics.Vectors.xml b/packages/System.Numerics.Vectors.4.5.0/lib/net46/System.Numerics.Vectors.xml new file mode 100644 index 0000000..da34d39 --- /dev/null +++ b/packages/System.Numerics.Vectors.4.5.0/lib/net46/System.Numerics.Vectors.xml @@ -0,0 +1,2621 @@ + + + System.Numerics.Vectors + + + + Represents a 3x2 matrix. + + + Creates a 3x2 matrix from the specified components. + The value to assign to the first element in the first row. + The value to assign to the second element in the first row. + The value to assign to the first element in the second row. + The value to assign to the second element in the second row. + The value to assign to the first element in the third row. + The value to assign to the second element in the third row. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values of value1 and value2. + + + Creates a rotation matrix using the given rotation in radians. + The amount of rotation, in radians. + The rotation matrix. + + + Creates a rotation matrix using the specified rotation in radians and a center point. + The amount of rotation, in radians. + The center point. + The rotation matrix. + + + Creates a scaling matrix from the specified X and Y components. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The scaling matrix. + + + Creates a scaling matrix that scales uniformly with the specified scale with an offset from the specified center. + The uniform scale to use. + The center offset. + The scaling matrix. + + + Creates a scaling matrix that is offset by a given center point. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The center point. + The scaling matrix. + + + Creates a scaling matrix that scales uniformly with the given scale. + The uniform scale to use. + The scaling matrix. + + + Creates a scaling matrix from the specified vector scale. + The scale to use. + The scaling matrix. + + + Creates a scaling matrix from the specified vector scale with an offset from the specified center point. + The scale to use. + The center offset. + The scaling matrix. + + + Creates a skew matrix from the specified angles in radians. + The X angle, in radians. + The Y angle, in radians. + The skew matrix. + + + Creates a skew matrix from the specified angles in radians and a center point. + The X angle, in radians. + The Y angle, in radians. + The center point. + The skew matrix. + + + Creates a translation matrix from the specified 2-dimensional vector. + The translation position. + The translation matrix. + + + Creates a translation matrix from the specified X and Y components. + The X position. + The Y position. + The translation matrix. + + + Returns a value that indicates whether this instance and another 3x2 matrix are equal. + The other matrix. + true if the two matrices are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Calculates the determinant for this matrix. + The determinant. + + + Returns the hash code for this instance. + The hash code. + + + Gets the multiplicative identity matrix. + The multiplicative identify matrix. + + + Inverts the specified matrix. The return value indicates whether the operation succeeded. + The matrix to invert. + When this method returns, contains the inverted matrix if the operation succeeded. + true if matrix was converted successfully; otherwise, false. + + + Indicates whether the current matrix is the identity matrix. + true if the current matrix is the identity matrix; otherwise, false. + + + Performs a linear interpolation from one matrix to a second matrix based on a value that specifies the weighting of the second matrix. + The first matrix. + The second matrix. + The relative weighting of matrix2. + The interpolated matrix. + + + The first element of the first row. + + + + The second element of the first row. + + + + The first element of the second row. + + + + The second element of the second row. + + + + The first element of the third row. + + + + The second element of the third row. + + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values. + + + Returns a value that indicates whether the specified matrices are equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether the specified matrices are not equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this matrix. + The string representation of this matrix. + + + Gets or sets the translation component of this matrix. + The translation component of the current instance. + + + Represents a 4x4 matrix. + + + Creates a object from a specified object. + A 3x2 matrix. + + + Creates a 4x4 matrix from the specified components. + The value to assign to the first element in the first row. + The value to assign to the second element in the first row. + The value to assign to the third element in the first row. + The value to assign to the fourth element in the first row. + The value to assign to the first element in the second row. + The value to assign to the second element in the second row. + The value to assign to the third element in the second row. + The value to assign to the third element in the second row. + The value to assign to the first element in the third row. + The value to assign to the second element in the third row. + The value to assign to the third element in the third row. + The value to assign to the fourth element in the third row. + The value to assign to the first element in the fourth row. + The value to assign to the second element in the fourth row. + The value to assign to the third element in the fourth row. + The value to assign to the fourth element in the fourth row. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values of value1 and value2. + + + Creates a spherical billboard that rotates around a specified object position. + The position of the object that the billboard will rotate around. + The position of the camera. + The up vector of the camera. + The forward vector of the camera. + The created billboard. + + + Creates a cylindrical billboard that rotates around a specified axis. + The position of the object that the billboard will rotate around. + The position of the camera. + The axis to rotate the billboard around. + The forward vector of the camera. + The forward vector of the object. + The billboard matrix. + + + Creates a matrix that rotates around an arbitrary vector. + The axis to rotate around. + The angle to rotate around axis, in radians. + The rotation matrix. + + + Creates a rotation matrix from the specified Quaternion rotation value. + The source Quaternion. + The rotation matrix. + + + Creates a rotation matrix from the specified yaw, pitch, and roll. + The angle of rotation, in radians, around the Y axis. + The angle of rotation, in radians, around the X axis. + The angle of rotation, in radians, around the Z axis. + The rotation matrix. + + + Creates a view matrix. + The position of the camera. + The target towards which the camera is pointing. + The direction that is "up" from the camera's point of view. + The view matrix. + + + Creates an orthographic perspective matrix from the given view volume dimensions. + The width of the view volume. + The height of the view volume. + The minimum Z-value of the view volume. + The maximum Z-value of the view volume. + The orthographic projection matrix. + + + Creates a customized orthographic projection matrix. + The minimum X-value of the view volume. + The maximum X-value of the view volume. + The minimum Y-value of the view volume. + The maximum Y-value of the view volume. + The minimum Z-value of the view volume. + The maximum Z-value of the view volume. + The orthographic projection matrix. + + + Creates a perspective projection matrix from the given view volume dimensions. + The width of the view volume at the near view plane. + The height of the view volume at the near view plane. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a perspective projection matrix based on a field of view, aspect ratio, and near and far view plane distances. + The field of view in the y direction, in radians. + The aspect ratio, defined as view space width divided by height. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + fieldOfView is less than or equal to zero. + -or- + fieldOfView is greater than or equal to . + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a customized perspective projection matrix. + The minimum x-value of the view volume at the near view plane. + The maximum x-value of the view volume at the near view plane. + The minimum y-value of the view volume at the near view plane. + The maximum y-value of the view volume at the near view plane. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a matrix that reflects the coordinate system about a specified plane. + The plane about which to create a reflection. + A new matrix expressing the reflection. + + + Creates a matrix for rotating points around the X axis. + The amount, in radians, by which to rotate around the X axis. + The rotation matrix. + + + Creates a matrix for rotating points around the X axis from a center point. + The amount, in radians, by which to rotate around the X axis. + The center point. + The rotation matrix. + + + The amount, in radians, by which to rotate around the Y axis from a center point. + The amount, in radians, by which to rotate around the Y-axis. + The center point. + The rotation matrix. + + + Creates a matrix for rotating points around the Y axis. + The amount, in radians, by which to rotate around the Y-axis. + The rotation matrix. + + + Creates a matrix for rotating points around the Z axis. + The amount, in radians, by which to rotate around the Z-axis. + The rotation matrix. + + + Creates a matrix for rotating points around the Z axis from a center point. + The amount, in radians, by which to rotate around the Z-axis. + The center point. + The rotation matrix. + + + Creates a scaling matrix from the specified vector scale. + The scale to use. + The scaling matrix. + + + Creates a uniform scaling matrix that scale equally on each axis. + The uniform scaling factor. + The scaling matrix. + + + Creates a scaling matrix with a center point. + The vector that contains the amount to scale on each axis. + The center point. + The scaling matrix. + + + Creates a uniform scaling matrix that scales equally on each axis with a center point. + The uniform scaling factor. + The center point. + The scaling matrix. + + + Creates a scaling matrix from the specified X, Y, and Z components. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The value to scale by on the Z axis. + The scaling matrix. + + + Creates a scaling matrix that is offset by a given center point. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The value to scale by on the Z axis. + The center point. + The scaling matrix. + + + Creates a matrix that flattens geometry into a specified plane as if casting a shadow from a specified light source. + The direction from which the light that will cast the shadow is coming. + The plane onto which the new matrix should flatten geometry so as to cast a shadow. + A new matrix that can be used to flatten geometry onto the specified plane from the specified direction. + + + Creates a translation matrix from the specified 3-dimensional vector. + The amount to translate in each axis. + The translation matrix. + + + Creates a translation matrix from the specified X, Y, and Z components. + The amount to translate on the X axis. + The amount to translate on the Y axis. + The amount to translate on the Z axis. + The translation matrix. + + + Creates a world matrix with the specified parameters. + The position of the object. + The forward direction of the object. + The upward direction of the object. Its value is usually [0, 1, 0]. + The world matrix. + + + Attempts to extract the scale, translation, and rotation components from the given scale, rotation, or translation matrix. The return value indicates whether the operation succeeded. + The source matrix. + When this method returns, contains the scaling component of the transformation matrix if the operation succeeded. + When this method returns, contains the rotation component of the transformation matrix if the operation succeeded. + When the method returns, contains the translation component of the transformation matrix if the operation succeeded. + true if matrix was decomposed successfully; otherwise, false. + + + Returns a value that indicates whether this instance and another 4x4 matrix are equal. + The other matrix. + true if the two matrices are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Calculates the determinant of the current 4x4 matrix. + The determinant. + + + Returns the hash code for this instance. + The hash code. + + + Gets the multiplicative identity matrix. + Gets the multiplicative identity matrix. + + + Inverts the specified matrix. The return value indicates whether the operation succeeded. + The matrix to invert. + When this method returns, contains the inverted matrix if the operation succeeded. + true if matrix was converted successfully; otherwise, false. + + + Indicates whether the current matrix is the identity matrix. + true if the current matrix is the identity matrix; otherwise, false. + + + Performs a linear interpolation from one matrix to a second matrix based on a value that specifies the weighting of the second matrix. + The first matrix. + The second matrix. + The relative weighting of matrix2. + The interpolated matrix. + + + The first element of the first row. + + + + The second element of the first row. + + + + The third element of the first row. + + + + The fourth element of the first row. + + + + The first element of the second row. + + + + The second element of the second row. + + + + The third element of the second row. + + + + The fourth element of the second row. + + + + The first element of the third row. + + + + The second element of the third row. + + + + The third element of the third row. + + + + The fourth element of the third row. + + + + The first element of the fourth row. + + + + The second element of the fourth row. + + + + The third element of the fourth row. + + + + The fourth element of the fourth row. + + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values. + + + Returns a value that indicates whether the specified matrices are equal. + The first matrix to compare. + The second matrix to care + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether the specified matrices are not equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this matrix. + The string representation of this matrix. + + + Transforms the specified matrix by applying the specified Quaternion rotation. + The matrix to transform. + The rotation t apply. + The transformed matrix. + + + Gets or sets the translation component of this matrix. + The translation component of the current instance. + + + Transposes the rows and columns of a matrix. + The matrix to transpose. + The transposed matrix. + + + Represents a three-dimensional plane. + + + Creates a object from a specified four-dimensional vector. + A vector whose first three elements describe the normal vector, and whose defines the distance along that normal from the origin. + + + Creates a object from a specified normal and the distance along the normal from the origin. + The plane's normal vector. + The plane's distance from the origin along its normal vector. + + + Creates a object from the X, Y, and Z components of its normal, and its distance from the origin on that normal. + The X component of the normal. + The Y component of the normal. + The Z component of the normal. + The distance of the plane along its normal from the origin. + + + Creates a object that contains three specified points. + The first point defining the plane. + The second point defining the plane. + The third point defining the plane. + The plane containing the three points. + + + The distance of the plane along its normal from the origin. + + + + Calculates the dot product of a plane and a 4-dimensional vector. + The plane. + The four-dimensional vector. + The dot product. + + + Returns the dot product of a specified three-dimensional vector and the normal vector of this plane plus the distance () value of the plane. + The plane. + The 3-dimensional vector. + The dot product. + + + Returns the dot product of a specified three-dimensional vector and the vector of this plane. + The plane. + The three-dimensional vector. + The dot product. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns a value that indicates whether this instance and another plane object are equal. + The other plane. + true if the two planes are equal; otherwise, false. + + + Returns the hash code for this instance. + The hash code. + + + The normal vector of the plane. + + + + Creates a new object whose normal vector is the source plane's normal vector normalized. + The source plane. + The normalized plane. + + + Returns a value that indicates whether two planes are equal. + The first plane to compare. + The second plane to compare. + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether two planes are not equal. + The first plane to compare. + The second plane to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the string representation of this plane object. + A string that represents this object. + + + Transforms a normalized plane by a 4x4 matrix. + The normalized plane to transform. + The transformation matrix to apply to plane. + The transformed plane. + + + Transforms a normalized plane by a Quaternion rotation. + The normalized plane to transform. + The Quaternion rotation to apply to the plane. + A new plane that results from applying the Quaternion rotation. + + + Represents a vector that is used to encode three-dimensional physical rotations. + + + Creates a quaternion from the specified vector and rotation parts. + The vector part of the quaternion. + The rotation part of the quaternion. + + + Constructs a quaternion from the specified components. + The value to assign to the X component of the quaternion. + The value to assign to the Y component of the quaternion. + The value to assign to the Z component of the quaternion. + The value to assign to the W component of the quaternion. + + + Adds each element in one quaternion with its corresponding element in a second quaternion. + The first quaternion. + The second quaternion. + The quaternion that contains the summed values of value1 and value2. + + + Concatenates two quaternions. + The first quaternion rotation in the series. + The second quaternion rotation in the series. + A new quaternion representing the concatenation of the value1 rotation followed by the value2 rotation. + + + Returns the conjugate of a specified quaternion. + The quaternion. + A new quaternion that is the conjugate of value. + + + Creates a quaternion from a vector and an angle to rotate about the vector. + The vector to rotate around. + The angle, in radians, to rotate around the vector. + The newly created quaternion. + + + Creates a quaternion from the specified rotation matrix. + The rotation matrix. + The newly created quaternion. + + + Creates a new quaternion from the given yaw, pitch, and roll. + The yaw angle, in radians, around the Y axis. + The pitch angle, in radians, around the X axis. + The roll angle, in radians, around the Z axis. + The resulting quaternion. + + + Divides one quaternion by a second quaternion. + The dividend. + The divisor. + The quaternion that results from dividing value1 by value2. + + + Calculates the dot product of two quaternions. + The first quaternion. + The second quaternion. + The dot product. + + + Returns a value that indicates whether this instance and another quaternion are equal. + The other quaternion. + true if the two quaternions are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Gets a quaternion that represents no rotation. + A quaternion whose values are (0, 0, 0, 1). + + + Returns the inverse of a quaternion. + The quaternion. + The inverted quaternion. + + + Gets a value that indicates whether the current instance is the identity quaternion. + true if the current instance is the identity quaternion; otherwise, false. + + + Calculates the length of the quaternion. + The computed length of the quaternion. + + + Calculates the squared length of the quaternion. + The length squared of the quaternion. + + + Performs a linear interpolation between two quaternions based on a value that specifies the weighting of the second quaternion. + The first quaternion. + The second quaternion. + The relative weight of quaternion2 in the interpolation. + The interpolated quaternion. + + + Returns the quaternion that results from multiplying two quaternions together. + The first quaternion. + The second quaternion. + The product quaternion. + + + Returns the quaternion that results from scaling all the components of a specified quaternion by a scalar factor. + The source quaternion. + The scalar value. + The scaled quaternion. + + + Reverses the sign of each component of the quaternion. + The quaternion to negate. + The negated quaternion. + + + Divides each component of a specified by its length. + The quaternion to normalize. + The normalized quaternion. + + + Adds each element in one quaternion with its corresponding element in a second quaternion. + The first quaternion. + The second quaternion. + The quaternion that contains the summed values of value1 and value2. + + + Divides one quaternion by a second quaternion. + The dividend. + The divisor. + The quaternion that results from dividing value1 by value2. + + + Returns a value that indicates whether two quaternions are equal. + The first quaternion to compare. + The second quaternion to compare. + true if the two quaternions are equal; otherwise, false. + + + Returns a value that indicates whether two quaternions are not equal. + The first quaternion to compare. + The second quaternion to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the quaternion that results from scaling all the components of a specified quaternion by a scalar factor. + The source quaternion. + The scalar value. + The scaled quaternion. + + + Returns the quaternion that results from multiplying two quaternions together. + The first quaternion. + The second quaternion. + The product quaternion. + + + Subtracts each element in a second quaternion from its corresponding element in a first quaternion. + The first quaternion. + The second quaternion. + The quaternion containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Reverses the sign of each component of the quaternion. + The quaternion to negate. + The negated quaternion. + + + Interpolates between two quaternions, using spherical linear interpolation. + The first quaternion. + The second quaternion. + The relative weight of the second quaternion in the interpolation. + The interpolated quaternion. + + + Subtracts each element in a second quaternion from its corresponding element in a first quaternion. + The first quaternion. + The second quaternion. + The quaternion containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this quaternion. + The string representation of this quaternion. + + + The rotation component of the quaternion. + + + + The X value of the vector component of the quaternion. + + + + The Y value of the vector component of the quaternion. + + + + The Z value of the vector component of the quaternion. + + + + Represents a single vector of a specified numeric type that is suitable for low-level optimization of parallel algorithms. + The vector type. T can be any primitive numeric type. + + + Creates a vector whose components are of a specified type. + The numeric type that defines the type of the components in the vector. + + + Creates a vector from a specified array. + A numeric array. + values is null. + + + Creates a vector from a specified array starting at a specified index position. + A numeric array. + The starting index position from which to create the vector. + values is null. + index is less than zero. + -or- + The length of values minus index is less than . + + + Copies the vector instance to a specified destination array. + The array to receive a copy of the vector values. + destination is null. + The number of elements in the current vector is greater than the number of elements available in the destination array. + + + Copies the vector instance to a specified destination array starting at a specified index position. + The array to receive a copy of the vector values. + The starting index in destination at which to begin the copy operation. + destination is null. + The number of elements in the current instance is greater than the number of elements available from startIndex to the end of the destination array. + index is less than zero or greater than the last index in destination. + + + Returns the number of elements stored in the vector. + The number of elements stored in the vector. + Access to the property getter via reflection is not supported. + + + Returns a value that indicates whether this instance is equal to a specified vector. + The vector to compare with this instance. + true if the current instance and other are equal; otherwise, false. + + + Returns a value that indicates whether this instance is equal to a specified object. + The object to compare with this instance. + true if the current instance and obj are equal; otherwise, false. The method returns false if obj is null, or if obj is a vector of a different type than the current instance. + + + Returns the hash code for this instance. + The hash code. + + + Gets the element at a specified index. + The index of the element to return. + The element at index index. + index is less than zero. + -or- + index is greater than or equal to . + + + Returns a vector containing all ones. + A vector containing all ones. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Returns a new vector by performing a bitwise And operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise And of left and right. + + + Returns a new vector by performing a bitwise Or operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise Or of the elements in left and right. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Returns a value that indicates whether each pair of elements in two specified vectors are equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a new vector by performing a bitwise XOr operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise XOr of the elements in left and right. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Returns a value that indicates whether any single pair of elements in the specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if any element pairs in left and right are equal. false if no element pairs are equal. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar value. + The source vector. + A scalar value. + The scaled vector. + + + Multiplies a vector by the given scalar. + The scalar value. + The source vector. + The scaled vector. + + + Returns a new vector whose elements are obtained by taking the one's complement of a specified vector's elements. + The source vector. + The one's complement vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates a given vector. + The vector to negate. + The negated vector. + + + Returns the string representation of this vector using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Returns the string representation of this vector using default formatting. + The string representation of this vector. + + + Returns the string representation of this vector using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns a vector containing all zeroes. + A vector containing all zeroes. + + + Provides a collection of static convenience methods for creating, manipulating, combining, and converting generic vectors. + + + Returns a new vector whose elements are the absolute values of the given vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The absolute value vector. + + + Returns a new vector whose values are the sum of each pair of elements from two given vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The summed vector. + + + Returns a new vector by performing a bitwise And Not operation on each pair of corresponding elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned bytes. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a double-precision floating-point vector. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of 16-bit integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of long integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of signed bytes. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a single-precision floating-point vector. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned 16-bit integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned long integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Returns a new vector by performing a bitwise And operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a new vector by performing a bitwise Or operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Creates a new single-precision vector with elements selected between two specified single-precision source vectors based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The new vector with elements selected based on the mask. + + + Creates a new double-precision vector with elements selected between two specified double-precision source vectors based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The new vector with elements selected based on the mask. + + + Creates a new vector of a specified type with elements selected between two specified source vectors of the same type based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The vector type. T can be any primitive numeric type. + The new vector with elements selected based on the mask. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector whose values are the result of dividing the first vector's elements by the corresponding elements in the second vector. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The divided vector. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The dot product. + + + Returns a new integral vector whose elements signal whether the elements in two specified double-precision vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in two specified integral vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in two specified long integer vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in two specified single-precision vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector of a specified type whose elements signal whether the elements in two specified vectors of the same type are equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether each pair of elements in the given vectors is equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left and right are equal; otherwise, false. + + + Returns a value that indicates whether any single pair of elements in the given vectors is equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element pair in left and right is equal; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are greater than their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are greater than their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are greater than their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision floating-point vector are greater than their corresponding elements in a second single-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector of a specified type are greater than their corresponding elements in the second vector of the same time. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are greater than the corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left are greater than the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is greater than the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is greater than the corresponding element in right; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one vector are greater than or equal to their corresponding elements in the single-precision floating-point second vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are greater than or equal to their corresponding elements in the second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are greater than or equal to their corresponding elements in the second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one vector are greater than or equal to their corresponding elements in the second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector of a specified type are greater than or equal to their corresponding elements in the second vector of the same type. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are greater than or equal to all the corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left are greater than or equal to the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is greater than or equal to the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is greater than or equal to the corresponding element in right; otherwise, false. + + + Gets a value that indicates whether vector operations are subject to hardware acceleration through JIT intrinsic support. + true if vector operations are subject to hardware acceleration; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are less than their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are less than their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are less than their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision vector are less than their corresponding elements in a second single-precision vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector of a specified type whose elements signal whether the elements in one vector are less than their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all of the elements in the first vector are less than their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all of the elements in left are less than the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is less than the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is less than the corresponding element in right; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are less than or equal to their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are less than or equal to their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are less or equal to their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision floating-point vector are less than or equal to their corresponding elements in a second single-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector are less than or equal to their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are less than or equal to their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all of the elements in left are less than or equal to the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is less than or equal to the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is less than or equal to the corresponding element in right; otherwise, false. + + + Returns a new vector whose elements are the maximum of each pair of elements in the two given vectors. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The maximum vector. + + + Returns a new vector whose elements are the minimum of each pair of elements in the two given vectors. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The minimum vector. + + + Returns a new vector whose values are a scalar value multiplied by each of the values of a specified vector. + The scalar value. + The vector. + The vector type. T can be any primitive numeric type. + The scaled vector. + + + Returns a new vector whose values are the product of each pair of elements in two specified vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The product vector. + + + Returns a new vector whose values are the values of a specified vector each multiplied by a scalar value. + The vector. + The scalar value. + The vector type. T can be any primitive numeric type. + The scaled vector. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector whose elements are the negation of the corresponding element in the specified vector. + The source vector. + The vector type. T can be any primitive numeric type. + The negated vector. + + + Returns a new vector whose elements are obtained by taking the one's complement of a specified vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a new vector whose elements are the square roots of a specified vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The square root vector. + + + Returns a new vector whose values are the difference between the elements in the second vector and their corresponding elements in the first vector. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The difference vector. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector by performing a bitwise exclusive Or (XOr) operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Represents a vector with two single-precision floating-point values. + + + Creates a new object whose two elements have the same value. + The value to assign to both elements. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of the vector. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 2 elements are equal to one. + A vector whose two elements are equal to one (that is, it returns the vector (1,1). + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns the reflection of a vector off a surface that has the specified normal. + The source vector. + The normal of the surface being reflected off. + The reflected vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a vector by a specified 3x2 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a vector normal by the given 3x2 matrix. + The source vector. + The matrix. + The transformed vector. + + + Transforms a vector normal by the given 4x4 matrix. + The source vector. + The matrix. + The transformed vector. + + + Gets the vector (1,0). + The vector (1,0). + + + Gets the vector (0,1). + The vector (0,1). + + + The X component of the vector. + + + + The Y component of the vector. + + + + Returns a vector whose 2 elements are equal to zero. + A vector whose two elements are equal to zero (that is, it returns the vector (0,0). + + + Represents a vector with three single-precision floating-point values. + + + Creates a new object whose three elements have the same value. + The value to assign to all three elements. + + + Creates a new object from the specified object and the specified value. + The vector with two elements. + The additional value to assign to the field. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the cross product of two vectors. + The first vector. + The second vector. + The cross product. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of this vector object. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 3 elements are equal to one. + A vector whose three elements are equal to one (that is, it returns the vector (1,1,1). + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns the reflection of a vector off a surface that has the specified normal. + The source vector. + The normal of the surface being reflected off. + The reflected vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a vector normal by the given 4x4 matrix. + The source vector. + The matrix. + The transformed vector. + + + Gets the vector (1,0,0). + The vector (1,0,0). + + + Gets the vector (0,1,0). + The vector (0,1,0).. + + + Gets the vector (0,0,1). + The vector (0,0,1). + + + The X component of the vector. + + + + The Y component of the vector. + + + + The Z component of the vector. + + + + Gets a vector whose 3 elements are equal to zero. + A vector whose three elements are equal to zero (that is, it returns the vector (0,0,0). + + + Represents a vector with four single-precision floating-point values. + + + Creates a new object whose four elements have the same value. + The value to assign to all four elements. + + + Constructs a new object from the specified object and a W component. + The vector to use for the X, Y, and Z components. + The W component. + + + Creates a new object from the specified object and a Z and a W component. + The vector to use for the X and Y components. + The Z component. + The W component. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of this vector object. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 4 elements are equal to one. + Returns . + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a four-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a four-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a three-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a two-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a two-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a three-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Gets the vector (0,0,0,1). + The vector (0,0,0,1). + + + Gets the vector (1,0,0,0). + The vector (1,0,0,0). + + + Gets the vector (0,1,0,0). + The vector (0,1,0,0).. + + + Gets a vector whose 4 elements are equal to zero. + The vector (0,0,1,0). + + + The W component of the vector. + + + + The X component of the vector. + + + + The Y component of the vector. + + + + The Z component of the vector. + + + + Gets a vector whose 4 elements are equal to zero. + A vector whose four elements are equal to zero (that is, it returns the vector (0,0,0,0). + + + \ No newline at end of file diff --git a/packages/System.Numerics.Vectors.4.5.0/lib/netcoreapp2.0/_._ b/packages/System.Numerics.Vectors.4.5.0/lib/netcoreapp2.0/_._ new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Numerics.Vectors.4.5.0/lib/netstandard1.0/System.Numerics.Vectors.dll b/packages/System.Numerics.Vectors.4.5.0/lib/netstandard1.0/System.Numerics.Vectors.dll new file mode 100644 index 0000000..433aa36 Binary files /dev/null and b/packages/System.Numerics.Vectors.4.5.0/lib/netstandard1.0/System.Numerics.Vectors.dll differ diff --git a/packages/System.Numerics.Vectors.4.5.0/lib/netstandard1.0/System.Numerics.Vectors.xml b/packages/System.Numerics.Vectors.4.5.0/lib/netstandard1.0/System.Numerics.Vectors.xml new file mode 100644 index 0000000..da34d39 --- /dev/null +++ b/packages/System.Numerics.Vectors.4.5.0/lib/netstandard1.0/System.Numerics.Vectors.xml @@ -0,0 +1,2621 @@ + + + System.Numerics.Vectors + + + + Represents a 3x2 matrix. + + + Creates a 3x2 matrix from the specified components. + The value to assign to the first element in the first row. + The value to assign to the second element in the first row. + The value to assign to the first element in the second row. + The value to assign to the second element in the second row. + The value to assign to the first element in the third row. + The value to assign to the second element in the third row. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values of value1 and value2. + + + Creates a rotation matrix using the given rotation in radians. + The amount of rotation, in radians. + The rotation matrix. + + + Creates a rotation matrix using the specified rotation in radians and a center point. + The amount of rotation, in radians. + The center point. + The rotation matrix. + + + Creates a scaling matrix from the specified X and Y components. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The scaling matrix. + + + Creates a scaling matrix that scales uniformly with the specified scale with an offset from the specified center. + The uniform scale to use. + The center offset. + The scaling matrix. + + + Creates a scaling matrix that is offset by a given center point. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The center point. + The scaling matrix. + + + Creates a scaling matrix that scales uniformly with the given scale. + The uniform scale to use. + The scaling matrix. + + + Creates a scaling matrix from the specified vector scale. + The scale to use. + The scaling matrix. + + + Creates a scaling matrix from the specified vector scale with an offset from the specified center point. + The scale to use. + The center offset. + The scaling matrix. + + + Creates a skew matrix from the specified angles in radians. + The X angle, in radians. + The Y angle, in radians. + The skew matrix. + + + Creates a skew matrix from the specified angles in radians and a center point. + The X angle, in radians. + The Y angle, in radians. + The center point. + The skew matrix. + + + Creates a translation matrix from the specified 2-dimensional vector. + The translation position. + The translation matrix. + + + Creates a translation matrix from the specified X and Y components. + The X position. + The Y position. + The translation matrix. + + + Returns a value that indicates whether this instance and another 3x2 matrix are equal. + The other matrix. + true if the two matrices are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Calculates the determinant for this matrix. + The determinant. + + + Returns the hash code for this instance. + The hash code. + + + Gets the multiplicative identity matrix. + The multiplicative identify matrix. + + + Inverts the specified matrix. The return value indicates whether the operation succeeded. + The matrix to invert. + When this method returns, contains the inverted matrix if the operation succeeded. + true if matrix was converted successfully; otherwise, false. + + + Indicates whether the current matrix is the identity matrix. + true if the current matrix is the identity matrix; otherwise, false. + + + Performs a linear interpolation from one matrix to a second matrix based on a value that specifies the weighting of the second matrix. + The first matrix. + The second matrix. + The relative weighting of matrix2. + The interpolated matrix. + + + The first element of the first row. + + + + The second element of the first row. + + + + The first element of the second row. + + + + The second element of the second row. + + + + The first element of the third row. + + + + The second element of the third row. + + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values. + + + Returns a value that indicates whether the specified matrices are equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether the specified matrices are not equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this matrix. + The string representation of this matrix. + + + Gets or sets the translation component of this matrix. + The translation component of the current instance. + + + Represents a 4x4 matrix. + + + Creates a object from a specified object. + A 3x2 matrix. + + + Creates a 4x4 matrix from the specified components. + The value to assign to the first element in the first row. + The value to assign to the second element in the first row. + The value to assign to the third element in the first row. + The value to assign to the fourth element in the first row. + The value to assign to the first element in the second row. + The value to assign to the second element in the second row. + The value to assign to the third element in the second row. + The value to assign to the third element in the second row. + The value to assign to the first element in the third row. + The value to assign to the second element in the third row. + The value to assign to the third element in the third row. + The value to assign to the fourth element in the third row. + The value to assign to the first element in the fourth row. + The value to assign to the second element in the fourth row. + The value to assign to the third element in the fourth row. + The value to assign to the fourth element in the fourth row. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values of value1 and value2. + + + Creates a spherical billboard that rotates around a specified object position. + The position of the object that the billboard will rotate around. + The position of the camera. + The up vector of the camera. + The forward vector of the camera. + The created billboard. + + + Creates a cylindrical billboard that rotates around a specified axis. + The position of the object that the billboard will rotate around. + The position of the camera. + The axis to rotate the billboard around. + The forward vector of the camera. + The forward vector of the object. + The billboard matrix. + + + Creates a matrix that rotates around an arbitrary vector. + The axis to rotate around. + The angle to rotate around axis, in radians. + The rotation matrix. + + + Creates a rotation matrix from the specified Quaternion rotation value. + The source Quaternion. + The rotation matrix. + + + Creates a rotation matrix from the specified yaw, pitch, and roll. + The angle of rotation, in radians, around the Y axis. + The angle of rotation, in radians, around the X axis. + The angle of rotation, in radians, around the Z axis. + The rotation matrix. + + + Creates a view matrix. + The position of the camera. + The target towards which the camera is pointing. + The direction that is "up" from the camera's point of view. + The view matrix. + + + Creates an orthographic perspective matrix from the given view volume dimensions. + The width of the view volume. + The height of the view volume. + The minimum Z-value of the view volume. + The maximum Z-value of the view volume. + The orthographic projection matrix. + + + Creates a customized orthographic projection matrix. + The minimum X-value of the view volume. + The maximum X-value of the view volume. + The minimum Y-value of the view volume. + The maximum Y-value of the view volume. + The minimum Z-value of the view volume. + The maximum Z-value of the view volume. + The orthographic projection matrix. + + + Creates a perspective projection matrix from the given view volume dimensions. + The width of the view volume at the near view plane. + The height of the view volume at the near view plane. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a perspective projection matrix based on a field of view, aspect ratio, and near and far view plane distances. + The field of view in the y direction, in radians. + The aspect ratio, defined as view space width divided by height. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + fieldOfView is less than or equal to zero. + -or- + fieldOfView is greater than or equal to . + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a customized perspective projection matrix. + The minimum x-value of the view volume at the near view plane. + The maximum x-value of the view volume at the near view plane. + The minimum y-value of the view volume at the near view plane. + The maximum y-value of the view volume at the near view plane. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a matrix that reflects the coordinate system about a specified plane. + The plane about which to create a reflection. + A new matrix expressing the reflection. + + + Creates a matrix for rotating points around the X axis. + The amount, in radians, by which to rotate around the X axis. + The rotation matrix. + + + Creates a matrix for rotating points around the X axis from a center point. + The amount, in radians, by which to rotate around the X axis. + The center point. + The rotation matrix. + + + The amount, in radians, by which to rotate around the Y axis from a center point. + The amount, in radians, by which to rotate around the Y-axis. + The center point. + The rotation matrix. + + + Creates a matrix for rotating points around the Y axis. + The amount, in radians, by which to rotate around the Y-axis. + The rotation matrix. + + + Creates a matrix for rotating points around the Z axis. + The amount, in radians, by which to rotate around the Z-axis. + The rotation matrix. + + + Creates a matrix for rotating points around the Z axis from a center point. + The amount, in radians, by which to rotate around the Z-axis. + The center point. + The rotation matrix. + + + Creates a scaling matrix from the specified vector scale. + The scale to use. + The scaling matrix. + + + Creates a uniform scaling matrix that scale equally on each axis. + The uniform scaling factor. + The scaling matrix. + + + Creates a scaling matrix with a center point. + The vector that contains the amount to scale on each axis. + The center point. + The scaling matrix. + + + Creates a uniform scaling matrix that scales equally on each axis with a center point. + The uniform scaling factor. + The center point. + The scaling matrix. + + + Creates a scaling matrix from the specified X, Y, and Z components. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The value to scale by on the Z axis. + The scaling matrix. + + + Creates a scaling matrix that is offset by a given center point. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The value to scale by on the Z axis. + The center point. + The scaling matrix. + + + Creates a matrix that flattens geometry into a specified plane as if casting a shadow from a specified light source. + The direction from which the light that will cast the shadow is coming. + The plane onto which the new matrix should flatten geometry so as to cast a shadow. + A new matrix that can be used to flatten geometry onto the specified plane from the specified direction. + + + Creates a translation matrix from the specified 3-dimensional vector. + The amount to translate in each axis. + The translation matrix. + + + Creates a translation matrix from the specified X, Y, and Z components. + The amount to translate on the X axis. + The amount to translate on the Y axis. + The amount to translate on the Z axis. + The translation matrix. + + + Creates a world matrix with the specified parameters. + The position of the object. + The forward direction of the object. + The upward direction of the object. Its value is usually [0, 1, 0]. + The world matrix. + + + Attempts to extract the scale, translation, and rotation components from the given scale, rotation, or translation matrix. The return value indicates whether the operation succeeded. + The source matrix. + When this method returns, contains the scaling component of the transformation matrix if the operation succeeded. + When this method returns, contains the rotation component of the transformation matrix if the operation succeeded. + When the method returns, contains the translation component of the transformation matrix if the operation succeeded. + true if matrix was decomposed successfully; otherwise, false. + + + Returns a value that indicates whether this instance and another 4x4 matrix are equal. + The other matrix. + true if the two matrices are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Calculates the determinant of the current 4x4 matrix. + The determinant. + + + Returns the hash code for this instance. + The hash code. + + + Gets the multiplicative identity matrix. + Gets the multiplicative identity matrix. + + + Inverts the specified matrix. The return value indicates whether the operation succeeded. + The matrix to invert. + When this method returns, contains the inverted matrix if the operation succeeded. + true if matrix was converted successfully; otherwise, false. + + + Indicates whether the current matrix is the identity matrix. + true if the current matrix is the identity matrix; otherwise, false. + + + Performs a linear interpolation from one matrix to a second matrix based on a value that specifies the weighting of the second matrix. + The first matrix. + The second matrix. + The relative weighting of matrix2. + The interpolated matrix. + + + The first element of the first row. + + + + The second element of the first row. + + + + The third element of the first row. + + + + The fourth element of the first row. + + + + The first element of the second row. + + + + The second element of the second row. + + + + The third element of the second row. + + + + The fourth element of the second row. + + + + The first element of the third row. + + + + The second element of the third row. + + + + The third element of the third row. + + + + The fourth element of the third row. + + + + The first element of the fourth row. + + + + The second element of the fourth row. + + + + The third element of the fourth row. + + + + The fourth element of the fourth row. + + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values. + + + Returns a value that indicates whether the specified matrices are equal. + The first matrix to compare. + The second matrix to care + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether the specified matrices are not equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this matrix. + The string representation of this matrix. + + + Transforms the specified matrix by applying the specified Quaternion rotation. + The matrix to transform. + The rotation t apply. + The transformed matrix. + + + Gets or sets the translation component of this matrix. + The translation component of the current instance. + + + Transposes the rows and columns of a matrix. + The matrix to transpose. + The transposed matrix. + + + Represents a three-dimensional plane. + + + Creates a object from a specified four-dimensional vector. + A vector whose first three elements describe the normal vector, and whose defines the distance along that normal from the origin. + + + Creates a object from a specified normal and the distance along the normal from the origin. + The plane's normal vector. + The plane's distance from the origin along its normal vector. + + + Creates a object from the X, Y, and Z components of its normal, and its distance from the origin on that normal. + The X component of the normal. + The Y component of the normal. + The Z component of the normal. + The distance of the plane along its normal from the origin. + + + Creates a object that contains three specified points. + The first point defining the plane. + The second point defining the plane. + The third point defining the plane. + The plane containing the three points. + + + The distance of the plane along its normal from the origin. + + + + Calculates the dot product of a plane and a 4-dimensional vector. + The plane. + The four-dimensional vector. + The dot product. + + + Returns the dot product of a specified three-dimensional vector and the normal vector of this plane plus the distance () value of the plane. + The plane. + The 3-dimensional vector. + The dot product. + + + Returns the dot product of a specified three-dimensional vector and the vector of this plane. + The plane. + The three-dimensional vector. + The dot product. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns a value that indicates whether this instance and another plane object are equal. + The other plane. + true if the two planes are equal; otherwise, false. + + + Returns the hash code for this instance. + The hash code. + + + The normal vector of the plane. + + + + Creates a new object whose normal vector is the source plane's normal vector normalized. + The source plane. + The normalized plane. + + + Returns a value that indicates whether two planes are equal. + The first plane to compare. + The second plane to compare. + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether two planes are not equal. + The first plane to compare. + The second plane to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the string representation of this plane object. + A string that represents this object. + + + Transforms a normalized plane by a 4x4 matrix. + The normalized plane to transform. + The transformation matrix to apply to plane. + The transformed plane. + + + Transforms a normalized plane by a Quaternion rotation. + The normalized plane to transform. + The Quaternion rotation to apply to the plane. + A new plane that results from applying the Quaternion rotation. + + + Represents a vector that is used to encode three-dimensional physical rotations. + + + Creates a quaternion from the specified vector and rotation parts. + The vector part of the quaternion. + The rotation part of the quaternion. + + + Constructs a quaternion from the specified components. + The value to assign to the X component of the quaternion. + The value to assign to the Y component of the quaternion. + The value to assign to the Z component of the quaternion. + The value to assign to the W component of the quaternion. + + + Adds each element in one quaternion with its corresponding element in a second quaternion. + The first quaternion. + The second quaternion. + The quaternion that contains the summed values of value1 and value2. + + + Concatenates two quaternions. + The first quaternion rotation in the series. + The second quaternion rotation in the series. + A new quaternion representing the concatenation of the value1 rotation followed by the value2 rotation. + + + Returns the conjugate of a specified quaternion. + The quaternion. + A new quaternion that is the conjugate of value. + + + Creates a quaternion from a vector and an angle to rotate about the vector. + The vector to rotate around. + The angle, in radians, to rotate around the vector. + The newly created quaternion. + + + Creates a quaternion from the specified rotation matrix. + The rotation matrix. + The newly created quaternion. + + + Creates a new quaternion from the given yaw, pitch, and roll. + The yaw angle, in radians, around the Y axis. + The pitch angle, in radians, around the X axis. + The roll angle, in radians, around the Z axis. + The resulting quaternion. + + + Divides one quaternion by a second quaternion. + The dividend. + The divisor. + The quaternion that results from dividing value1 by value2. + + + Calculates the dot product of two quaternions. + The first quaternion. + The second quaternion. + The dot product. + + + Returns a value that indicates whether this instance and another quaternion are equal. + The other quaternion. + true if the two quaternions are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Gets a quaternion that represents no rotation. + A quaternion whose values are (0, 0, 0, 1). + + + Returns the inverse of a quaternion. + The quaternion. + The inverted quaternion. + + + Gets a value that indicates whether the current instance is the identity quaternion. + true if the current instance is the identity quaternion; otherwise, false. + + + Calculates the length of the quaternion. + The computed length of the quaternion. + + + Calculates the squared length of the quaternion. + The length squared of the quaternion. + + + Performs a linear interpolation between two quaternions based on a value that specifies the weighting of the second quaternion. + The first quaternion. + The second quaternion. + The relative weight of quaternion2 in the interpolation. + The interpolated quaternion. + + + Returns the quaternion that results from multiplying two quaternions together. + The first quaternion. + The second quaternion. + The product quaternion. + + + Returns the quaternion that results from scaling all the components of a specified quaternion by a scalar factor. + The source quaternion. + The scalar value. + The scaled quaternion. + + + Reverses the sign of each component of the quaternion. + The quaternion to negate. + The negated quaternion. + + + Divides each component of a specified by its length. + The quaternion to normalize. + The normalized quaternion. + + + Adds each element in one quaternion with its corresponding element in a second quaternion. + The first quaternion. + The second quaternion. + The quaternion that contains the summed values of value1 and value2. + + + Divides one quaternion by a second quaternion. + The dividend. + The divisor. + The quaternion that results from dividing value1 by value2. + + + Returns a value that indicates whether two quaternions are equal. + The first quaternion to compare. + The second quaternion to compare. + true if the two quaternions are equal; otherwise, false. + + + Returns a value that indicates whether two quaternions are not equal. + The first quaternion to compare. + The second quaternion to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the quaternion that results from scaling all the components of a specified quaternion by a scalar factor. + The source quaternion. + The scalar value. + The scaled quaternion. + + + Returns the quaternion that results from multiplying two quaternions together. + The first quaternion. + The second quaternion. + The product quaternion. + + + Subtracts each element in a second quaternion from its corresponding element in a first quaternion. + The first quaternion. + The second quaternion. + The quaternion containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Reverses the sign of each component of the quaternion. + The quaternion to negate. + The negated quaternion. + + + Interpolates between two quaternions, using spherical linear interpolation. + The first quaternion. + The second quaternion. + The relative weight of the second quaternion in the interpolation. + The interpolated quaternion. + + + Subtracts each element in a second quaternion from its corresponding element in a first quaternion. + The first quaternion. + The second quaternion. + The quaternion containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this quaternion. + The string representation of this quaternion. + + + The rotation component of the quaternion. + + + + The X value of the vector component of the quaternion. + + + + The Y value of the vector component of the quaternion. + + + + The Z value of the vector component of the quaternion. + + + + Represents a single vector of a specified numeric type that is suitable for low-level optimization of parallel algorithms. + The vector type. T can be any primitive numeric type. + + + Creates a vector whose components are of a specified type. + The numeric type that defines the type of the components in the vector. + + + Creates a vector from a specified array. + A numeric array. + values is null. + + + Creates a vector from a specified array starting at a specified index position. + A numeric array. + The starting index position from which to create the vector. + values is null. + index is less than zero. + -or- + The length of values minus index is less than . + + + Copies the vector instance to a specified destination array. + The array to receive a copy of the vector values. + destination is null. + The number of elements in the current vector is greater than the number of elements available in the destination array. + + + Copies the vector instance to a specified destination array starting at a specified index position. + The array to receive a copy of the vector values. + The starting index in destination at which to begin the copy operation. + destination is null. + The number of elements in the current instance is greater than the number of elements available from startIndex to the end of the destination array. + index is less than zero or greater than the last index in destination. + + + Returns the number of elements stored in the vector. + The number of elements stored in the vector. + Access to the property getter via reflection is not supported. + + + Returns a value that indicates whether this instance is equal to a specified vector. + The vector to compare with this instance. + true if the current instance and other are equal; otherwise, false. + + + Returns a value that indicates whether this instance is equal to a specified object. + The object to compare with this instance. + true if the current instance and obj are equal; otherwise, false. The method returns false if obj is null, or if obj is a vector of a different type than the current instance. + + + Returns the hash code for this instance. + The hash code. + + + Gets the element at a specified index. + The index of the element to return. + The element at index index. + index is less than zero. + -or- + index is greater than or equal to . + + + Returns a vector containing all ones. + A vector containing all ones. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Returns a new vector by performing a bitwise And operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise And of left and right. + + + Returns a new vector by performing a bitwise Or operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise Or of the elements in left and right. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Returns a value that indicates whether each pair of elements in two specified vectors are equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a new vector by performing a bitwise XOr operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise XOr of the elements in left and right. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Returns a value that indicates whether any single pair of elements in the specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if any element pairs in left and right are equal. false if no element pairs are equal. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar value. + The source vector. + A scalar value. + The scaled vector. + + + Multiplies a vector by the given scalar. + The scalar value. + The source vector. + The scaled vector. + + + Returns a new vector whose elements are obtained by taking the one's complement of a specified vector's elements. + The source vector. + The one's complement vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates a given vector. + The vector to negate. + The negated vector. + + + Returns the string representation of this vector using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Returns the string representation of this vector using default formatting. + The string representation of this vector. + + + Returns the string representation of this vector using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns a vector containing all zeroes. + A vector containing all zeroes. + + + Provides a collection of static convenience methods for creating, manipulating, combining, and converting generic vectors. + + + Returns a new vector whose elements are the absolute values of the given vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The absolute value vector. + + + Returns a new vector whose values are the sum of each pair of elements from two given vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The summed vector. + + + Returns a new vector by performing a bitwise And Not operation on each pair of corresponding elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned bytes. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a double-precision floating-point vector. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of 16-bit integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of long integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of signed bytes. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a single-precision floating-point vector. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned 16-bit integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned long integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Returns a new vector by performing a bitwise And operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a new vector by performing a bitwise Or operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Creates a new single-precision vector with elements selected between two specified single-precision source vectors based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The new vector with elements selected based on the mask. + + + Creates a new double-precision vector with elements selected between two specified double-precision source vectors based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The new vector with elements selected based on the mask. + + + Creates a new vector of a specified type with elements selected between two specified source vectors of the same type based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The vector type. T can be any primitive numeric type. + The new vector with elements selected based on the mask. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector whose values are the result of dividing the first vector's elements by the corresponding elements in the second vector. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The divided vector. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The dot product. + + + Returns a new integral vector whose elements signal whether the elements in two specified double-precision vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in two specified integral vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in two specified long integer vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in two specified single-precision vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector of a specified type whose elements signal whether the elements in two specified vectors of the same type are equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether each pair of elements in the given vectors is equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left and right are equal; otherwise, false. + + + Returns a value that indicates whether any single pair of elements in the given vectors is equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element pair in left and right is equal; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are greater than their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are greater than their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are greater than their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision floating-point vector are greater than their corresponding elements in a second single-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector of a specified type are greater than their corresponding elements in the second vector of the same time. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are greater than the corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left are greater than the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is greater than the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is greater than the corresponding element in right; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one vector are greater than or equal to their corresponding elements in the single-precision floating-point second vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are greater than or equal to their corresponding elements in the second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are greater than or equal to their corresponding elements in the second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one vector are greater than or equal to their corresponding elements in the second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector of a specified type are greater than or equal to their corresponding elements in the second vector of the same type. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are greater than or equal to all the corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left are greater than or equal to the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is greater than or equal to the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is greater than or equal to the corresponding element in right; otherwise, false. + + + Gets a value that indicates whether vector operations are subject to hardware acceleration through JIT intrinsic support. + true if vector operations are subject to hardware acceleration; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are less than their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are less than their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are less than their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision vector are less than their corresponding elements in a second single-precision vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector of a specified type whose elements signal whether the elements in one vector are less than their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all of the elements in the first vector are less than their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all of the elements in left are less than the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is less than the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is less than the corresponding element in right; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are less than or equal to their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are less than or equal to their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are less or equal to their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision floating-point vector are less than or equal to their corresponding elements in a second single-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector are less than or equal to their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are less than or equal to their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all of the elements in left are less than or equal to the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is less than or equal to the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is less than or equal to the corresponding element in right; otherwise, false. + + + Returns a new vector whose elements are the maximum of each pair of elements in the two given vectors. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The maximum vector. + + + Returns a new vector whose elements are the minimum of each pair of elements in the two given vectors. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The minimum vector. + + + Returns a new vector whose values are a scalar value multiplied by each of the values of a specified vector. + The scalar value. + The vector. + The vector type. T can be any primitive numeric type. + The scaled vector. + + + Returns a new vector whose values are the product of each pair of elements in two specified vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The product vector. + + + Returns a new vector whose values are the values of a specified vector each multiplied by a scalar value. + The vector. + The scalar value. + The vector type. T can be any primitive numeric type. + The scaled vector. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector whose elements are the negation of the corresponding element in the specified vector. + The source vector. + The vector type. T can be any primitive numeric type. + The negated vector. + + + Returns a new vector whose elements are obtained by taking the one's complement of a specified vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a new vector whose elements are the square roots of a specified vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The square root vector. + + + Returns a new vector whose values are the difference between the elements in the second vector and their corresponding elements in the first vector. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The difference vector. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector by performing a bitwise exclusive Or (XOr) operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Represents a vector with two single-precision floating-point values. + + + Creates a new object whose two elements have the same value. + The value to assign to both elements. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of the vector. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 2 elements are equal to one. + A vector whose two elements are equal to one (that is, it returns the vector (1,1). + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns the reflection of a vector off a surface that has the specified normal. + The source vector. + The normal of the surface being reflected off. + The reflected vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a vector by a specified 3x2 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a vector normal by the given 3x2 matrix. + The source vector. + The matrix. + The transformed vector. + + + Transforms a vector normal by the given 4x4 matrix. + The source vector. + The matrix. + The transformed vector. + + + Gets the vector (1,0). + The vector (1,0). + + + Gets the vector (0,1). + The vector (0,1). + + + The X component of the vector. + + + + The Y component of the vector. + + + + Returns a vector whose 2 elements are equal to zero. + A vector whose two elements are equal to zero (that is, it returns the vector (0,0). + + + Represents a vector with three single-precision floating-point values. + + + Creates a new object whose three elements have the same value. + The value to assign to all three elements. + + + Creates a new object from the specified object and the specified value. + The vector with two elements. + The additional value to assign to the field. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the cross product of two vectors. + The first vector. + The second vector. + The cross product. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of this vector object. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 3 elements are equal to one. + A vector whose three elements are equal to one (that is, it returns the vector (1,1,1). + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns the reflection of a vector off a surface that has the specified normal. + The source vector. + The normal of the surface being reflected off. + The reflected vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a vector normal by the given 4x4 matrix. + The source vector. + The matrix. + The transformed vector. + + + Gets the vector (1,0,0). + The vector (1,0,0). + + + Gets the vector (0,1,0). + The vector (0,1,0).. + + + Gets the vector (0,0,1). + The vector (0,0,1). + + + The X component of the vector. + + + + The Y component of the vector. + + + + The Z component of the vector. + + + + Gets a vector whose 3 elements are equal to zero. + A vector whose three elements are equal to zero (that is, it returns the vector (0,0,0). + + + Represents a vector with four single-precision floating-point values. + + + Creates a new object whose four elements have the same value. + The value to assign to all four elements. + + + Constructs a new object from the specified object and a W component. + The vector to use for the X, Y, and Z components. + The W component. + + + Creates a new object from the specified object and a Z and a W component. + The vector to use for the X and Y components. + The Z component. + The W component. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of this vector object. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 4 elements are equal to one. + Returns . + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a four-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a four-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a three-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a two-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a two-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a three-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Gets the vector (0,0,0,1). + The vector (0,0,0,1). + + + Gets the vector (1,0,0,0). + The vector (1,0,0,0). + + + Gets the vector (0,1,0,0). + The vector (0,1,0,0).. + + + Gets a vector whose 4 elements are equal to zero. + The vector (0,0,1,0). + + + The W component of the vector. + + + + The X component of the vector. + + + + The Y component of the vector. + + + + The Z component of the vector. + + + + Gets a vector whose 4 elements are equal to zero. + A vector whose four elements are equal to zero (that is, it returns the vector (0,0,0,0). + + + \ No newline at end of file diff --git a/packages/System.Numerics.Vectors.4.5.0/lib/netstandard2.0/System.Numerics.Vectors.dll b/packages/System.Numerics.Vectors.4.5.0/lib/netstandard2.0/System.Numerics.Vectors.dll new file mode 100644 index 0000000..1020577 Binary files /dev/null and b/packages/System.Numerics.Vectors.4.5.0/lib/netstandard2.0/System.Numerics.Vectors.dll differ diff --git a/packages/System.Numerics.Vectors.4.5.0/lib/netstandard2.0/System.Numerics.Vectors.xml b/packages/System.Numerics.Vectors.4.5.0/lib/netstandard2.0/System.Numerics.Vectors.xml new file mode 100644 index 0000000..da34d39 --- /dev/null +++ b/packages/System.Numerics.Vectors.4.5.0/lib/netstandard2.0/System.Numerics.Vectors.xml @@ -0,0 +1,2621 @@ + + + System.Numerics.Vectors + + + + Represents a 3x2 matrix. + + + Creates a 3x2 matrix from the specified components. + The value to assign to the first element in the first row. + The value to assign to the second element in the first row. + The value to assign to the first element in the second row. + The value to assign to the second element in the second row. + The value to assign to the first element in the third row. + The value to assign to the second element in the third row. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values of value1 and value2. + + + Creates a rotation matrix using the given rotation in radians. + The amount of rotation, in radians. + The rotation matrix. + + + Creates a rotation matrix using the specified rotation in radians and a center point. + The amount of rotation, in radians. + The center point. + The rotation matrix. + + + Creates a scaling matrix from the specified X and Y components. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The scaling matrix. + + + Creates a scaling matrix that scales uniformly with the specified scale with an offset from the specified center. + The uniform scale to use. + The center offset. + The scaling matrix. + + + Creates a scaling matrix that is offset by a given center point. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The center point. + The scaling matrix. + + + Creates a scaling matrix that scales uniformly with the given scale. + The uniform scale to use. + The scaling matrix. + + + Creates a scaling matrix from the specified vector scale. + The scale to use. + The scaling matrix. + + + Creates a scaling matrix from the specified vector scale with an offset from the specified center point. + The scale to use. + The center offset. + The scaling matrix. + + + Creates a skew matrix from the specified angles in radians. + The X angle, in radians. + The Y angle, in radians. + The skew matrix. + + + Creates a skew matrix from the specified angles in radians and a center point. + The X angle, in radians. + The Y angle, in radians. + The center point. + The skew matrix. + + + Creates a translation matrix from the specified 2-dimensional vector. + The translation position. + The translation matrix. + + + Creates a translation matrix from the specified X and Y components. + The X position. + The Y position. + The translation matrix. + + + Returns a value that indicates whether this instance and another 3x2 matrix are equal. + The other matrix. + true if the two matrices are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Calculates the determinant for this matrix. + The determinant. + + + Returns the hash code for this instance. + The hash code. + + + Gets the multiplicative identity matrix. + The multiplicative identify matrix. + + + Inverts the specified matrix. The return value indicates whether the operation succeeded. + The matrix to invert. + When this method returns, contains the inverted matrix if the operation succeeded. + true if matrix was converted successfully; otherwise, false. + + + Indicates whether the current matrix is the identity matrix. + true if the current matrix is the identity matrix; otherwise, false. + + + Performs a linear interpolation from one matrix to a second matrix based on a value that specifies the weighting of the second matrix. + The first matrix. + The second matrix. + The relative weighting of matrix2. + The interpolated matrix. + + + The first element of the first row. + + + + The second element of the first row. + + + + The first element of the second row. + + + + The second element of the second row. + + + + The first element of the third row. + + + + The second element of the third row. + + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values. + + + Returns a value that indicates whether the specified matrices are equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether the specified matrices are not equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this matrix. + The string representation of this matrix. + + + Gets or sets the translation component of this matrix. + The translation component of the current instance. + + + Represents a 4x4 matrix. + + + Creates a object from a specified object. + A 3x2 matrix. + + + Creates a 4x4 matrix from the specified components. + The value to assign to the first element in the first row. + The value to assign to the second element in the first row. + The value to assign to the third element in the first row. + The value to assign to the fourth element in the first row. + The value to assign to the first element in the second row. + The value to assign to the second element in the second row. + The value to assign to the third element in the second row. + The value to assign to the third element in the second row. + The value to assign to the first element in the third row. + The value to assign to the second element in the third row. + The value to assign to the third element in the third row. + The value to assign to the fourth element in the third row. + The value to assign to the first element in the fourth row. + The value to assign to the second element in the fourth row. + The value to assign to the third element in the fourth row. + The value to assign to the fourth element in the fourth row. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values of value1 and value2. + + + Creates a spherical billboard that rotates around a specified object position. + The position of the object that the billboard will rotate around. + The position of the camera. + The up vector of the camera. + The forward vector of the camera. + The created billboard. + + + Creates a cylindrical billboard that rotates around a specified axis. + The position of the object that the billboard will rotate around. + The position of the camera. + The axis to rotate the billboard around. + The forward vector of the camera. + The forward vector of the object. + The billboard matrix. + + + Creates a matrix that rotates around an arbitrary vector. + The axis to rotate around. + The angle to rotate around axis, in radians. + The rotation matrix. + + + Creates a rotation matrix from the specified Quaternion rotation value. + The source Quaternion. + The rotation matrix. + + + Creates a rotation matrix from the specified yaw, pitch, and roll. + The angle of rotation, in radians, around the Y axis. + The angle of rotation, in radians, around the X axis. + The angle of rotation, in radians, around the Z axis. + The rotation matrix. + + + Creates a view matrix. + The position of the camera. + The target towards which the camera is pointing. + The direction that is "up" from the camera's point of view. + The view matrix. + + + Creates an orthographic perspective matrix from the given view volume dimensions. + The width of the view volume. + The height of the view volume. + The minimum Z-value of the view volume. + The maximum Z-value of the view volume. + The orthographic projection matrix. + + + Creates a customized orthographic projection matrix. + The minimum X-value of the view volume. + The maximum X-value of the view volume. + The minimum Y-value of the view volume. + The maximum Y-value of the view volume. + The minimum Z-value of the view volume. + The maximum Z-value of the view volume. + The orthographic projection matrix. + + + Creates a perspective projection matrix from the given view volume dimensions. + The width of the view volume at the near view plane. + The height of the view volume at the near view plane. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a perspective projection matrix based on a field of view, aspect ratio, and near and far view plane distances. + The field of view in the y direction, in radians. + The aspect ratio, defined as view space width divided by height. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + fieldOfView is less than or equal to zero. + -or- + fieldOfView is greater than or equal to . + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a customized perspective projection matrix. + The minimum x-value of the view volume at the near view plane. + The maximum x-value of the view volume at the near view plane. + The minimum y-value of the view volume at the near view plane. + The maximum y-value of the view volume at the near view plane. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a matrix that reflects the coordinate system about a specified plane. + The plane about which to create a reflection. + A new matrix expressing the reflection. + + + Creates a matrix for rotating points around the X axis. + The amount, in radians, by which to rotate around the X axis. + The rotation matrix. + + + Creates a matrix for rotating points around the X axis from a center point. + The amount, in radians, by which to rotate around the X axis. + The center point. + The rotation matrix. + + + The amount, in radians, by which to rotate around the Y axis from a center point. + The amount, in radians, by which to rotate around the Y-axis. + The center point. + The rotation matrix. + + + Creates a matrix for rotating points around the Y axis. + The amount, in radians, by which to rotate around the Y-axis. + The rotation matrix. + + + Creates a matrix for rotating points around the Z axis. + The amount, in radians, by which to rotate around the Z-axis. + The rotation matrix. + + + Creates a matrix for rotating points around the Z axis from a center point. + The amount, in radians, by which to rotate around the Z-axis. + The center point. + The rotation matrix. + + + Creates a scaling matrix from the specified vector scale. + The scale to use. + The scaling matrix. + + + Creates a uniform scaling matrix that scale equally on each axis. + The uniform scaling factor. + The scaling matrix. + + + Creates a scaling matrix with a center point. + The vector that contains the amount to scale on each axis. + The center point. + The scaling matrix. + + + Creates a uniform scaling matrix that scales equally on each axis with a center point. + The uniform scaling factor. + The center point. + The scaling matrix. + + + Creates a scaling matrix from the specified X, Y, and Z components. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The value to scale by on the Z axis. + The scaling matrix. + + + Creates a scaling matrix that is offset by a given center point. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The value to scale by on the Z axis. + The center point. + The scaling matrix. + + + Creates a matrix that flattens geometry into a specified plane as if casting a shadow from a specified light source. + The direction from which the light that will cast the shadow is coming. + The plane onto which the new matrix should flatten geometry so as to cast a shadow. + A new matrix that can be used to flatten geometry onto the specified plane from the specified direction. + + + Creates a translation matrix from the specified 3-dimensional vector. + The amount to translate in each axis. + The translation matrix. + + + Creates a translation matrix from the specified X, Y, and Z components. + The amount to translate on the X axis. + The amount to translate on the Y axis. + The amount to translate on the Z axis. + The translation matrix. + + + Creates a world matrix with the specified parameters. + The position of the object. + The forward direction of the object. + The upward direction of the object. Its value is usually [0, 1, 0]. + The world matrix. + + + Attempts to extract the scale, translation, and rotation components from the given scale, rotation, or translation matrix. The return value indicates whether the operation succeeded. + The source matrix. + When this method returns, contains the scaling component of the transformation matrix if the operation succeeded. + When this method returns, contains the rotation component of the transformation matrix if the operation succeeded. + When the method returns, contains the translation component of the transformation matrix if the operation succeeded. + true if matrix was decomposed successfully; otherwise, false. + + + Returns a value that indicates whether this instance and another 4x4 matrix are equal. + The other matrix. + true if the two matrices are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Calculates the determinant of the current 4x4 matrix. + The determinant. + + + Returns the hash code for this instance. + The hash code. + + + Gets the multiplicative identity matrix. + Gets the multiplicative identity matrix. + + + Inverts the specified matrix. The return value indicates whether the operation succeeded. + The matrix to invert. + When this method returns, contains the inverted matrix if the operation succeeded. + true if matrix was converted successfully; otherwise, false. + + + Indicates whether the current matrix is the identity matrix. + true if the current matrix is the identity matrix; otherwise, false. + + + Performs a linear interpolation from one matrix to a second matrix based on a value that specifies the weighting of the second matrix. + The first matrix. + The second matrix. + The relative weighting of matrix2. + The interpolated matrix. + + + The first element of the first row. + + + + The second element of the first row. + + + + The third element of the first row. + + + + The fourth element of the first row. + + + + The first element of the second row. + + + + The second element of the second row. + + + + The third element of the second row. + + + + The fourth element of the second row. + + + + The first element of the third row. + + + + The second element of the third row. + + + + The third element of the third row. + + + + The fourth element of the third row. + + + + The first element of the fourth row. + + + + The second element of the fourth row. + + + + The third element of the fourth row. + + + + The fourth element of the fourth row. + + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values. + + + Returns a value that indicates whether the specified matrices are equal. + The first matrix to compare. + The second matrix to care + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether the specified matrices are not equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this matrix. + The string representation of this matrix. + + + Transforms the specified matrix by applying the specified Quaternion rotation. + The matrix to transform. + The rotation t apply. + The transformed matrix. + + + Gets or sets the translation component of this matrix. + The translation component of the current instance. + + + Transposes the rows and columns of a matrix. + The matrix to transpose. + The transposed matrix. + + + Represents a three-dimensional plane. + + + Creates a object from a specified four-dimensional vector. + A vector whose first three elements describe the normal vector, and whose defines the distance along that normal from the origin. + + + Creates a object from a specified normal and the distance along the normal from the origin. + The plane's normal vector. + The plane's distance from the origin along its normal vector. + + + Creates a object from the X, Y, and Z components of its normal, and its distance from the origin on that normal. + The X component of the normal. + The Y component of the normal. + The Z component of the normal. + The distance of the plane along its normal from the origin. + + + Creates a object that contains three specified points. + The first point defining the plane. + The second point defining the plane. + The third point defining the plane. + The plane containing the three points. + + + The distance of the plane along its normal from the origin. + + + + Calculates the dot product of a plane and a 4-dimensional vector. + The plane. + The four-dimensional vector. + The dot product. + + + Returns the dot product of a specified three-dimensional vector and the normal vector of this plane plus the distance () value of the plane. + The plane. + The 3-dimensional vector. + The dot product. + + + Returns the dot product of a specified three-dimensional vector and the vector of this plane. + The plane. + The three-dimensional vector. + The dot product. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns a value that indicates whether this instance and another plane object are equal. + The other plane. + true if the two planes are equal; otherwise, false. + + + Returns the hash code for this instance. + The hash code. + + + The normal vector of the plane. + + + + Creates a new object whose normal vector is the source plane's normal vector normalized. + The source plane. + The normalized plane. + + + Returns a value that indicates whether two planes are equal. + The first plane to compare. + The second plane to compare. + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether two planes are not equal. + The first plane to compare. + The second plane to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the string representation of this plane object. + A string that represents this object. + + + Transforms a normalized plane by a 4x4 matrix. + The normalized plane to transform. + The transformation matrix to apply to plane. + The transformed plane. + + + Transforms a normalized plane by a Quaternion rotation. + The normalized plane to transform. + The Quaternion rotation to apply to the plane. + A new plane that results from applying the Quaternion rotation. + + + Represents a vector that is used to encode three-dimensional physical rotations. + + + Creates a quaternion from the specified vector and rotation parts. + The vector part of the quaternion. + The rotation part of the quaternion. + + + Constructs a quaternion from the specified components. + The value to assign to the X component of the quaternion. + The value to assign to the Y component of the quaternion. + The value to assign to the Z component of the quaternion. + The value to assign to the W component of the quaternion. + + + Adds each element in one quaternion with its corresponding element in a second quaternion. + The first quaternion. + The second quaternion. + The quaternion that contains the summed values of value1 and value2. + + + Concatenates two quaternions. + The first quaternion rotation in the series. + The second quaternion rotation in the series. + A new quaternion representing the concatenation of the value1 rotation followed by the value2 rotation. + + + Returns the conjugate of a specified quaternion. + The quaternion. + A new quaternion that is the conjugate of value. + + + Creates a quaternion from a vector and an angle to rotate about the vector. + The vector to rotate around. + The angle, in radians, to rotate around the vector. + The newly created quaternion. + + + Creates a quaternion from the specified rotation matrix. + The rotation matrix. + The newly created quaternion. + + + Creates a new quaternion from the given yaw, pitch, and roll. + The yaw angle, in radians, around the Y axis. + The pitch angle, in radians, around the X axis. + The roll angle, in radians, around the Z axis. + The resulting quaternion. + + + Divides one quaternion by a second quaternion. + The dividend. + The divisor. + The quaternion that results from dividing value1 by value2. + + + Calculates the dot product of two quaternions. + The first quaternion. + The second quaternion. + The dot product. + + + Returns a value that indicates whether this instance and another quaternion are equal. + The other quaternion. + true if the two quaternions are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Gets a quaternion that represents no rotation. + A quaternion whose values are (0, 0, 0, 1). + + + Returns the inverse of a quaternion. + The quaternion. + The inverted quaternion. + + + Gets a value that indicates whether the current instance is the identity quaternion. + true if the current instance is the identity quaternion; otherwise, false. + + + Calculates the length of the quaternion. + The computed length of the quaternion. + + + Calculates the squared length of the quaternion. + The length squared of the quaternion. + + + Performs a linear interpolation between two quaternions based on a value that specifies the weighting of the second quaternion. + The first quaternion. + The second quaternion. + The relative weight of quaternion2 in the interpolation. + The interpolated quaternion. + + + Returns the quaternion that results from multiplying two quaternions together. + The first quaternion. + The second quaternion. + The product quaternion. + + + Returns the quaternion that results from scaling all the components of a specified quaternion by a scalar factor. + The source quaternion. + The scalar value. + The scaled quaternion. + + + Reverses the sign of each component of the quaternion. + The quaternion to negate. + The negated quaternion. + + + Divides each component of a specified by its length. + The quaternion to normalize. + The normalized quaternion. + + + Adds each element in one quaternion with its corresponding element in a second quaternion. + The first quaternion. + The second quaternion. + The quaternion that contains the summed values of value1 and value2. + + + Divides one quaternion by a second quaternion. + The dividend. + The divisor. + The quaternion that results from dividing value1 by value2. + + + Returns a value that indicates whether two quaternions are equal. + The first quaternion to compare. + The second quaternion to compare. + true if the two quaternions are equal; otherwise, false. + + + Returns a value that indicates whether two quaternions are not equal. + The first quaternion to compare. + The second quaternion to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the quaternion that results from scaling all the components of a specified quaternion by a scalar factor. + The source quaternion. + The scalar value. + The scaled quaternion. + + + Returns the quaternion that results from multiplying two quaternions together. + The first quaternion. + The second quaternion. + The product quaternion. + + + Subtracts each element in a second quaternion from its corresponding element in a first quaternion. + The first quaternion. + The second quaternion. + The quaternion containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Reverses the sign of each component of the quaternion. + The quaternion to negate. + The negated quaternion. + + + Interpolates between two quaternions, using spherical linear interpolation. + The first quaternion. + The second quaternion. + The relative weight of the second quaternion in the interpolation. + The interpolated quaternion. + + + Subtracts each element in a second quaternion from its corresponding element in a first quaternion. + The first quaternion. + The second quaternion. + The quaternion containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this quaternion. + The string representation of this quaternion. + + + The rotation component of the quaternion. + + + + The X value of the vector component of the quaternion. + + + + The Y value of the vector component of the quaternion. + + + + The Z value of the vector component of the quaternion. + + + + Represents a single vector of a specified numeric type that is suitable for low-level optimization of parallel algorithms. + The vector type. T can be any primitive numeric type. + + + Creates a vector whose components are of a specified type. + The numeric type that defines the type of the components in the vector. + + + Creates a vector from a specified array. + A numeric array. + values is null. + + + Creates a vector from a specified array starting at a specified index position. + A numeric array. + The starting index position from which to create the vector. + values is null. + index is less than zero. + -or- + The length of values minus index is less than . + + + Copies the vector instance to a specified destination array. + The array to receive a copy of the vector values. + destination is null. + The number of elements in the current vector is greater than the number of elements available in the destination array. + + + Copies the vector instance to a specified destination array starting at a specified index position. + The array to receive a copy of the vector values. + The starting index in destination at which to begin the copy operation. + destination is null. + The number of elements in the current instance is greater than the number of elements available from startIndex to the end of the destination array. + index is less than zero or greater than the last index in destination. + + + Returns the number of elements stored in the vector. + The number of elements stored in the vector. + Access to the property getter via reflection is not supported. + + + Returns a value that indicates whether this instance is equal to a specified vector. + The vector to compare with this instance. + true if the current instance and other are equal; otherwise, false. + + + Returns a value that indicates whether this instance is equal to a specified object. + The object to compare with this instance. + true if the current instance and obj are equal; otherwise, false. The method returns false if obj is null, or if obj is a vector of a different type than the current instance. + + + Returns the hash code for this instance. + The hash code. + + + Gets the element at a specified index. + The index of the element to return. + The element at index index. + index is less than zero. + -or- + index is greater than or equal to . + + + Returns a vector containing all ones. + A vector containing all ones. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Returns a new vector by performing a bitwise And operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise And of left and right. + + + Returns a new vector by performing a bitwise Or operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise Or of the elements in left and right. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Returns a value that indicates whether each pair of elements in two specified vectors are equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a new vector by performing a bitwise XOr operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise XOr of the elements in left and right. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Returns a value that indicates whether any single pair of elements in the specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if any element pairs in left and right are equal. false if no element pairs are equal. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar value. + The source vector. + A scalar value. + The scaled vector. + + + Multiplies a vector by the given scalar. + The scalar value. + The source vector. + The scaled vector. + + + Returns a new vector whose elements are obtained by taking the one's complement of a specified vector's elements. + The source vector. + The one's complement vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates a given vector. + The vector to negate. + The negated vector. + + + Returns the string representation of this vector using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Returns the string representation of this vector using default formatting. + The string representation of this vector. + + + Returns the string representation of this vector using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns a vector containing all zeroes. + A vector containing all zeroes. + + + Provides a collection of static convenience methods for creating, manipulating, combining, and converting generic vectors. + + + Returns a new vector whose elements are the absolute values of the given vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The absolute value vector. + + + Returns a new vector whose values are the sum of each pair of elements from two given vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The summed vector. + + + Returns a new vector by performing a bitwise And Not operation on each pair of corresponding elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned bytes. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a double-precision floating-point vector. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of 16-bit integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of long integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of signed bytes. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a single-precision floating-point vector. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned 16-bit integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned long integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Returns a new vector by performing a bitwise And operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a new vector by performing a bitwise Or operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Creates a new single-precision vector with elements selected between two specified single-precision source vectors based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The new vector with elements selected based on the mask. + + + Creates a new double-precision vector with elements selected between two specified double-precision source vectors based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The new vector with elements selected based on the mask. + + + Creates a new vector of a specified type with elements selected between two specified source vectors of the same type based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The vector type. T can be any primitive numeric type. + The new vector with elements selected based on the mask. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector whose values are the result of dividing the first vector's elements by the corresponding elements in the second vector. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The divided vector. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The dot product. + + + Returns a new integral vector whose elements signal whether the elements in two specified double-precision vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in two specified integral vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in two specified long integer vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in two specified single-precision vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector of a specified type whose elements signal whether the elements in two specified vectors of the same type are equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether each pair of elements in the given vectors is equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left and right are equal; otherwise, false. + + + Returns a value that indicates whether any single pair of elements in the given vectors is equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element pair in left and right is equal; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are greater than their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are greater than their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are greater than their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision floating-point vector are greater than their corresponding elements in a second single-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector of a specified type are greater than their corresponding elements in the second vector of the same time. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are greater than the corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left are greater than the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is greater than the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is greater than the corresponding element in right; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one vector are greater than or equal to their corresponding elements in the single-precision floating-point second vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are greater than or equal to their corresponding elements in the second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are greater than or equal to their corresponding elements in the second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one vector are greater than or equal to their corresponding elements in the second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector of a specified type are greater than or equal to their corresponding elements in the second vector of the same type. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are greater than or equal to all the corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left are greater than or equal to the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is greater than or equal to the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is greater than or equal to the corresponding element in right; otherwise, false. + + + Gets a value that indicates whether vector operations are subject to hardware acceleration through JIT intrinsic support. + true if vector operations are subject to hardware acceleration; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are less than their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are less than their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are less than their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision vector are less than their corresponding elements in a second single-precision vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector of a specified type whose elements signal whether the elements in one vector are less than their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all of the elements in the first vector are less than their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all of the elements in left are less than the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is less than the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is less than the corresponding element in right; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are less than or equal to their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are less than or equal to their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are less or equal to their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision floating-point vector are less than or equal to their corresponding elements in a second single-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector are less than or equal to their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are less than or equal to their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all of the elements in left are less than or equal to the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is less than or equal to the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is less than or equal to the corresponding element in right; otherwise, false. + + + Returns a new vector whose elements are the maximum of each pair of elements in the two given vectors. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The maximum vector. + + + Returns a new vector whose elements are the minimum of each pair of elements in the two given vectors. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The minimum vector. + + + Returns a new vector whose values are a scalar value multiplied by each of the values of a specified vector. + The scalar value. + The vector. + The vector type. T can be any primitive numeric type. + The scaled vector. + + + Returns a new vector whose values are the product of each pair of elements in two specified vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The product vector. + + + Returns a new vector whose values are the values of a specified vector each multiplied by a scalar value. + The vector. + The scalar value. + The vector type. T can be any primitive numeric type. + The scaled vector. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector whose elements are the negation of the corresponding element in the specified vector. + The source vector. + The vector type. T can be any primitive numeric type. + The negated vector. + + + Returns a new vector whose elements are obtained by taking the one's complement of a specified vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a new vector whose elements are the square roots of a specified vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The square root vector. + + + Returns a new vector whose values are the difference between the elements in the second vector and their corresponding elements in the first vector. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The difference vector. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector by performing a bitwise exclusive Or (XOr) operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Represents a vector with two single-precision floating-point values. + + + Creates a new object whose two elements have the same value. + The value to assign to both elements. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of the vector. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 2 elements are equal to one. + A vector whose two elements are equal to one (that is, it returns the vector (1,1). + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns the reflection of a vector off a surface that has the specified normal. + The source vector. + The normal of the surface being reflected off. + The reflected vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a vector by a specified 3x2 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a vector normal by the given 3x2 matrix. + The source vector. + The matrix. + The transformed vector. + + + Transforms a vector normal by the given 4x4 matrix. + The source vector. + The matrix. + The transformed vector. + + + Gets the vector (1,0). + The vector (1,0). + + + Gets the vector (0,1). + The vector (0,1). + + + The X component of the vector. + + + + The Y component of the vector. + + + + Returns a vector whose 2 elements are equal to zero. + A vector whose two elements are equal to zero (that is, it returns the vector (0,0). + + + Represents a vector with three single-precision floating-point values. + + + Creates a new object whose three elements have the same value. + The value to assign to all three elements. + + + Creates a new object from the specified object and the specified value. + The vector with two elements. + The additional value to assign to the field. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the cross product of two vectors. + The first vector. + The second vector. + The cross product. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of this vector object. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 3 elements are equal to one. + A vector whose three elements are equal to one (that is, it returns the vector (1,1,1). + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns the reflection of a vector off a surface that has the specified normal. + The source vector. + The normal of the surface being reflected off. + The reflected vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a vector normal by the given 4x4 matrix. + The source vector. + The matrix. + The transformed vector. + + + Gets the vector (1,0,0). + The vector (1,0,0). + + + Gets the vector (0,1,0). + The vector (0,1,0).. + + + Gets the vector (0,0,1). + The vector (0,0,1). + + + The X component of the vector. + + + + The Y component of the vector. + + + + The Z component of the vector. + + + + Gets a vector whose 3 elements are equal to zero. + A vector whose three elements are equal to zero (that is, it returns the vector (0,0,0). + + + Represents a vector with four single-precision floating-point values. + + + Creates a new object whose four elements have the same value. + The value to assign to all four elements. + + + Constructs a new object from the specified object and a W component. + The vector to use for the X, Y, and Z components. + The W component. + + + Creates a new object from the specified object and a Z and a W component. + The vector to use for the X and Y components. + The Z component. + The W component. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of this vector object. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 4 elements are equal to one. + Returns . + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a four-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a four-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a three-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a two-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a two-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a three-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Gets the vector (0,0,0,1). + The vector (0,0,0,1). + + + Gets the vector (1,0,0,0). + The vector (1,0,0,0). + + + Gets the vector (0,1,0,0). + The vector (0,1,0,0).. + + + Gets a vector whose 4 elements are equal to zero. + The vector (0,0,1,0). + + + The W component of the vector. + + + + The X component of the vector. + + + + The Y component of the vector. + + + + The Z component of the vector. + + + + Gets a vector whose 4 elements are equal to zero. + A vector whose four elements are equal to zero (that is, it returns the vector (0,0,0,0). + + + \ No newline at end of file diff --git a/packages/System.Numerics.Vectors.4.5.0/lib/portable-net45+win8+wp8+wpa81/System.Numerics.Vectors.dll b/packages/System.Numerics.Vectors.4.5.0/lib/portable-net45+win8+wp8+wpa81/System.Numerics.Vectors.dll new file mode 100644 index 0000000..433aa36 Binary files /dev/null and b/packages/System.Numerics.Vectors.4.5.0/lib/portable-net45+win8+wp8+wpa81/System.Numerics.Vectors.dll differ diff --git a/packages/System.Numerics.Vectors.4.5.0/lib/portable-net45+win8+wp8+wpa81/System.Numerics.Vectors.xml b/packages/System.Numerics.Vectors.4.5.0/lib/portable-net45+win8+wp8+wpa81/System.Numerics.Vectors.xml new file mode 100644 index 0000000..da34d39 --- /dev/null +++ b/packages/System.Numerics.Vectors.4.5.0/lib/portable-net45+win8+wp8+wpa81/System.Numerics.Vectors.xml @@ -0,0 +1,2621 @@ + + + System.Numerics.Vectors + + + + Represents a 3x2 matrix. + + + Creates a 3x2 matrix from the specified components. + The value to assign to the first element in the first row. + The value to assign to the second element in the first row. + The value to assign to the first element in the second row. + The value to assign to the second element in the second row. + The value to assign to the first element in the third row. + The value to assign to the second element in the third row. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values of value1 and value2. + + + Creates a rotation matrix using the given rotation in radians. + The amount of rotation, in radians. + The rotation matrix. + + + Creates a rotation matrix using the specified rotation in radians and a center point. + The amount of rotation, in radians. + The center point. + The rotation matrix. + + + Creates a scaling matrix from the specified X and Y components. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The scaling matrix. + + + Creates a scaling matrix that scales uniformly with the specified scale with an offset from the specified center. + The uniform scale to use. + The center offset. + The scaling matrix. + + + Creates a scaling matrix that is offset by a given center point. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The center point. + The scaling matrix. + + + Creates a scaling matrix that scales uniformly with the given scale. + The uniform scale to use. + The scaling matrix. + + + Creates a scaling matrix from the specified vector scale. + The scale to use. + The scaling matrix. + + + Creates a scaling matrix from the specified vector scale with an offset from the specified center point. + The scale to use. + The center offset. + The scaling matrix. + + + Creates a skew matrix from the specified angles in radians. + The X angle, in radians. + The Y angle, in radians. + The skew matrix. + + + Creates a skew matrix from the specified angles in radians and a center point. + The X angle, in radians. + The Y angle, in radians. + The center point. + The skew matrix. + + + Creates a translation matrix from the specified 2-dimensional vector. + The translation position. + The translation matrix. + + + Creates a translation matrix from the specified X and Y components. + The X position. + The Y position. + The translation matrix. + + + Returns a value that indicates whether this instance and another 3x2 matrix are equal. + The other matrix. + true if the two matrices are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Calculates the determinant for this matrix. + The determinant. + + + Returns the hash code for this instance. + The hash code. + + + Gets the multiplicative identity matrix. + The multiplicative identify matrix. + + + Inverts the specified matrix. The return value indicates whether the operation succeeded. + The matrix to invert. + When this method returns, contains the inverted matrix if the operation succeeded. + true if matrix was converted successfully; otherwise, false. + + + Indicates whether the current matrix is the identity matrix. + true if the current matrix is the identity matrix; otherwise, false. + + + Performs a linear interpolation from one matrix to a second matrix based on a value that specifies the weighting of the second matrix. + The first matrix. + The second matrix. + The relative weighting of matrix2. + The interpolated matrix. + + + The first element of the first row. + + + + The second element of the first row. + + + + The first element of the second row. + + + + The second element of the second row. + + + + The first element of the third row. + + + + The second element of the third row. + + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values. + + + Returns a value that indicates whether the specified matrices are equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether the specified matrices are not equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this matrix. + The string representation of this matrix. + + + Gets or sets the translation component of this matrix. + The translation component of the current instance. + + + Represents a 4x4 matrix. + + + Creates a object from a specified object. + A 3x2 matrix. + + + Creates a 4x4 matrix from the specified components. + The value to assign to the first element in the first row. + The value to assign to the second element in the first row. + The value to assign to the third element in the first row. + The value to assign to the fourth element in the first row. + The value to assign to the first element in the second row. + The value to assign to the second element in the second row. + The value to assign to the third element in the second row. + The value to assign to the third element in the second row. + The value to assign to the first element in the third row. + The value to assign to the second element in the third row. + The value to assign to the third element in the third row. + The value to assign to the fourth element in the third row. + The value to assign to the first element in the fourth row. + The value to assign to the second element in the fourth row. + The value to assign to the third element in the fourth row. + The value to assign to the fourth element in the fourth row. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values of value1 and value2. + + + Creates a spherical billboard that rotates around a specified object position. + The position of the object that the billboard will rotate around. + The position of the camera. + The up vector of the camera. + The forward vector of the camera. + The created billboard. + + + Creates a cylindrical billboard that rotates around a specified axis. + The position of the object that the billboard will rotate around. + The position of the camera. + The axis to rotate the billboard around. + The forward vector of the camera. + The forward vector of the object. + The billboard matrix. + + + Creates a matrix that rotates around an arbitrary vector. + The axis to rotate around. + The angle to rotate around axis, in radians. + The rotation matrix. + + + Creates a rotation matrix from the specified Quaternion rotation value. + The source Quaternion. + The rotation matrix. + + + Creates a rotation matrix from the specified yaw, pitch, and roll. + The angle of rotation, in radians, around the Y axis. + The angle of rotation, in radians, around the X axis. + The angle of rotation, in radians, around the Z axis. + The rotation matrix. + + + Creates a view matrix. + The position of the camera. + The target towards which the camera is pointing. + The direction that is "up" from the camera's point of view. + The view matrix. + + + Creates an orthographic perspective matrix from the given view volume dimensions. + The width of the view volume. + The height of the view volume. + The minimum Z-value of the view volume. + The maximum Z-value of the view volume. + The orthographic projection matrix. + + + Creates a customized orthographic projection matrix. + The minimum X-value of the view volume. + The maximum X-value of the view volume. + The minimum Y-value of the view volume. + The maximum Y-value of the view volume. + The minimum Z-value of the view volume. + The maximum Z-value of the view volume. + The orthographic projection matrix. + + + Creates a perspective projection matrix from the given view volume dimensions. + The width of the view volume at the near view plane. + The height of the view volume at the near view plane. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a perspective projection matrix based on a field of view, aspect ratio, and near and far view plane distances. + The field of view in the y direction, in radians. + The aspect ratio, defined as view space width divided by height. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + fieldOfView is less than or equal to zero. + -or- + fieldOfView is greater than or equal to . + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a customized perspective projection matrix. + The minimum x-value of the view volume at the near view plane. + The maximum x-value of the view volume at the near view plane. + The minimum y-value of the view volume at the near view plane. + The maximum y-value of the view volume at the near view plane. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a matrix that reflects the coordinate system about a specified plane. + The plane about which to create a reflection. + A new matrix expressing the reflection. + + + Creates a matrix for rotating points around the X axis. + The amount, in radians, by which to rotate around the X axis. + The rotation matrix. + + + Creates a matrix for rotating points around the X axis from a center point. + The amount, in radians, by which to rotate around the X axis. + The center point. + The rotation matrix. + + + The amount, in radians, by which to rotate around the Y axis from a center point. + The amount, in radians, by which to rotate around the Y-axis. + The center point. + The rotation matrix. + + + Creates a matrix for rotating points around the Y axis. + The amount, in radians, by which to rotate around the Y-axis. + The rotation matrix. + + + Creates a matrix for rotating points around the Z axis. + The amount, in radians, by which to rotate around the Z-axis. + The rotation matrix. + + + Creates a matrix for rotating points around the Z axis from a center point. + The amount, in radians, by which to rotate around the Z-axis. + The center point. + The rotation matrix. + + + Creates a scaling matrix from the specified vector scale. + The scale to use. + The scaling matrix. + + + Creates a uniform scaling matrix that scale equally on each axis. + The uniform scaling factor. + The scaling matrix. + + + Creates a scaling matrix with a center point. + The vector that contains the amount to scale on each axis. + The center point. + The scaling matrix. + + + Creates a uniform scaling matrix that scales equally on each axis with a center point. + The uniform scaling factor. + The center point. + The scaling matrix. + + + Creates a scaling matrix from the specified X, Y, and Z components. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The value to scale by on the Z axis. + The scaling matrix. + + + Creates a scaling matrix that is offset by a given center point. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The value to scale by on the Z axis. + The center point. + The scaling matrix. + + + Creates a matrix that flattens geometry into a specified plane as if casting a shadow from a specified light source. + The direction from which the light that will cast the shadow is coming. + The plane onto which the new matrix should flatten geometry so as to cast a shadow. + A new matrix that can be used to flatten geometry onto the specified plane from the specified direction. + + + Creates a translation matrix from the specified 3-dimensional vector. + The amount to translate in each axis. + The translation matrix. + + + Creates a translation matrix from the specified X, Y, and Z components. + The amount to translate on the X axis. + The amount to translate on the Y axis. + The amount to translate on the Z axis. + The translation matrix. + + + Creates a world matrix with the specified parameters. + The position of the object. + The forward direction of the object. + The upward direction of the object. Its value is usually [0, 1, 0]. + The world matrix. + + + Attempts to extract the scale, translation, and rotation components from the given scale, rotation, or translation matrix. The return value indicates whether the operation succeeded. + The source matrix. + When this method returns, contains the scaling component of the transformation matrix if the operation succeeded. + When this method returns, contains the rotation component of the transformation matrix if the operation succeeded. + When the method returns, contains the translation component of the transformation matrix if the operation succeeded. + true if matrix was decomposed successfully; otherwise, false. + + + Returns a value that indicates whether this instance and another 4x4 matrix are equal. + The other matrix. + true if the two matrices are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Calculates the determinant of the current 4x4 matrix. + The determinant. + + + Returns the hash code for this instance. + The hash code. + + + Gets the multiplicative identity matrix. + Gets the multiplicative identity matrix. + + + Inverts the specified matrix. The return value indicates whether the operation succeeded. + The matrix to invert. + When this method returns, contains the inverted matrix if the operation succeeded. + true if matrix was converted successfully; otherwise, false. + + + Indicates whether the current matrix is the identity matrix. + true if the current matrix is the identity matrix; otherwise, false. + + + Performs a linear interpolation from one matrix to a second matrix based on a value that specifies the weighting of the second matrix. + The first matrix. + The second matrix. + The relative weighting of matrix2. + The interpolated matrix. + + + The first element of the first row. + + + + The second element of the first row. + + + + The third element of the first row. + + + + The fourth element of the first row. + + + + The first element of the second row. + + + + The second element of the second row. + + + + The third element of the second row. + + + + The fourth element of the second row. + + + + The first element of the third row. + + + + The second element of the third row. + + + + The third element of the third row. + + + + The fourth element of the third row. + + + + The first element of the fourth row. + + + + The second element of the fourth row. + + + + The third element of the fourth row. + + + + The fourth element of the fourth row. + + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values. + + + Returns a value that indicates whether the specified matrices are equal. + The first matrix to compare. + The second matrix to care + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether the specified matrices are not equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this matrix. + The string representation of this matrix. + + + Transforms the specified matrix by applying the specified Quaternion rotation. + The matrix to transform. + The rotation t apply. + The transformed matrix. + + + Gets or sets the translation component of this matrix. + The translation component of the current instance. + + + Transposes the rows and columns of a matrix. + The matrix to transpose. + The transposed matrix. + + + Represents a three-dimensional plane. + + + Creates a object from a specified four-dimensional vector. + A vector whose first three elements describe the normal vector, and whose defines the distance along that normal from the origin. + + + Creates a object from a specified normal and the distance along the normal from the origin. + The plane's normal vector. + The plane's distance from the origin along its normal vector. + + + Creates a object from the X, Y, and Z components of its normal, and its distance from the origin on that normal. + The X component of the normal. + The Y component of the normal. + The Z component of the normal. + The distance of the plane along its normal from the origin. + + + Creates a object that contains three specified points. + The first point defining the plane. + The second point defining the plane. + The third point defining the plane. + The plane containing the three points. + + + The distance of the plane along its normal from the origin. + + + + Calculates the dot product of a plane and a 4-dimensional vector. + The plane. + The four-dimensional vector. + The dot product. + + + Returns the dot product of a specified three-dimensional vector and the normal vector of this plane plus the distance () value of the plane. + The plane. + The 3-dimensional vector. + The dot product. + + + Returns the dot product of a specified three-dimensional vector and the vector of this plane. + The plane. + The three-dimensional vector. + The dot product. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns a value that indicates whether this instance and another plane object are equal. + The other plane. + true if the two planes are equal; otherwise, false. + + + Returns the hash code for this instance. + The hash code. + + + The normal vector of the plane. + + + + Creates a new object whose normal vector is the source plane's normal vector normalized. + The source plane. + The normalized plane. + + + Returns a value that indicates whether two planes are equal. + The first plane to compare. + The second plane to compare. + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether two planes are not equal. + The first plane to compare. + The second plane to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the string representation of this plane object. + A string that represents this object. + + + Transforms a normalized plane by a 4x4 matrix. + The normalized plane to transform. + The transformation matrix to apply to plane. + The transformed plane. + + + Transforms a normalized plane by a Quaternion rotation. + The normalized plane to transform. + The Quaternion rotation to apply to the plane. + A new plane that results from applying the Quaternion rotation. + + + Represents a vector that is used to encode three-dimensional physical rotations. + + + Creates a quaternion from the specified vector and rotation parts. + The vector part of the quaternion. + The rotation part of the quaternion. + + + Constructs a quaternion from the specified components. + The value to assign to the X component of the quaternion. + The value to assign to the Y component of the quaternion. + The value to assign to the Z component of the quaternion. + The value to assign to the W component of the quaternion. + + + Adds each element in one quaternion with its corresponding element in a second quaternion. + The first quaternion. + The second quaternion. + The quaternion that contains the summed values of value1 and value2. + + + Concatenates two quaternions. + The first quaternion rotation in the series. + The second quaternion rotation in the series. + A new quaternion representing the concatenation of the value1 rotation followed by the value2 rotation. + + + Returns the conjugate of a specified quaternion. + The quaternion. + A new quaternion that is the conjugate of value. + + + Creates a quaternion from a vector and an angle to rotate about the vector. + The vector to rotate around. + The angle, in radians, to rotate around the vector. + The newly created quaternion. + + + Creates a quaternion from the specified rotation matrix. + The rotation matrix. + The newly created quaternion. + + + Creates a new quaternion from the given yaw, pitch, and roll. + The yaw angle, in radians, around the Y axis. + The pitch angle, in radians, around the X axis. + The roll angle, in radians, around the Z axis. + The resulting quaternion. + + + Divides one quaternion by a second quaternion. + The dividend. + The divisor. + The quaternion that results from dividing value1 by value2. + + + Calculates the dot product of two quaternions. + The first quaternion. + The second quaternion. + The dot product. + + + Returns a value that indicates whether this instance and another quaternion are equal. + The other quaternion. + true if the two quaternions are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Gets a quaternion that represents no rotation. + A quaternion whose values are (0, 0, 0, 1). + + + Returns the inverse of a quaternion. + The quaternion. + The inverted quaternion. + + + Gets a value that indicates whether the current instance is the identity quaternion. + true if the current instance is the identity quaternion; otherwise, false. + + + Calculates the length of the quaternion. + The computed length of the quaternion. + + + Calculates the squared length of the quaternion. + The length squared of the quaternion. + + + Performs a linear interpolation between two quaternions based on a value that specifies the weighting of the second quaternion. + The first quaternion. + The second quaternion. + The relative weight of quaternion2 in the interpolation. + The interpolated quaternion. + + + Returns the quaternion that results from multiplying two quaternions together. + The first quaternion. + The second quaternion. + The product quaternion. + + + Returns the quaternion that results from scaling all the components of a specified quaternion by a scalar factor. + The source quaternion. + The scalar value. + The scaled quaternion. + + + Reverses the sign of each component of the quaternion. + The quaternion to negate. + The negated quaternion. + + + Divides each component of a specified by its length. + The quaternion to normalize. + The normalized quaternion. + + + Adds each element in one quaternion with its corresponding element in a second quaternion. + The first quaternion. + The second quaternion. + The quaternion that contains the summed values of value1 and value2. + + + Divides one quaternion by a second quaternion. + The dividend. + The divisor. + The quaternion that results from dividing value1 by value2. + + + Returns a value that indicates whether two quaternions are equal. + The first quaternion to compare. + The second quaternion to compare. + true if the two quaternions are equal; otherwise, false. + + + Returns a value that indicates whether two quaternions are not equal. + The first quaternion to compare. + The second quaternion to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the quaternion that results from scaling all the components of a specified quaternion by a scalar factor. + The source quaternion. + The scalar value. + The scaled quaternion. + + + Returns the quaternion that results from multiplying two quaternions together. + The first quaternion. + The second quaternion. + The product quaternion. + + + Subtracts each element in a second quaternion from its corresponding element in a first quaternion. + The first quaternion. + The second quaternion. + The quaternion containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Reverses the sign of each component of the quaternion. + The quaternion to negate. + The negated quaternion. + + + Interpolates between two quaternions, using spherical linear interpolation. + The first quaternion. + The second quaternion. + The relative weight of the second quaternion in the interpolation. + The interpolated quaternion. + + + Subtracts each element in a second quaternion from its corresponding element in a first quaternion. + The first quaternion. + The second quaternion. + The quaternion containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this quaternion. + The string representation of this quaternion. + + + The rotation component of the quaternion. + + + + The X value of the vector component of the quaternion. + + + + The Y value of the vector component of the quaternion. + + + + The Z value of the vector component of the quaternion. + + + + Represents a single vector of a specified numeric type that is suitable for low-level optimization of parallel algorithms. + The vector type. T can be any primitive numeric type. + + + Creates a vector whose components are of a specified type. + The numeric type that defines the type of the components in the vector. + + + Creates a vector from a specified array. + A numeric array. + values is null. + + + Creates a vector from a specified array starting at a specified index position. + A numeric array. + The starting index position from which to create the vector. + values is null. + index is less than zero. + -or- + The length of values minus index is less than . + + + Copies the vector instance to a specified destination array. + The array to receive a copy of the vector values. + destination is null. + The number of elements in the current vector is greater than the number of elements available in the destination array. + + + Copies the vector instance to a specified destination array starting at a specified index position. + The array to receive a copy of the vector values. + The starting index in destination at which to begin the copy operation. + destination is null. + The number of elements in the current instance is greater than the number of elements available from startIndex to the end of the destination array. + index is less than zero or greater than the last index in destination. + + + Returns the number of elements stored in the vector. + The number of elements stored in the vector. + Access to the property getter via reflection is not supported. + + + Returns a value that indicates whether this instance is equal to a specified vector. + The vector to compare with this instance. + true if the current instance and other are equal; otherwise, false. + + + Returns a value that indicates whether this instance is equal to a specified object. + The object to compare with this instance. + true if the current instance and obj are equal; otherwise, false. The method returns false if obj is null, or if obj is a vector of a different type than the current instance. + + + Returns the hash code for this instance. + The hash code. + + + Gets the element at a specified index. + The index of the element to return. + The element at index index. + index is less than zero. + -or- + index is greater than or equal to . + + + Returns a vector containing all ones. + A vector containing all ones. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Returns a new vector by performing a bitwise And operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise And of left and right. + + + Returns a new vector by performing a bitwise Or operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise Or of the elements in left and right. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Returns a value that indicates whether each pair of elements in two specified vectors are equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a new vector by performing a bitwise XOr operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise XOr of the elements in left and right. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Returns a value that indicates whether any single pair of elements in the specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if any element pairs in left and right are equal. false if no element pairs are equal. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar value. + The source vector. + A scalar value. + The scaled vector. + + + Multiplies a vector by the given scalar. + The scalar value. + The source vector. + The scaled vector. + + + Returns a new vector whose elements are obtained by taking the one's complement of a specified vector's elements. + The source vector. + The one's complement vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates a given vector. + The vector to negate. + The negated vector. + + + Returns the string representation of this vector using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Returns the string representation of this vector using default formatting. + The string representation of this vector. + + + Returns the string representation of this vector using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns a vector containing all zeroes. + A vector containing all zeroes. + + + Provides a collection of static convenience methods for creating, manipulating, combining, and converting generic vectors. + + + Returns a new vector whose elements are the absolute values of the given vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The absolute value vector. + + + Returns a new vector whose values are the sum of each pair of elements from two given vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The summed vector. + + + Returns a new vector by performing a bitwise And Not operation on each pair of corresponding elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned bytes. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a double-precision floating-point vector. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of 16-bit integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of long integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of signed bytes. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a single-precision floating-point vector. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned 16-bit integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned long integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Returns a new vector by performing a bitwise And operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a new vector by performing a bitwise Or operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Creates a new single-precision vector with elements selected between two specified single-precision source vectors based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The new vector with elements selected based on the mask. + + + Creates a new double-precision vector with elements selected between two specified double-precision source vectors based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The new vector with elements selected based on the mask. + + + Creates a new vector of a specified type with elements selected between two specified source vectors of the same type based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The vector type. T can be any primitive numeric type. + The new vector with elements selected based on the mask. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector whose values are the result of dividing the first vector's elements by the corresponding elements in the second vector. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The divided vector. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The dot product. + + + Returns a new integral vector whose elements signal whether the elements in two specified double-precision vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in two specified integral vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in two specified long integer vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in two specified single-precision vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector of a specified type whose elements signal whether the elements in two specified vectors of the same type are equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether each pair of elements in the given vectors is equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left and right are equal; otherwise, false. + + + Returns a value that indicates whether any single pair of elements in the given vectors is equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element pair in left and right is equal; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are greater than their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are greater than their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are greater than their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision floating-point vector are greater than their corresponding elements in a second single-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector of a specified type are greater than their corresponding elements in the second vector of the same time. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are greater than the corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left are greater than the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is greater than the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is greater than the corresponding element in right; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one vector are greater than or equal to their corresponding elements in the single-precision floating-point second vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are greater than or equal to their corresponding elements in the second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are greater than or equal to their corresponding elements in the second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one vector are greater than or equal to their corresponding elements in the second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector of a specified type are greater than or equal to their corresponding elements in the second vector of the same type. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are greater than or equal to all the corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left are greater than or equal to the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is greater than or equal to the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is greater than or equal to the corresponding element in right; otherwise, false. + + + Gets a value that indicates whether vector operations are subject to hardware acceleration through JIT intrinsic support. + true if vector operations are subject to hardware acceleration; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are less than their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are less than their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are less than their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision vector are less than their corresponding elements in a second single-precision vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector of a specified type whose elements signal whether the elements in one vector are less than their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all of the elements in the first vector are less than their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all of the elements in left are less than the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is less than the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is less than the corresponding element in right; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are less than or equal to their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are less than or equal to their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are less or equal to their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision floating-point vector are less than or equal to their corresponding elements in a second single-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector are less than or equal to their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are less than or equal to their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all of the elements in left are less than or equal to the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is less than or equal to the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is less than or equal to the corresponding element in right; otherwise, false. + + + Returns a new vector whose elements are the maximum of each pair of elements in the two given vectors. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The maximum vector. + + + Returns a new vector whose elements are the minimum of each pair of elements in the two given vectors. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The minimum vector. + + + Returns a new vector whose values are a scalar value multiplied by each of the values of a specified vector. + The scalar value. + The vector. + The vector type. T can be any primitive numeric type. + The scaled vector. + + + Returns a new vector whose values are the product of each pair of elements in two specified vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The product vector. + + + Returns a new vector whose values are the values of a specified vector each multiplied by a scalar value. + The vector. + The scalar value. + The vector type. T can be any primitive numeric type. + The scaled vector. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector whose elements are the negation of the corresponding element in the specified vector. + The source vector. + The vector type. T can be any primitive numeric type. + The negated vector. + + + Returns a new vector whose elements are obtained by taking the one's complement of a specified vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a new vector whose elements are the square roots of a specified vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The square root vector. + + + Returns a new vector whose values are the difference between the elements in the second vector and their corresponding elements in the first vector. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The difference vector. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector by performing a bitwise exclusive Or (XOr) operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Represents a vector with two single-precision floating-point values. + + + Creates a new object whose two elements have the same value. + The value to assign to both elements. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of the vector. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 2 elements are equal to one. + A vector whose two elements are equal to one (that is, it returns the vector (1,1). + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns the reflection of a vector off a surface that has the specified normal. + The source vector. + The normal of the surface being reflected off. + The reflected vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a vector by a specified 3x2 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a vector normal by the given 3x2 matrix. + The source vector. + The matrix. + The transformed vector. + + + Transforms a vector normal by the given 4x4 matrix. + The source vector. + The matrix. + The transformed vector. + + + Gets the vector (1,0). + The vector (1,0). + + + Gets the vector (0,1). + The vector (0,1). + + + The X component of the vector. + + + + The Y component of the vector. + + + + Returns a vector whose 2 elements are equal to zero. + A vector whose two elements are equal to zero (that is, it returns the vector (0,0). + + + Represents a vector with three single-precision floating-point values. + + + Creates a new object whose three elements have the same value. + The value to assign to all three elements. + + + Creates a new object from the specified object and the specified value. + The vector with two elements. + The additional value to assign to the field. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the cross product of two vectors. + The first vector. + The second vector. + The cross product. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of this vector object. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 3 elements are equal to one. + A vector whose three elements are equal to one (that is, it returns the vector (1,1,1). + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns the reflection of a vector off a surface that has the specified normal. + The source vector. + The normal of the surface being reflected off. + The reflected vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a vector normal by the given 4x4 matrix. + The source vector. + The matrix. + The transformed vector. + + + Gets the vector (1,0,0). + The vector (1,0,0). + + + Gets the vector (0,1,0). + The vector (0,1,0).. + + + Gets the vector (0,0,1). + The vector (0,0,1). + + + The X component of the vector. + + + + The Y component of the vector. + + + + The Z component of the vector. + + + + Gets a vector whose 3 elements are equal to zero. + A vector whose three elements are equal to zero (that is, it returns the vector (0,0,0). + + + Represents a vector with four single-precision floating-point values. + + + Creates a new object whose four elements have the same value. + The value to assign to all four elements. + + + Constructs a new object from the specified object and a W component. + The vector to use for the X, Y, and Z components. + The W component. + + + Creates a new object from the specified object and a Z and a W component. + The vector to use for the X and Y components. + The Z component. + The W component. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of this vector object. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 4 elements are equal to one. + Returns . + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a four-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a four-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a three-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a two-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a two-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a three-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Gets the vector (0,0,0,1). + The vector (0,0,0,1). + + + Gets the vector (1,0,0,0). + The vector (1,0,0,0). + + + Gets the vector (0,1,0,0). + The vector (0,1,0,0).. + + + Gets a vector whose 4 elements are equal to zero. + The vector (0,0,1,0). + + + The W component of the vector. + + + + The X component of the vector. + + + + The Y component of the vector. + + + + The Z component of the vector. + + + + Gets a vector whose 4 elements are equal to zero. + A vector whose four elements are equal to zero (that is, it returns the vector (0,0,0,0). + + + \ No newline at end of file diff --git a/packages/System.Numerics.Vectors.4.5.0/lib/uap10.0.16299/_._ b/packages/System.Numerics.Vectors.4.5.0/lib/uap10.0.16299/_._ new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Numerics.Vectors.4.5.0/lib/xamarinios10/_._ b/packages/System.Numerics.Vectors.4.5.0/lib/xamarinios10/_._ new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Numerics.Vectors.4.5.0/lib/xamarinmac20/_._ b/packages/System.Numerics.Vectors.4.5.0/lib/xamarinmac20/_._ new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Numerics.Vectors.4.5.0/lib/xamarintvos10/_._ b/packages/System.Numerics.Vectors.4.5.0/lib/xamarintvos10/_._ new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Numerics.Vectors.4.5.0/lib/xamarinwatchos10/_._ b/packages/System.Numerics.Vectors.4.5.0/lib/xamarinwatchos10/_._ new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Numerics.Vectors.4.5.0/ref/MonoAndroid10/_._ b/packages/System.Numerics.Vectors.4.5.0/ref/MonoAndroid10/_._ new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Numerics.Vectors.4.5.0/ref/MonoTouch10/_._ b/packages/System.Numerics.Vectors.4.5.0/ref/MonoTouch10/_._ new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Numerics.Vectors.4.5.0/ref/net45/System.Numerics.Vectors.dll b/packages/System.Numerics.Vectors.4.5.0/ref/net45/System.Numerics.Vectors.dll new file mode 100644 index 0000000..e237afb Binary files /dev/null and b/packages/System.Numerics.Vectors.4.5.0/ref/net45/System.Numerics.Vectors.dll differ diff --git a/packages/System.Numerics.Vectors.4.5.0/ref/net45/System.Numerics.Vectors.xml b/packages/System.Numerics.Vectors.4.5.0/ref/net45/System.Numerics.Vectors.xml new file mode 100644 index 0000000..da34d39 --- /dev/null +++ b/packages/System.Numerics.Vectors.4.5.0/ref/net45/System.Numerics.Vectors.xml @@ -0,0 +1,2621 @@ + + + System.Numerics.Vectors + + + + Represents a 3x2 matrix. + + + Creates a 3x2 matrix from the specified components. + The value to assign to the first element in the first row. + The value to assign to the second element in the first row. + The value to assign to the first element in the second row. + The value to assign to the second element in the second row. + The value to assign to the first element in the third row. + The value to assign to the second element in the third row. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values of value1 and value2. + + + Creates a rotation matrix using the given rotation in radians. + The amount of rotation, in radians. + The rotation matrix. + + + Creates a rotation matrix using the specified rotation in radians and a center point. + The amount of rotation, in radians. + The center point. + The rotation matrix. + + + Creates a scaling matrix from the specified X and Y components. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The scaling matrix. + + + Creates a scaling matrix that scales uniformly with the specified scale with an offset from the specified center. + The uniform scale to use. + The center offset. + The scaling matrix. + + + Creates a scaling matrix that is offset by a given center point. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The center point. + The scaling matrix. + + + Creates a scaling matrix that scales uniformly with the given scale. + The uniform scale to use. + The scaling matrix. + + + Creates a scaling matrix from the specified vector scale. + The scale to use. + The scaling matrix. + + + Creates a scaling matrix from the specified vector scale with an offset from the specified center point. + The scale to use. + The center offset. + The scaling matrix. + + + Creates a skew matrix from the specified angles in radians. + The X angle, in radians. + The Y angle, in radians. + The skew matrix. + + + Creates a skew matrix from the specified angles in radians and a center point. + The X angle, in radians. + The Y angle, in radians. + The center point. + The skew matrix. + + + Creates a translation matrix from the specified 2-dimensional vector. + The translation position. + The translation matrix. + + + Creates a translation matrix from the specified X and Y components. + The X position. + The Y position. + The translation matrix. + + + Returns a value that indicates whether this instance and another 3x2 matrix are equal. + The other matrix. + true if the two matrices are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Calculates the determinant for this matrix. + The determinant. + + + Returns the hash code for this instance. + The hash code. + + + Gets the multiplicative identity matrix. + The multiplicative identify matrix. + + + Inverts the specified matrix. The return value indicates whether the operation succeeded. + The matrix to invert. + When this method returns, contains the inverted matrix if the operation succeeded. + true if matrix was converted successfully; otherwise, false. + + + Indicates whether the current matrix is the identity matrix. + true if the current matrix is the identity matrix; otherwise, false. + + + Performs a linear interpolation from one matrix to a second matrix based on a value that specifies the weighting of the second matrix. + The first matrix. + The second matrix. + The relative weighting of matrix2. + The interpolated matrix. + + + The first element of the first row. + + + + The second element of the first row. + + + + The first element of the second row. + + + + The second element of the second row. + + + + The first element of the third row. + + + + The second element of the third row. + + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values. + + + Returns a value that indicates whether the specified matrices are equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether the specified matrices are not equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this matrix. + The string representation of this matrix. + + + Gets or sets the translation component of this matrix. + The translation component of the current instance. + + + Represents a 4x4 matrix. + + + Creates a object from a specified object. + A 3x2 matrix. + + + Creates a 4x4 matrix from the specified components. + The value to assign to the first element in the first row. + The value to assign to the second element in the first row. + The value to assign to the third element in the first row. + The value to assign to the fourth element in the first row. + The value to assign to the first element in the second row. + The value to assign to the second element in the second row. + The value to assign to the third element in the second row. + The value to assign to the third element in the second row. + The value to assign to the first element in the third row. + The value to assign to the second element in the third row. + The value to assign to the third element in the third row. + The value to assign to the fourth element in the third row. + The value to assign to the first element in the fourth row. + The value to assign to the second element in the fourth row. + The value to assign to the third element in the fourth row. + The value to assign to the fourth element in the fourth row. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values of value1 and value2. + + + Creates a spherical billboard that rotates around a specified object position. + The position of the object that the billboard will rotate around. + The position of the camera. + The up vector of the camera. + The forward vector of the camera. + The created billboard. + + + Creates a cylindrical billboard that rotates around a specified axis. + The position of the object that the billboard will rotate around. + The position of the camera. + The axis to rotate the billboard around. + The forward vector of the camera. + The forward vector of the object. + The billboard matrix. + + + Creates a matrix that rotates around an arbitrary vector. + The axis to rotate around. + The angle to rotate around axis, in radians. + The rotation matrix. + + + Creates a rotation matrix from the specified Quaternion rotation value. + The source Quaternion. + The rotation matrix. + + + Creates a rotation matrix from the specified yaw, pitch, and roll. + The angle of rotation, in radians, around the Y axis. + The angle of rotation, in radians, around the X axis. + The angle of rotation, in radians, around the Z axis. + The rotation matrix. + + + Creates a view matrix. + The position of the camera. + The target towards which the camera is pointing. + The direction that is "up" from the camera's point of view. + The view matrix. + + + Creates an orthographic perspective matrix from the given view volume dimensions. + The width of the view volume. + The height of the view volume. + The minimum Z-value of the view volume. + The maximum Z-value of the view volume. + The orthographic projection matrix. + + + Creates a customized orthographic projection matrix. + The minimum X-value of the view volume. + The maximum X-value of the view volume. + The minimum Y-value of the view volume. + The maximum Y-value of the view volume. + The minimum Z-value of the view volume. + The maximum Z-value of the view volume. + The orthographic projection matrix. + + + Creates a perspective projection matrix from the given view volume dimensions. + The width of the view volume at the near view plane. + The height of the view volume at the near view plane. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a perspective projection matrix based on a field of view, aspect ratio, and near and far view plane distances. + The field of view in the y direction, in radians. + The aspect ratio, defined as view space width divided by height. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + fieldOfView is less than or equal to zero. + -or- + fieldOfView is greater than or equal to . + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a customized perspective projection matrix. + The minimum x-value of the view volume at the near view plane. + The maximum x-value of the view volume at the near view plane. + The minimum y-value of the view volume at the near view plane. + The maximum y-value of the view volume at the near view plane. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a matrix that reflects the coordinate system about a specified plane. + The plane about which to create a reflection. + A new matrix expressing the reflection. + + + Creates a matrix for rotating points around the X axis. + The amount, in radians, by which to rotate around the X axis. + The rotation matrix. + + + Creates a matrix for rotating points around the X axis from a center point. + The amount, in radians, by which to rotate around the X axis. + The center point. + The rotation matrix. + + + The amount, in radians, by which to rotate around the Y axis from a center point. + The amount, in radians, by which to rotate around the Y-axis. + The center point. + The rotation matrix. + + + Creates a matrix for rotating points around the Y axis. + The amount, in radians, by which to rotate around the Y-axis. + The rotation matrix. + + + Creates a matrix for rotating points around the Z axis. + The amount, in radians, by which to rotate around the Z-axis. + The rotation matrix. + + + Creates a matrix for rotating points around the Z axis from a center point. + The amount, in radians, by which to rotate around the Z-axis. + The center point. + The rotation matrix. + + + Creates a scaling matrix from the specified vector scale. + The scale to use. + The scaling matrix. + + + Creates a uniform scaling matrix that scale equally on each axis. + The uniform scaling factor. + The scaling matrix. + + + Creates a scaling matrix with a center point. + The vector that contains the amount to scale on each axis. + The center point. + The scaling matrix. + + + Creates a uniform scaling matrix that scales equally on each axis with a center point. + The uniform scaling factor. + The center point. + The scaling matrix. + + + Creates a scaling matrix from the specified X, Y, and Z components. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The value to scale by on the Z axis. + The scaling matrix. + + + Creates a scaling matrix that is offset by a given center point. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The value to scale by on the Z axis. + The center point. + The scaling matrix. + + + Creates a matrix that flattens geometry into a specified plane as if casting a shadow from a specified light source. + The direction from which the light that will cast the shadow is coming. + The plane onto which the new matrix should flatten geometry so as to cast a shadow. + A new matrix that can be used to flatten geometry onto the specified plane from the specified direction. + + + Creates a translation matrix from the specified 3-dimensional vector. + The amount to translate in each axis. + The translation matrix. + + + Creates a translation matrix from the specified X, Y, and Z components. + The amount to translate on the X axis. + The amount to translate on the Y axis. + The amount to translate on the Z axis. + The translation matrix. + + + Creates a world matrix with the specified parameters. + The position of the object. + The forward direction of the object. + The upward direction of the object. Its value is usually [0, 1, 0]. + The world matrix. + + + Attempts to extract the scale, translation, and rotation components from the given scale, rotation, or translation matrix. The return value indicates whether the operation succeeded. + The source matrix. + When this method returns, contains the scaling component of the transformation matrix if the operation succeeded. + When this method returns, contains the rotation component of the transformation matrix if the operation succeeded. + When the method returns, contains the translation component of the transformation matrix if the operation succeeded. + true if matrix was decomposed successfully; otherwise, false. + + + Returns a value that indicates whether this instance and another 4x4 matrix are equal. + The other matrix. + true if the two matrices are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Calculates the determinant of the current 4x4 matrix. + The determinant. + + + Returns the hash code for this instance. + The hash code. + + + Gets the multiplicative identity matrix. + Gets the multiplicative identity matrix. + + + Inverts the specified matrix. The return value indicates whether the operation succeeded. + The matrix to invert. + When this method returns, contains the inverted matrix if the operation succeeded. + true if matrix was converted successfully; otherwise, false. + + + Indicates whether the current matrix is the identity matrix. + true if the current matrix is the identity matrix; otherwise, false. + + + Performs a linear interpolation from one matrix to a second matrix based on a value that specifies the weighting of the second matrix. + The first matrix. + The second matrix. + The relative weighting of matrix2. + The interpolated matrix. + + + The first element of the first row. + + + + The second element of the first row. + + + + The third element of the first row. + + + + The fourth element of the first row. + + + + The first element of the second row. + + + + The second element of the second row. + + + + The third element of the second row. + + + + The fourth element of the second row. + + + + The first element of the third row. + + + + The second element of the third row. + + + + The third element of the third row. + + + + The fourth element of the third row. + + + + The first element of the fourth row. + + + + The second element of the fourth row. + + + + The third element of the fourth row. + + + + The fourth element of the fourth row. + + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values. + + + Returns a value that indicates whether the specified matrices are equal. + The first matrix to compare. + The second matrix to care + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether the specified matrices are not equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this matrix. + The string representation of this matrix. + + + Transforms the specified matrix by applying the specified Quaternion rotation. + The matrix to transform. + The rotation t apply. + The transformed matrix. + + + Gets or sets the translation component of this matrix. + The translation component of the current instance. + + + Transposes the rows and columns of a matrix. + The matrix to transpose. + The transposed matrix. + + + Represents a three-dimensional plane. + + + Creates a object from a specified four-dimensional vector. + A vector whose first three elements describe the normal vector, and whose defines the distance along that normal from the origin. + + + Creates a object from a specified normal and the distance along the normal from the origin. + The plane's normal vector. + The plane's distance from the origin along its normal vector. + + + Creates a object from the X, Y, and Z components of its normal, and its distance from the origin on that normal. + The X component of the normal. + The Y component of the normal. + The Z component of the normal. + The distance of the plane along its normal from the origin. + + + Creates a object that contains three specified points. + The first point defining the plane. + The second point defining the plane. + The third point defining the plane. + The plane containing the three points. + + + The distance of the plane along its normal from the origin. + + + + Calculates the dot product of a plane and a 4-dimensional vector. + The plane. + The four-dimensional vector. + The dot product. + + + Returns the dot product of a specified three-dimensional vector and the normal vector of this plane plus the distance () value of the plane. + The plane. + The 3-dimensional vector. + The dot product. + + + Returns the dot product of a specified three-dimensional vector and the vector of this plane. + The plane. + The three-dimensional vector. + The dot product. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns a value that indicates whether this instance and another plane object are equal. + The other plane. + true if the two planes are equal; otherwise, false. + + + Returns the hash code for this instance. + The hash code. + + + The normal vector of the plane. + + + + Creates a new object whose normal vector is the source plane's normal vector normalized. + The source plane. + The normalized plane. + + + Returns a value that indicates whether two planes are equal. + The first plane to compare. + The second plane to compare. + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether two planes are not equal. + The first plane to compare. + The second plane to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the string representation of this plane object. + A string that represents this object. + + + Transforms a normalized plane by a 4x4 matrix. + The normalized plane to transform. + The transformation matrix to apply to plane. + The transformed plane. + + + Transforms a normalized plane by a Quaternion rotation. + The normalized plane to transform. + The Quaternion rotation to apply to the plane. + A new plane that results from applying the Quaternion rotation. + + + Represents a vector that is used to encode three-dimensional physical rotations. + + + Creates a quaternion from the specified vector and rotation parts. + The vector part of the quaternion. + The rotation part of the quaternion. + + + Constructs a quaternion from the specified components. + The value to assign to the X component of the quaternion. + The value to assign to the Y component of the quaternion. + The value to assign to the Z component of the quaternion. + The value to assign to the W component of the quaternion. + + + Adds each element in one quaternion with its corresponding element in a second quaternion. + The first quaternion. + The second quaternion. + The quaternion that contains the summed values of value1 and value2. + + + Concatenates two quaternions. + The first quaternion rotation in the series. + The second quaternion rotation in the series. + A new quaternion representing the concatenation of the value1 rotation followed by the value2 rotation. + + + Returns the conjugate of a specified quaternion. + The quaternion. + A new quaternion that is the conjugate of value. + + + Creates a quaternion from a vector and an angle to rotate about the vector. + The vector to rotate around. + The angle, in radians, to rotate around the vector. + The newly created quaternion. + + + Creates a quaternion from the specified rotation matrix. + The rotation matrix. + The newly created quaternion. + + + Creates a new quaternion from the given yaw, pitch, and roll. + The yaw angle, in radians, around the Y axis. + The pitch angle, in radians, around the X axis. + The roll angle, in radians, around the Z axis. + The resulting quaternion. + + + Divides one quaternion by a second quaternion. + The dividend. + The divisor. + The quaternion that results from dividing value1 by value2. + + + Calculates the dot product of two quaternions. + The first quaternion. + The second quaternion. + The dot product. + + + Returns a value that indicates whether this instance and another quaternion are equal. + The other quaternion. + true if the two quaternions are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Gets a quaternion that represents no rotation. + A quaternion whose values are (0, 0, 0, 1). + + + Returns the inverse of a quaternion. + The quaternion. + The inverted quaternion. + + + Gets a value that indicates whether the current instance is the identity quaternion. + true if the current instance is the identity quaternion; otherwise, false. + + + Calculates the length of the quaternion. + The computed length of the quaternion. + + + Calculates the squared length of the quaternion. + The length squared of the quaternion. + + + Performs a linear interpolation between two quaternions based on a value that specifies the weighting of the second quaternion. + The first quaternion. + The second quaternion. + The relative weight of quaternion2 in the interpolation. + The interpolated quaternion. + + + Returns the quaternion that results from multiplying two quaternions together. + The first quaternion. + The second quaternion. + The product quaternion. + + + Returns the quaternion that results from scaling all the components of a specified quaternion by a scalar factor. + The source quaternion. + The scalar value. + The scaled quaternion. + + + Reverses the sign of each component of the quaternion. + The quaternion to negate. + The negated quaternion. + + + Divides each component of a specified by its length. + The quaternion to normalize. + The normalized quaternion. + + + Adds each element in one quaternion with its corresponding element in a second quaternion. + The first quaternion. + The second quaternion. + The quaternion that contains the summed values of value1 and value2. + + + Divides one quaternion by a second quaternion. + The dividend. + The divisor. + The quaternion that results from dividing value1 by value2. + + + Returns a value that indicates whether two quaternions are equal. + The first quaternion to compare. + The second quaternion to compare. + true if the two quaternions are equal; otherwise, false. + + + Returns a value that indicates whether two quaternions are not equal. + The first quaternion to compare. + The second quaternion to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the quaternion that results from scaling all the components of a specified quaternion by a scalar factor. + The source quaternion. + The scalar value. + The scaled quaternion. + + + Returns the quaternion that results from multiplying two quaternions together. + The first quaternion. + The second quaternion. + The product quaternion. + + + Subtracts each element in a second quaternion from its corresponding element in a first quaternion. + The first quaternion. + The second quaternion. + The quaternion containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Reverses the sign of each component of the quaternion. + The quaternion to negate. + The negated quaternion. + + + Interpolates between two quaternions, using spherical linear interpolation. + The first quaternion. + The second quaternion. + The relative weight of the second quaternion in the interpolation. + The interpolated quaternion. + + + Subtracts each element in a second quaternion from its corresponding element in a first quaternion. + The first quaternion. + The second quaternion. + The quaternion containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this quaternion. + The string representation of this quaternion. + + + The rotation component of the quaternion. + + + + The X value of the vector component of the quaternion. + + + + The Y value of the vector component of the quaternion. + + + + The Z value of the vector component of the quaternion. + + + + Represents a single vector of a specified numeric type that is suitable for low-level optimization of parallel algorithms. + The vector type. T can be any primitive numeric type. + + + Creates a vector whose components are of a specified type. + The numeric type that defines the type of the components in the vector. + + + Creates a vector from a specified array. + A numeric array. + values is null. + + + Creates a vector from a specified array starting at a specified index position. + A numeric array. + The starting index position from which to create the vector. + values is null. + index is less than zero. + -or- + The length of values minus index is less than . + + + Copies the vector instance to a specified destination array. + The array to receive a copy of the vector values. + destination is null. + The number of elements in the current vector is greater than the number of elements available in the destination array. + + + Copies the vector instance to a specified destination array starting at a specified index position. + The array to receive a copy of the vector values. + The starting index in destination at which to begin the copy operation. + destination is null. + The number of elements in the current instance is greater than the number of elements available from startIndex to the end of the destination array. + index is less than zero or greater than the last index in destination. + + + Returns the number of elements stored in the vector. + The number of elements stored in the vector. + Access to the property getter via reflection is not supported. + + + Returns a value that indicates whether this instance is equal to a specified vector. + The vector to compare with this instance. + true if the current instance and other are equal; otherwise, false. + + + Returns a value that indicates whether this instance is equal to a specified object. + The object to compare with this instance. + true if the current instance and obj are equal; otherwise, false. The method returns false if obj is null, or if obj is a vector of a different type than the current instance. + + + Returns the hash code for this instance. + The hash code. + + + Gets the element at a specified index. + The index of the element to return. + The element at index index. + index is less than zero. + -or- + index is greater than or equal to . + + + Returns a vector containing all ones. + A vector containing all ones. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Returns a new vector by performing a bitwise And operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise And of left and right. + + + Returns a new vector by performing a bitwise Or operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise Or of the elements in left and right. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Returns a value that indicates whether each pair of elements in two specified vectors are equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a new vector by performing a bitwise XOr operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise XOr of the elements in left and right. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Returns a value that indicates whether any single pair of elements in the specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if any element pairs in left and right are equal. false if no element pairs are equal. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar value. + The source vector. + A scalar value. + The scaled vector. + + + Multiplies a vector by the given scalar. + The scalar value. + The source vector. + The scaled vector. + + + Returns a new vector whose elements are obtained by taking the one's complement of a specified vector's elements. + The source vector. + The one's complement vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates a given vector. + The vector to negate. + The negated vector. + + + Returns the string representation of this vector using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Returns the string representation of this vector using default formatting. + The string representation of this vector. + + + Returns the string representation of this vector using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns a vector containing all zeroes. + A vector containing all zeroes. + + + Provides a collection of static convenience methods for creating, manipulating, combining, and converting generic vectors. + + + Returns a new vector whose elements are the absolute values of the given vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The absolute value vector. + + + Returns a new vector whose values are the sum of each pair of elements from two given vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The summed vector. + + + Returns a new vector by performing a bitwise And Not operation on each pair of corresponding elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned bytes. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a double-precision floating-point vector. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of 16-bit integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of long integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of signed bytes. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a single-precision floating-point vector. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned 16-bit integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned long integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Returns a new vector by performing a bitwise And operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a new vector by performing a bitwise Or operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Creates a new single-precision vector with elements selected between two specified single-precision source vectors based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The new vector with elements selected based on the mask. + + + Creates a new double-precision vector with elements selected between two specified double-precision source vectors based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The new vector with elements selected based on the mask. + + + Creates a new vector of a specified type with elements selected between two specified source vectors of the same type based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The vector type. T can be any primitive numeric type. + The new vector with elements selected based on the mask. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector whose values are the result of dividing the first vector's elements by the corresponding elements in the second vector. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The divided vector. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The dot product. + + + Returns a new integral vector whose elements signal whether the elements in two specified double-precision vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in two specified integral vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in two specified long integer vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in two specified single-precision vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector of a specified type whose elements signal whether the elements in two specified vectors of the same type are equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether each pair of elements in the given vectors is equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left and right are equal; otherwise, false. + + + Returns a value that indicates whether any single pair of elements in the given vectors is equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element pair in left and right is equal; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are greater than their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are greater than their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are greater than their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision floating-point vector are greater than their corresponding elements in a second single-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector of a specified type are greater than their corresponding elements in the second vector of the same time. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are greater than the corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left are greater than the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is greater than the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is greater than the corresponding element in right; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one vector are greater than or equal to their corresponding elements in the single-precision floating-point second vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are greater than or equal to their corresponding elements in the second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are greater than or equal to their corresponding elements in the second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one vector are greater than or equal to their corresponding elements in the second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector of a specified type are greater than or equal to their corresponding elements in the second vector of the same type. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are greater than or equal to all the corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left are greater than or equal to the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is greater than or equal to the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is greater than or equal to the corresponding element in right; otherwise, false. + + + Gets a value that indicates whether vector operations are subject to hardware acceleration through JIT intrinsic support. + true if vector operations are subject to hardware acceleration; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are less than their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are less than their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are less than their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision vector are less than their corresponding elements in a second single-precision vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector of a specified type whose elements signal whether the elements in one vector are less than their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all of the elements in the first vector are less than their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all of the elements in left are less than the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is less than the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is less than the corresponding element in right; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are less than or equal to their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are less than or equal to their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are less or equal to their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision floating-point vector are less than or equal to their corresponding elements in a second single-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector are less than or equal to their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are less than or equal to their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all of the elements in left are less than or equal to the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is less than or equal to the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is less than or equal to the corresponding element in right; otherwise, false. + + + Returns a new vector whose elements are the maximum of each pair of elements in the two given vectors. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The maximum vector. + + + Returns a new vector whose elements are the minimum of each pair of elements in the two given vectors. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The minimum vector. + + + Returns a new vector whose values are a scalar value multiplied by each of the values of a specified vector. + The scalar value. + The vector. + The vector type. T can be any primitive numeric type. + The scaled vector. + + + Returns a new vector whose values are the product of each pair of elements in two specified vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The product vector. + + + Returns a new vector whose values are the values of a specified vector each multiplied by a scalar value. + The vector. + The scalar value. + The vector type. T can be any primitive numeric type. + The scaled vector. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector whose elements are the negation of the corresponding element in the specified vector. + The source vector. + The vector type. T can be any primitive numeric type. + The negated vector. + + + Returns a new vector whose elements are obtained by taking the one's complement of a specified vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a new vector whose elements are the square roots of a specified vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The square root vector. + + + Returns a new vector whose values are the difference between the elements in the second vector and their corresponding elements in the first vector. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The difference vector. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector by performing a bitwise exclusive Or (XOr) operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Represents a vector with two single-precision floating-point values. + + + Creates a new object whose two elements have the same value. + The value to assign to both elements. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of the vector. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 2 elements are equal to one. + A vector whose two elements are equal to one (that is, it returns the vector (1,1). + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns the reflection of a vector off a surface that has the specified normal. + The source vector. + The normal of the surface being reflected off. + The reflected vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a vector by a specified 3x2 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a vector normal by the given 3x2 matrix. + The source vector. + The matrix. + The transformed vector. + + + Transforms a vector normal by the given 4x4 matrix. + The source vector. + The matrix. + The transformed vector. + + + Gets the vector (1,0). + The vector (1,0). + + + Gets the vector (0,1). + The vector (0,1). + + + The X component of the vector. + + + + The Y component of the vector. + + + + Returns a vector whose 2 elements are equal to zero. + A vector whose two elements are equal to zero (that is, it returns the vector (0,0). + + + Represents a vector with three single-precision floating-point values. + + + Creates a new object whose three elements have the same value. + The value to assign to all three elements. + + + Creates a new object from the specified object and the specified value. + The vector with two elements. + The additional value to assign to the field. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the cross product of two vectors. + The first vector. + The second vector. + The cross product. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of this vector object. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 3 elements are equal to one. + A vector whose three elements are equal to one (that is, it returns the vector (1,1,1). + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns the reflection of a vector off a surface that has the specified normal. + The source vector. + The normal of the surface being reflected off. + The reflected vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a vector normal by the given 4x4 matrix. + The source vector. + The matrix. + The transformed vector. + + + Gets the vector (1,0,0). + The vector (1,0,0). + + + Gets the vector (0,1,0). + The vector (0,1,0).. + + + Gets the vector (0,0,1). + The vector (0,0,1). + + + The X component of the vector. + + + + The Y component of the vector. + + + + The Z component of the vector. + + + + Gets a vector whose 3 elements are equal to zero. + A vector whose three elements are equal to zero (that is, it returns the vector (0,0,0). + + + Represents a vector with four single-precision floating-point values. + + + Creates a new object whose four elements have the same value. + The value to assign to all four elements. + + + Constructs a new object from the specified object and a W component. + The vector to use for the X, Y, and Z components. + The W component. + + + Creates a new object from the specified object and a Z and a W component. + The vector to use for the X and Y components. + The Z component. + The W component. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of this vector object. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 4 elements are equal to one. + Returns . + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a four-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a four-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a three-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a two-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a two-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a three-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Gets the vector (0,0,0,1). + The vector (0,0,0,1). + + + Gets the vector (1,0,0,0). + The vector (1,0,0,0). + + + Gets the vector (0,1,0,0). + The vector (0,1,0,0).. + + + Gets a vector whose 4 elements are equal to zero. + The vector (0,0,1,0). + + + The W component of the vector. + + + + The X component of the vector. + + + + The Y component of the vector. + + + + The Z component of the vector. + + + + Gets a vector whose 4 elements are equal to zero. + A vector whose four elements are equal to zero (that is, it returns the vector (0,0,0,0). + + + \ No newline at end of file diff --git a/packages/System.Numerics.Vectors.4.5.0/ref/net46/System.Numerics.Vectors.dll b/packages/System.Numerics.Vectors.4.5.0/ref/net46/System.Numerics.Vectors.dll new file mode 100644 index 0000000..470f2f3 Binary files /dev/null and b/packages/System.Numerics.Vectors.4.5.0/ref/net46/System.Numerics.Vectors.dll differ diff --git a/packages/System.Numerics.Vectors.4.5.0/ref/net46/System.Numerics.Vectors.xml b/packages/System.Numerics.Vectors.4.5.0/ref/net46/System.Numerics.Vectors.xml new file mode 100644 index 0000000..da34d39 --- /dev/null +++ b/packages/System.Numerics.Vectors.4.5.0/ref/net46/System.Numerics.Vectors.xml @@ -0,0 +1,2621 @@ + + + System.Numerics.Vectors + + + + Represents a 3x2 matrix. + + + Creates a 3x2 matrix from the specified components. + The value to assign to the first element in the first row. + The value to assign to the second element in the first row. + The value to assign to the first element in the second row. + The value to assign to the second element in the second row. + The value to assign to the first element in the third row. + The value to assign to the second element in the third row. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values of value1 and value2. + + + Creates a rotation matrix using the given rotation in radians. + The amount of rotation, in radians. + The rotation matrix. + + + Creates a rotation matrix using the specified rotation in radians and a center point. + The amount of rotation, in radians. + The center point. + The rotation matrix. + + + Creates a scaling matrix from the specified X and Y components. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The scaling matrix. + + + Creates a scaling matrix that scales uniformly with the specified scale with an offset from the specified center. + The uniform scale to use. + The center offset. + The scaling matrix. + + + Creates a scaling matrix that is offset by a given center point. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The center point. + The scaling matrix. + + + Creates a scaling matrix that scales uniformly with the given scale. + The uniform scale to use. + The scaling matrix. + + + Creates a scaling matrix from the specified vector scale. + The scale to use. + The scaling matrix. + + + Creates a scaling matrix from the specified vector scale with an offset from the specified center point. + The scale to use. + The center offset. + The scaling matrix. + + + Creates a skew matrix from the specified angles in radians. + The X angle, in radians. + The Y angle, in radians. + The skew matrix. + + + Creates a skew matrix from the specified angles in radians and a center point. + The X angle, in radians. + The Y angle, in radians. + The center point. + The skew matrix. + + + Creates a translation matrix from the specified 2-dimensional vector. + The translation position. + The translation matrix. + + + Creates a translation matrix from the specified X and Y components. + The X position. + The Y position. + The translation matrix. + + + Returns a value that indicates whether this instance and another 3x2 matrix are equal. + The other matrix. + true if the two matrices are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Calculates the determinant for this matrix. + The determinant. + + + Returns the hash code for this instance. + The hash code. + + + Gets the multiplicative identity matrix. + The multiplicative identify matrix. + + + Inverts the specified matrix. The return value indicates whether the operation succeeded. + The matrix to invert. + When this method returns, contains the inverted matrix if the operation succeeded. + true if matrix was converted successfully; otherwise, false. + + + Indicates whether the current matrix is the identity matrix. + true if the current matrix is the identity matrix; otherwise, false. + + + Performs a linear interpolation from one matrix to a second matrix based on a value that specifies the weighting of the second matrix. + The first matrix. + The second matrix. + The relative weighting of matrix2. + The interpolated matrix. + + + The first element of the first row. + + + + The second element of the first row. + + + + The first element of the second row. + + + + The second element of the second row. + + + + The first element of the third row. + + + + The second element of the third row. + + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values. + + + Returns a value that indicates whether the specified matrices are equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether the specified matrices are not equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this matrix. + The string representation of this matrix. + + + Gets or sets the translation component of this matrix. + The translation component of the current instance. + + + Represents a 4x4 matrix. + + + Creates a object from a specified object. + A 3x2 matrix. + + + Creates a 4x4 matrix from the specified components. + The value to assign to the first element in the first row. + The value to assign to the second element in the first row. + The value to assign to the third element in the first row. + The value to assign to the fourth element in the first row. + The value to assign to the first element in the second row. + The value to assign to the second element in the second row. + The value to assign to the third element in the second row. + The value to assign to the third element in the second row. + The value to assign to the first element in the third row. + The value to assign to the second element in the third row. + The value to assign to the third element in the third row. + The value to assign to the fourth element in the third row. + The value to assign to the first element in the fourth row. + The value to assign to the second element in the fourth row. + The value to assign to the third element in the fourth row. + The value to assign to the fourth element in the fourth row. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values of value1 and value2. + + + Creates a spherical billboard that rotates around a specified object position. + The position of the object that the billboard will rotate around. + The position of the camera. + The up vector of the camera. + The forward vector of the camera. + The created billboard. + + + Creates a cylindrical billboard that rotates around a specified axis. + The position of the object that the billboard will rotate around. + The position of the camera. + The axis to rotate the billboard around. + The forward vector of the camera. + The forward vector of the object. + The billboard matrix. + + + Creates a matrix that rotates around an arbitrary vector. + The axis to rotate around. + The angle to rotate around axis, in radians. + The rotation matrix. + + + Creates a rotation matrix from the specified Quaternion rotation value. + The source Quaternion. + The rotation matrix. + + + Creates a rotation matrix from the specified yaw, pitch, and roll. + The angle of rotation, in radians, around the Y axis. + The angle of rotation, in radians, around the X axis. + The angle of rotation, in radians, around the Z axis. + The rotation matrix. + + + Creates a view matrix. + The position of the camera. + The target towards which the camera is pointing. + The direction that is "up" from the camera's point of view. + The view matrix. + + + Creates an orthographic perspective matrix from the given view volume dimensions. + The width of the view volume. + The height of the view volume. + The minimum Z-value of the view volume. + The maximum Z-value of the view volume. + The orthographic projection matrix. + + + Creates a customized orthographic projection matrix. + The minimum X-value of the view volume. + The maximum X-value of the view volume. + The minimum Y-value of the view volume. + The maximum Y-value of the view volume. + The minimum Z-value of the view volume. + The maximum Z-value of the view volume. + The orthographic projection matrix. + + + Creates a perspective projection matrix from the given view volume dimensions. + The width of the view volume at the near view plane. + The height of the view volume at the near view plane. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a perspective projection matrix based on a field of view, aspect ratio, and near and far view plane distances. + The field of view in the y direction, in radians. + The aspect ratio, defined as view space width divided by height. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + fieldOfView is less than or equal to zero. + -or- + fieldOfView is greater than or equal to . + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a customized perspective projection matrix. + The minimum x-value of the view volume at the near view plane. + The maximum x-value of the view volume at the near view plane. + The minimum y-value of the view volume at the near view plane. + The maximum y-value of the view volume at the near view plane. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a matrix that reflects the coordinate system about a specified plane. + The plane about which to create a reflection. + A new matrix expressing the reflection. + + + Creates a matrix for rotating points around the X axis. + The amount, in radians, by which to rotate around the X axis. + The rotation matrix. + + + Creates a matrix for rotating points around the X axis from a center point. + The amount, in radians, by which to rotate around the X axis. + The center point. + The rotation matrix. + + + The amount, in radians, by which to rotate around the Y axis from a center point. + The amount, in radians, by which to rotate around the Y-axis. + The center point. + The rotation matrix. + + + Creates a matrix for rotating points around the Y axis. + The amount, in radians, by which to rotate around the Y-axis. + The rotation matrix. + + + Creates a matrix for rotating points around the Z axis. + The amount, in radians, by which to rotate around the Z-axis. + The rotation matrix. + + + Creates a matrix for rotating points around the Z axis from a center point. + The amount, in radians, by which to rotate around the Z-axis. + The center point. + The rotation matrix. + + + Creates a scaling matrix from the specified vector scale. + The scale to use. + The scaling matrix. + + + Creates a uniform scaling matrix that scale equally on each axis. + The uniform scaling factor. + The scaling matrix. + + + Creates a scaling matrix with a center point. + The vector that contains the amount to scale on each axis. + The center point. + The scaling matrix. + + + Creates a uniform scaling matrix that scales equally on each axis with a center point. + The uniform scaling factor. + The center point. + The scaling matrix. + + + Creates a scaling matrix from the specified X, Y, and Z components. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The value to scale by on the Z axis. + The scaling matrix. + + + Creates a scaling matrix that is offset by a given center point. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The value to scale by on the Z axis. + The center point. + The scaling matrix. + + + Creates a matrix that flattens geometry into a specified plane as if casting a shadow from a specified light source. + The direction from which the light that will cast the shadow is coming. + The plane onto which the new matrix should flatten geometry so as to cast a shadow. + A new matrix that can be used to flatten geometry onto the specified plane from the specified direction. + + + Creates a translation matrix from the specified 3-dimensional vector. + The amount to translate in each axis. + The translation matrix. + + + Creates a translation matrix from the specified X, Y, and Z components. + The amount to translate on the X axis. + The amount to translate on the Y axis. + The amount to translate on the Z axis. + The translation matrix. + + + Creates a world matrix with the specified parameters. + The position of the object. + The forward direction of the object. + The upward direction of the object. Its value is usually [0, 1, 0]. + The world matrix. + + + Attempts to extract the scale, translation, and rotation components from the given scale, rotation, or translation matrix. The return value indicates whether the operation succeeded. + The source matrix. + When this method returns, contains the scaling component of the transformation matrix if the operation succeeded. + When this method returns, contains the rotation component of the transformation matrix if the operation succeeded. + When the method returns, contains the translation component of the transformation matrix if the operation succeeded. + true if matrix was decomposed successfully; otherwise, false. + + + Returns a value that indicates whether this instance and another 4x4 matrix are equal. + The other matrix. + true if the two matrices are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Calculates the determinant of the current 4x4 matrix. + The determinant. + + + Returns the hash code for this instance. + The hash code. + + + Gets the multiplicative identity matrix. + Gets the multiplicative identity matrix. + + + Inverts the specified matrix. The return value indicates whether the operation succeeded. + The matrix to invert. + When this method returns, contains the inverted matrix if the operation succeeded. + true if matrix was converted successfully; otherwise, false. + + + Indicates whether the current matrix is the identity matrix. + true if the current matrix is the identity matrix; otherwise, false. + + + Performs a linear interpolation from one matrix to a second matrix based on a value that specifies the weighting of the second matrix. + The first matrix. + The second matrix. + The relative weighting of matrix2. + The interpolated matrix. + + + The first element of the first row. + + + + The second element of the first row. + + + + The third element of the first row. + + + + The fourth element of the first row. + + + + The first element of the second row. + + + + The second element of the second row. + + + + The third element of the second row. + + + + The fourth element of the second row. + + + + The first element of the third row. + + + + The second element of the third row. + + + + The third element of the third row. + + + + The fourth element of the third row. + + + + The first element of the fourth row. + + + + The second element of the fourth row. + + + + The third element of the fourth row. + + + + The fourth element of the fourth row. + + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values. + + + Returns a value that indicates whether the specified matrices are equal. + The first matrix to compare. + The second matrix to care + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether the specified matrices are not equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this matrix. + The string representation of this matrix. + + + Transforms the specified matrix by applying the specified Quaternion rotation. + The matrix to transform. + The rotation t apply. + The transformed matrix. + + + Gets or sets the translation component of this matrix. + The translation component of the current instance. + + + Transposes the rows and columns of a matrix. + The matrix to transpose. + The transposed matrix. + + + Represents a three-dimensional plane. + + + Creates a object from a specified four-dimensional vector. + A vector whose first three elements describe the normal vector, and whose defines the distance along that normal from the origin. + + + Creates a object from a specified normal and the distance along the normal from the origin. + The plane's normal vector. + The plane's distance from the origin along its normal vector. + + + Creates a object from the X, Y, and Z components of its normal, and its distance from the origin on that normal. + The X component of the normal. + The Y component of the normal. + The Z component of the normal. + The distance of the plane along its normal from the origin. + + + Creates a object that contains three specified points. + The first point defining the plane. + The second point defining the plane. + The third point defining the plane. + The plane containing the three points. + + + The distance of the plane along its normal from the origin. + + + + Calculates the dot product of a plane and a 4-dimensional vector. + The plane. + The four-dimensional vector. + The dot product. + + + Returns the dot product of a specified three-dimensional vector and the normal vector of this plane plus the distance () value of the plane. + The plane. + The 3-dimensional vector. + The dot product. + + + Returns the dot product of a specified three-dimensional vector and the vector of this plane. + The plane. + The three-dimensional vector. + The dot product. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns a value that indicates whether this instance and another plane object are equal. + The other plane. + true if the two planes are equal; otherwise, false. + + + Returns the hash code for this instance. + The hash code. + + + The normal vector of the plane. + + + + Creates a new object whose normal vector is the source plane's normal vector normalized. + The source plane. + The normalized plane. + + + Returns a value that indicates whether two planes are equal. + The first plane to compare. + The second plane to compare. + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether two planes are not equal. + The first plane to compare. + The second plane to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the string representation of this plane object. + A string that represents this object. + + + Transforms a normalized plane by a 4x4 matrix. + The normalized plane to transform. + The transformation matrix to apply to plane. + The transformed plane. + + + Transforms a normalized plane by a Quaternion rotation. + The normalized plane to transform. + The Quaternion rotation to apply to the plane. + A new plane that results from applying the Quaternion rotation. + + + Represents a vector that is used to encode three-dimensional physical rotations. + + + Creates a quaternion from the specified vector and rotation parts. + The vector part of the quaternion. + The rotation part of the quaternion. + + + Constructs a quaternion from the specified components. + The value to assign to the X component of the quaternion. + The value to assign to the Y component of the quaternion. + The value to assign to the Z component of the quaternion. + The value to assign to the W component of the quaternion. + + + Adds each element in one quaternion with its corresponding element in a second quaternion. + The first quaternion. + The second quaternion. + The quaternion that contains the summed values of value1 and value2. + + + Concatenates two quaternions. + The first quaternion rotation in the series. + The second quaternion rotation in the series. + A new quaternion representing the concatenation of the value1 rotation followed by the value2 rotation. + + + Returns the conjugate of a specified quaternion. + The quaternion. + A new quaternion that is the conjugate of value. + + + Creates a quaternion from a vector and an angle to rotate about the vector. + The vector to rotate around. + The angle, in radians, to rotate around the vector. + The newly created quaternion. + + + Creates a quaternion from the specified rotation matrix. + The rotation matrix. + The newly created quaternion. + + + Creates a new quaternion from the given yaw, pitch, and roll. + The yaw angle, in radians, around the Y axis. + The pitch angle, in radians, around the X axis. + The roll angle, in radians, around the Z axis. + The resulting quaternion. + + + Divides one quaternion by a second quaternion. + The dividend. + The divisor. + The quaternion that results from dividing value1 by value2. + + + Calculates the dot product of two quaternions. + The first quaternion. + The second quaternion. + The dot product. + + + Returns a value that indicates whether this instance and another quaternion are equal. + The other quaternion. + true if the two quaternions are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Gets a quaternion that represents no rotation. + A quaternion whose values are (0, 0, 0, 1). + + + Returns the inverse of a quaternion. + The quaternion. + The inverted quaternion. + + + Gets a value that indicates whether the current instance is the identity quaternion. + true if the current instance is the identity quaternion; otherwise, false. + + + Calculates the length of the quaternion. + The computed length of the quaternion. + + + Calculates the squared length of the quaternion. + The length squared of the quaternion. + + + Performs a linear interpolation between two quaternions based on a value that specifies the weighting of the second quaternion. + The first quaternion. + The second quaternion. + The relative weight of quaternion2 in the interpolation. + The interpolated quaternion. + + + Returns the quaternion that results from multiplying two quaternions together. + The first quaternion. + The second quaternion. + The product quaternion. + + + Returns the quaternion that results from scaling all the components of a specified quaternion by a scalar factor. + The source quaternion. + The scalar value. + The scaled quaternion. + + + Reverses the sign of each component of the quaternion. + The quaternion to negate. + The negated quaternion. + + + Divides each component of a specified by its length. + The quaternion to normalize. + The normalized quaternion. + + + Adds each element in one quaternion with its corresponding element in a second quaternion. + The first quaternion. + The second quaternion. + The quaternion that contains the summed values of value1 and value2. + + + Divides one quaternion by a second quaternion. + The dividend. + The divisor. + The quaternion that results from dividing value1 by value2. + + + Returns a value that indicates whether two quaternions are equal. + The first quaternion to compare. + The second quaternion to compare. + true if the two quaternions are equal; otherwise, false. + + + Returns a value that indicates whether two quaternions are not equal. + The first quaternion to compare. + The second quaternion to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the quaternion that results from scaling all the components of a specified quaternion by a scalar factor. + The source quaternion. + The scalar value. + The scaled quaternion. + + + Returns the quaternion that results from multiplying two quaternions together. + The first quaternion. + The second quaternion. + The product quaternion. + + + Subtracts each element in a second quaternion from its corresponding element in a first quaternion. + The first quaternion. + The second quaternion. + The quaternion containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Reverses the sign of each component of the quaternion. + The quaternion to negate. + The negated quaternion. + + + Interpolates between two quaternions, using spherical linear interpolation. + The first quaternion. + The second quaternion. + The relative weight of the second quaternion in the interpolation. + The interpolated quaternion. + + + Subtracts each element in a second quaternion from its corresponding element in a first quaternion. + The first quaternion. + The second quaternion. + The quaternion containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this quaternion. + The string representation of this quaternion. + + + The rotation component of the quaternion. + + + + The X value of the vector component of the quaternion. + + + + The Y value of the vector component of the quaternion. + + + + The Z value of the vector component of the quaternion. + + + + Represents a single vector of a specified numeric type that is suitable for low-level optimization of parallel algorithms. + The vector type. T can be any primitive numeric type. + + + Creates a vector whose components are of a specified type. + The numeric type that defines the type of the components in the vector. + + + Creates a vector from a specified array. + A numeric array. + values is null. + + + Creates a vector from a specified array starting at a specified index position. + A numeric array. + The starting index position from which to create the vector. + values is null. + index is less than zero. + -or- + The length of values minus index is less than . + + + Copies the vector instance to a specified destination array. + The array to receive a copy of the vector values. + destination is null. + The number of elements in the current vector is greater than the number of elements available in the destination array. + + + Copies the vector instance to a specified destination array starting at a specified index position. + The array to receive a copy of the vector values. + The starting index in destination at which to begin the copy operation. + destination is null. + The number of elements in the current instance is greater than the number of elements available from startIndex to the end of the destination array. + index is less than zero or greater than the last index in destination. + + + Returns the number of elements stored in the vector. + The number of elements stored in the vector. + Access to the property getter via reflection is not supported. + + + Returns a value that indicates whether this instance is equal to a specified vector. + The vector to compare with this instance. + true if the current instance and other are equal; otherwise, false. + + + Returns a value that indicates whether this instance is equal to a specified object. + The object to compare with this instance. + true if the current instance and obj are equal; otherwise, false. The method returns false if obj is null, or if obj is a vector of a different type than the current instance. + + + Returns the hash code for this instance. + The hash code. + + + Gets the element at a specified index. + The index of the element to return. + The element at index index. + index is less than zero. + -or- + index is greater than or equal to . + + + Returns a vector containing all ones. + A vector containing all ones. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Returns a new vector by performing a bitwise And operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise And of left and right. + + + Returns a new vector by performing a bitwise Or operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise Or of the elements in left and right. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Returns a value that indicates whether each pair of elements in two specified vectors are equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a new vector by performing a bitwise XOr operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise XOr of the elements in left and right. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Returns a value that indicates whether any single pair of elements in the specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if any element pairs in left and right are equal. false if no element pairs are equal. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar value. + The source vector. + A scalar value. + The scaled vector. + + + Multiplies a vector by the given scalar. + The scalar value. + The source vector. + The scaled vector. + + + Returns a new vector whose elements are obtained by taking the one's complement of a specified vector's elements. + The source vector. + The one's complement vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates a given vector. + The vector to negate. + The negated vector. + + + Returns the string representation of this vector using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Returns the string representation of this vector using default formatting. + The string representation of this vector. + + + Returns the string representation of this vector using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns a vector containing all zeroes. + A vector containing all zeroes. + + + Provides a collection of static convenience methods for creating, manipulating, combining, and converting generic vectors. + + + Returns a new vector whose elements are the absolute values of the given vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The absolute value vector. + + + Returns a new vector whose values are the sum of each pair of elements from two given vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The summed vector. + + + Returns a new vector by performing a bitwise And Not operation on each pair of corresponding elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned bytes. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a double-precision floating-point vector. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of 16-bit integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of long integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of signed bytes. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a single-precision floating-point vector. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned 16-bit integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned long integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Returns a new vector by performing a bitwise And operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a new vector by performing a bitwise Or operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Creates a new single-precision vector with elements selected between two specified single-precision source vectors based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The new vector with elements selected based on the mask. + + + Creates a new double-precision vector with elements selected between two specified double-precision source vectors based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The new vector with elements selected based on the mask. + + + Creates a new vector of a specified type with elements selected between two specified source vectors of the same type based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The vector type. T can be any primitive numeric type. + The new vector with elements selected based on the mask. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector whose values are the result of dividing the first vector's elements by the corresponding elements in the second vector. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The divided vector. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The dot product. + + + Returns a new integral vector whose elements signal whether the elements in two specified double-precision vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in two specified integral vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in two specified long integer vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in two specified single-precision vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector of a specified type whose elements signal whether the elements in two specified vectors of the same type are equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether each pair of elements in the given vectors is equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left and right are equal; otherwise, false. + + + Returns a value that indicates whether any single pair of elements in the given vectors is equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element pair in left and right is equal; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are greater than their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are greater than their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are greater than their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision floating-point vector are greater than their corresponding elements in a second single-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector of a specified type are greater than their corresponding elements in the second vector of the same time. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are greater than the corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left are greater than the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is greater than the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is greater than the corresponding element in right; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one vector are greater than or equal to their corresponding elements in the single-precision floating-point second vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are greater than or equal to their corresponding elements in the second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are greater than or equal to their corresponding elements in the second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one vector are greater than or equal to their corresponding elements in the second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector of a specified type are greater than or equal to their corresponding elements in the second vector of the same type. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are greater than or equal to all the corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left are greater than or equal to the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is greater than or equal to the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is greater than or equal to the corresponding element in right; otherwise, false. + + + Gets a value that indicates whether vector operations are subject to hardware acceleration through JIT intrinsic support. + true if vector operations are subject to hardware acceleration; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are less than their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are less than their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are less than their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision vector are less than their corresponding elements in a second single-precision vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector of a specified type whose elements signal whether the elements in one vector are less than their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all of the elements in the first vector are less than their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all of the elements in left are less than the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is less than the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is less than the corresponding element in right; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are less than or equal to their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are less than or equal to their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are less or equal to their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision floating-point vector are less than or equal to their corresponding elements in a second single-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector are less than or equal to their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are less than or equal to their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all of the elements in left are less than or equal to the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is less than or equal to the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is less than or equal to the corresponding element in right; otherwise, false. + + + Returns a new vector whose elements are the maximum of each pair of elements in the two given vectors. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The maximum vector. + + + Returns a new vector whose elements are the minimum of each pair of elements in the two given vectors. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The minimum vector. + + + Returns a new vector whose values are a scalar value multiplied by each of the values of a specified vector. + The scalar value. + The vector. + The vector type. T can be any primitive numeric type. + The scaled vector. + + + Returns a new vector whose values are the product of each pair of elements in two specified vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The product vector. + + + Returns a new vector whose values are the values of a specified vector each multiplied by a scalar value. + The vector. + The scalar value. + The vector type. T can be any primitive numeric type. + The scaled vector. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector whose elements are the negation of the corresponding element in the specified vector. + The source vector. + The vector type. T can be any primitive numeric type. + The negated vector. + + + Returns a new vector whose elements are obtained by taking the one's complement of a specified vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a new vector whose elements are the square roots of a specified vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The square root vector. + + + Returns a new vector whose values are the difference between the elements in the second vector and their corresponding elements in the first vector. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The difference vector. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector by performing a bitwise exclusive Or (XOr) operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Represents a vector with two single-precision floating-point values. + + + Creates a new object whose two elements have the same value. + The value to assign to both elements. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of the vector. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 2 elements are equal to one. + A vector whose two elements are equal to one (that is, it returns the vector (1,1). + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns the reflection of a vector off a surface that has the specified normal. + The source vector. + The normal of the surface being reflected off. + The reflected vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a vector by a specified 3x2 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a vector normal by the given 3x2 matrix. + The source vector. + The matrix. + The transformed vector. + + + Transforms a vector normal by the given 4x4 matrix. + The source vector. + The matrix. + The transformed vector. + + + Gets the vector (1,0). + The vector (1,0). + + + Gets the vector (0,1). + The vector (0,1). + + + The X component of the vector. + + + + The Y component of the vector. + + + + Returns a vector whose 2 elements are equal to zero. + A vector whose two elements are equal to zero (that is, it returns the vector (0,0). + + + Represents a vector with three single-precision floating-point values. + + + Creates a new object whose three elements have the same value. + The value to assign to all three elements. + + + Creates a new object from the specified object and the specified value. + The vector with two elements. + The additional value to assign to the field. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the cross product of two vectors. + The first vector. + The second vector. + The cross product. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of this vector object. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 3 elements are equal to one. + A vector whose three elements are equal to one (that is, it returns the vector (1,1,1). + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns the reflection of a vector off a surface that has the specified normal. + The source vector. + The normal of the surface being reflected off. + The reflected vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a vector normal by the given 4x4 matrix. + The source vector. + The matrix. + The transformed vector. + + + Gets the vector (1,0,0). + The vector (1,0,0). + + + Gets the vector (0,1,0). + The vector (0,1,0).. + + + Gets the vector (0,0,1). + The vector (0,0,1). + + + The X component of the vector. + + + + The Y component of the vector. + + + + The Z component of the vector. + + + + Gets a vector whose 3 elements are equal to zero. + A vector whose three elements are equal to zero (that is, it returns the vector (0,0,0). + + + Represents a vector with four single-precision floating-point values. + + + Creates a new object whose four elements have the same value. + The value to assign to all four elements. + + + Constructs a new object from the specified object and a W component. + The vector to use for the X, Y, and Z components. + The W component. + + + Creates a new object from the specified object and a Z and a W component. + The vector to use for the X and Y components. + The Z component. + The W component. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of this vector object. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 4 elements are equal to one. + Returns . + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a four-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a four-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a three-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a two-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a two-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a three-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Gets the vector (0,0,0,1). + The vector (0,0,0,1). + + + Gets the vector (1,0,0,0). + The vector (1,0,0,0). + + + Gets the vector (0,1,0,0). + The vector (0,1,0,0).. + + + Gets a vector whose 4 elements are equal to zero. + The vector (0,0,1,0). + + + The W component of the vector. + + + + The X component of the vector. + + + + The Y component of the vector. + + + + The Z component of the vector. + + + + Gets a vector whose 4 elements are equal to zero. + A vector whose four elements are equal to zero (that is, it returns the vector (0,0,0,0). + + + \ No newline at end of file diff --git a/packages/System.Numerics.Vectors.4.5.0/ref/netcoreapp2.0/_._ b/packages/System.Numerics.Vectors.4.5.0/ref/netcoreapp2.0/_._ new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Numerics.Vectors.4.5.0/ref/netstandard1.0/System.Numerics.Vectors.dll b/packages/System.Numerics.Vectors.4.5.0/ref/netstandard1.0/System.Numerics.Vectors.dll new file mode 100644 index 0000000..d174da0 Binary files /dev/null and b/packages/System.Numerics.Vectors.4.5.0/ref/netstandard1.0/System.Numerics.Vectors.dll differ diff --git a/packages/System.Numerics.Vectors.4.5.0/ref/netstandard1.0/System.Numerics.Vectors.xml b/packages/System.Numerics.Vectors.4.5.0/ref/netstandard1.0/System.Numerics.Vectors.xml new file mode 100644 index 0000000..da34d39 --- /dev/null +++ b/packages/System.Numerics.Vectors.4.5.0/ref/netstandard1.0/System.Numerics.Vectors.xml @@ -0,0 +1,2621 @@ + + + System.Numerics.Vectors + + + + Represents a 3x2 matrix. + + + Creates a 3x2 matrix from the specified components. + The value to assign to the first element in the first row. + The value to assign to the second element in the first row. + The value to assign to the first element in the second row. + The value to assign to the second element in the second row. + The value to assign to the first element in the third row. + The value to assign to the second element in the third row. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values of value1 and value2. + + + Creates a rotation matrix using the given rotation in radians. + The amount of rotation, in radians. + The rotation matrix. + + + Creates a rotation matrix using the specified rotation in radians and a center point. + The amount of rotation, in radians. + The center point. + The rotation matrix. + + + Creates a scaling matrix from the specified X and Y components. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The scaling matrix. + + + Creates a scaling matrix that scales uniformly with the specified scale with an offset from the specified center. + The uniform scale to use. + The center offset. + The scaling matrix. + + + Creates a scaling matrix that is offset by a given center point. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The center point. + The scaling matrix. + + + Creates a scaling matrix that scales uniformly with the given scale. + The uniform scale to use. + The scaling matrix. + + + Creates a scaling matrix from the specified vector scale. + The scale to use. + The scaling matrix. + + + Creates a scaling matrix from the specified vector scale with an offset from the specified center point. + The scale to use. + The center offset. + The scaling matrix. + + + Creates a skew matrix from the specified angles in radians. + The X angle, in radians. + The Y angle, in radians. + The skew matrix. + + + Creates a skew matrix from the specified angles in radians and a center point. + The X angle, in radians. + The Y angle, in radians. + The center point. + The skew matrix. + + + Creates a translation matrix from the specified 2-dimensional vector. + The translation position. + The translation matrix. + + + Creates a translation matrix from the specified X and Y components. + The X position. + The Y position. + The translation matrix. + + + Returns a value that indicates whether this instance and another 3x2 matrix are equal. + The other matrix. + true if the two matrices are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Calculates the determinant for this matrix. + The determinant. + + + Returns the hash code for this instance. + The hash code. + + + Gets the multiplicative identity matrix. + The multiplicative identify matrix. + + + Inverts the specified matrix. The return value indicates whether the operation succeeded. + The matrix to invert. + When this method returns, contains the inverted matrix if the operation succeeded. + true if matrix was converted successfully; otherwise, false. + + + Indicates whether the current matrix is the identity matrix. + true if the current matrix is the identity matrix; otherwise, false. + + + Performs a linear interpolation from one matrix to a second matrix based on a value that specifies the weighting of the second matrix. + The first matrix. + The second matrix. + The relative weighting of matrix2. + The interpolated matrix. + + + The first element of the first row. + + + + The second element of the first row. + + + + The first element of the second row. + + + + The second element of the second row. + + + + The first element of the third row. + + + + The second element of the third row. + + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values. + + + Returns a value that indicates whether the specified matrices are equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether the specified matrices are not equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this matrix. + The string representation of this matrix. + + + Gets or sets the translation component of this matrix. + The translation component of the current instance. + + + Represents a 4x4 matrix. + + + Creates a object from a specified object. + A 3x2 matrix. + + + Creates a 4x4 matrix from the specified components. + The value to assign to the first element in the first row. + The value to assign to the second element in the first row. + The value to assign to the third element in the first row. + The value to assign to the fourth element in the first row. + The value to assign to the first element in the second row. + The value to assign to the second element in the second row. + The value to assign to the third element in the second row. + The value to assign to the third element in the second row. + The value to assign to the first element in the third row. + The value to assign to the second element in the third row. + The value to assign to the third element in the third row. + The value to assign to the fourth element in the third row. + The value to assign to the first element in the fourth row. + The value to assign to the second element in the fourth row. + The value to assign to the third element in the fourth row. + The value to assign to the fourth element in the fourth row. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values of value1 and value2. + + + Creates a spherical billboard that rotates around a specified object position. + The position of the object that the billboard will rotate around. + The position of the camera. + The up vector of the camera. + The forward vector of the camera. + The created billboard. + + + Creates a cylindrical billboard that rotates around a specified axis. + The position of the object that the billboard will rotate around. + The position of the camera. + The axis to rotate the billboard around. + The forward vector of the camera. + The forward vector of the object. + The billboard matrix. + + + Creates a matrix that rotates around an arbitrary vector. + The axis to rotate around. + The angle to rotate around axis, in radians. + The rotation matrix. + + + Creates a rotation matrix from the specified Quaternion rotation value. + The source Quaternion. + The rotation matrix. + + + Creates a rotation matrix from the specified yaw, pitch, and roll. + The angle of rotation, in radians, around the Y axis. + The angle of rotation, in radians, around the X axis. + The angle of rotation, in radians, around the Z axis. + The rotation matrix. + + + Creates a view matrix. + The position of the camera. + The target towards which the camera is pointing. + The direction that is "up" from the camera's point of view. + The view matrix. + + + Creates an orthographic perspective matrix from the given view volume dimensions. + The width of the view volume. + The height of the view volume. + The minimum Z-value of the view volume. + The maximum Z-value of the view volume. + The orthographic projection matrix. + + + Creates a customized orthographic projection matrix. + The minimum X-value of the view volume. + The maximum X-value of the view volume. + The minimum Y-value of the view volume. + The maximum Y-value of the view volume. + The minimum Z-value of the view volume. + The maximum Z-value of the view volume. + The orthographic projection matrix. + + + Creates a perspective projection matrix from the given view volume dimensions. + The width of the view volume at the near view plane. + The height of the view volume at the near view plane. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a perspective projection matrix based on a field of view, aspect ratio, and near and far view plane distances. + The field of view in the y direction, in radians. + The aspect ratio, defined as view space width divided by height. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + fieldOfView is less than or equal to zero. + -or- + fieldOfView is greater than or equal to . + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a customized perspective projection matrix. + The minimum x-value of the view volume at the near view plane. + The maximum x-value of the view volume at the near view plane. + The minimum y-value of the view volume at the near view plane. + The maximum y-value of the view volume at the near view plane. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a matrix that reflects the coordinate system about a specified plane. + The plane about which to create a reflection. + A new matrix expressing the reflection. + + + Creates a matrix for rotating points around the X axis. + The amount, in radians, by which to rotate around the X axis. + The rotation matrix. + + + Creates a matrix for rotating points around the X axis from a center point. + The amount, in radians, by which to rotate around the X axis. + The center point. + The rotation matrix. + + + The amount, in radians, by which to rotate around the Y axis from a center point. + The amount, in radians, by which to rotate around the Y-axis. + The center point. + The rotation matrix. + + + Creates a matrix for rotating points around the Y axis. + The amount, in radians, by which to rotate around the Y-axis. + The rotation matrix. + + + Creates a matrix for rotating points around the Z axis. + The amount, in radians, by which to rotate around the Z-axis. + The rotation matrix. + + + Creates a matrix for rotating points around the Z axis from a center point. + The amount, in radians, by which to rotate around the Z-axis. + The center point. + The rotation matrix. + + + Creates a scaling matrix from the specified vector scale. + The scale to use. + The scaling matrix. + + + Creates a uniform scaling matrix that scale equally on each axis. + The uniform scaling factor. + The scaling matrix. + + + Creates a scaling matrix with a center point. + The vector that contains the amount to scale on each axis. + The center point. + The scaling matrix. + + + Creates a uniform scaling matrix that scales equally on each axis with a center point. + The uniform scaling factor. + The center point. + The scaling matrix. + + + Creates a scaling matrix from the specified X, Y, and Z components. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The value to scale by on the Z axis. + The scaling matrix. + + + Creates a scaling matrix that is offset by a given center point. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The value to scale by on the Z axis. + The center point. + The scaling matrix. + + + Creates a matrix that flattens geometry into a specified plane as if casting a shadow from a specified light source. + The direction from which the light that will cast the shadow is coming. + The plane onto which the new matrix should flatten geometry so as to cast a shadow. + A new matrix that can be used to flatten geometry onto the specified plane from the specified direction. + + + Creates a translation matrix from the specified 3-dimensional vector. + The amount to translate in each axis. + The translation matrix. + + + Creates a translation matrix from the specified X, Y, and Z components. + The amount to translate on the X axis. + The amount to translate on the Y axis. + The amount to translate on the Z axis. + The translation matrix. + + + Creates a world matrix with the specified parameters. + The position of the object. + The forward direction of the object. + The upward direction of the object. Its value is usually [0, 1, 0]. + The world matrix. + + + Attempts to extract the scale, translation, and rotation components from the given scale, rotation, or translation matrix. The return value indicates whether the operation succeeded. + The source matrix. + When this method returns, contains the scaling component of the transformation matrix if the operation succeeded. + When this method returns, contains the rotation component of the transformation matrix if the operation succeeded. + When the method returns, contains the translation component of the transformation matrix if the operation succeeded. + true if matrix was decomposed successfully; otherwise, false. + + + Returns a value that indicates whether this instance and another 4x4 matrix are equal. + The other matrix. + true if the two matrices are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Calculates the determinant of the current 4x4 matrix. + The determinant. + + + Returns the hash code for this instance. + The hash code. + + + Gets the multiplicative identity matrix. + Gets the multiplicative identity matrix. + + + Inverts the specified matrix. The return value indicates whether the operation succeeded. + The matrix to invert. + When this method returns, contains the inverted matrix if the operation succeeded. + true if matrix was converted successfully; otherwise, false. + + + Indicates whether the current matrix is the identity matrix. + true if the current matrix is the identity matrix; otherwise, false. + + + Performs a linear interpolation from one matrix to a second matrix based on a value that specifies the weighting of the second matrix. + The first matrix. + The second matrix. + The relative weighting of matrix2. + The interpolated matrix. + + + The first element of the first row. + + + + The second element of the first row. + + + + The third element of the first row. + + + + The fourth element of the first row. + + + + The first element of the second row. + + + + The second element of the second row. + + + + The third element of the second row. + + + + The fourth element of the second row. + + + + The first element of the third row. + + + + The second element of the third row. + + + + The third element of the third row. + + + + The fourth element of the third row. + + + + The first element of the fourth row. + + + + The second element of the fourth row. + + + + The third element of the fourth row. + + + + The fourth element of the fourth row. + + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values. + + + Returns a value that indicates whether the specified matrices are equal. + The first matrix to compare. + The second matrix to care + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether the specified matrices are not equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this matrix. + The string representation of this matrix. + + + Transforms the specified matrix by applying the specified Quaternion rotation. + The matrix to transform. + The rotation t apply. + The transformed matrix. + + + Gets or sets the translation component of this matrix. + The translation component of the current instance. + + + Transposes the rows and columns of a matrix. + The matrix to transpose. + The transposed matrix. + + + Represents a three-dimensional plane. + + + Creates a object from a specified four-dimensional vector. + A vector whose first three elements describe the normal vector, and whose defines the distance along that normal from the origin. + + + Creates a object from a specified normal and the distance along the normal from the origin. + The plane's normal vector. + The plane's distance from the origin along its normal vector. + + + Creates a object from the X, Y, and Z components of its normal, and its distance from the origin on that normal. + The X component of the normal. + The Y component of the normal. + The Z component of the normal. + The distance of the plane along its normal from the origin. + + + Creates a object that contains three specified points. + The first point defining the plane. + The second point defining the plane. + The third point defining the plane. + The plane containing the three points. + + + The distance of the plane along its normal from the origin. + + + + Calculates the dot product of a plane and a 4-dimensional vector. + The plane. + The four-dimensional vector. + The dot product. + + + Returns the dot product of a specified three-dimensional vector and the normal vector of this plane plus the distance () value of the plane. + The plane. + The 3-dimensional vector. + The dot product. + + + Returns the dot product of a specified three-dimensional vector and the vector of this plane. + The plane. + The three-dimensional vector. + The dot product. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns a value that indicates whether this instance and another plane object are equal. + The other plane. + true if the two planes are equal; otherwise, false. + + + Returns the hash code for this instance. + The hash code. + + + The normal vector of the plane. + + + + Creates a new object whose normal vector is the source plane's normal vector normalized. + The source plane. + The normalized plane. + + + Returns a value that indicates whether two planes are equal. + The first plane to compare. + The second plane to compare. + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether two planes are not equal. + The first plane to compare. + The second plane to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the string representation of this plane object. + A string that represents this object. + + + Transforms a normalized plane by a 4x4 matrix. + The normalized plane to transform. + The transformation matrix to apply to plane. + The transformed plane. + + + Transforms a normalized plane by a Quaternion rotation. + The normalized plane to transform. + The Quaternion rotation to apply to the plane. + A new plane that results from applying the Quaternion rotation. + + + Represents a vector that is used to encode three-dimensional physical rotations. + + + Creates a quaternion from the specified vector and rotation parts. + The vector part of the quaternion. + The rotation part of the quaternion. + + + Constructs a quaternion from the specified components. + The value to assign to the X component of the quaternion. + The value to assign to the Y component of the quaternion. + The value to assign to the Z component of the quaternion. + The value to assign to the W component of the quaternion. + + + Adds each element in one quaternion with its corresponding element in a second quaternion. + The first quaternion. + The second quaternion. + The quaternion that contains the summed values of value1 and value2. + + + Concatenates two quaternions. + The first quaternion rotation in the series. + The second quaternion rotation in the series. + A new quaternion representing the concatenation of the value1 rotation followed by the value2 rotation. + + + Returns the conjugate of a specified quaternion. + The quaternion. + A new quaternion that is the conjugate of value. + + + Creates a quaternion from a vector and an angle to rotate about the vector. + The vector to rotate around. + The angle, in radians, to rotate around the vector. + The newly created quaternion. + + + Creates a quaternion from the specified rotation matrix. + The rotation matrix. + The newly created quaternion. + + + Creates a new quaternion from the given yaw, pitch, and roll. + The yaw angle, in radians, around the Y axis. + The pitch angle, in radians, around the X axis. + The roll angle, in radians, around the Z axis. + The resulting quaternion. + + + Divides one quaternion by a second quaternion. + The dividend. + The divisor. + The quaternion that results from dividing value1 by value2. + + + Calculates the dot product of two quaternions. + The first quaternion. + The second quaternion. + The dot product. + + + Returns a value that indicates whether this instance and another quaternion are equal. + The other quaternion. + true if the two quaternions are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Gets a quaternion that represents no rotation. + A quaternion whose values are (0, 0, 0, 1). + + + Returns the inverse of a quaternion. + The quaternion. + The inverted quaternion. + + + Gets a value that indicates whether the current instance is the identity quaternion. + true if the current instance is the identity quaternion; otherwise, false. + + + Calculates the length of the quaternion. + The computed length of the quaternion. + + + Calculates the squared length of the quaternion. + The length squared of the quaternion. + + + Performs a linear interpolation between two quaternions based on a value that specifies the weighting of the second quaternion. + The first quaternion. + The second quaternion. + The relative weight of quaternion2 in the interpolation. + The interpolated quaternion. + + + Returns the quaternion that results from multiplying two quaternions together. + The first quaternion. + The second quaternion. + The product quaternion. + + + Returns the quaternion that results from scaling all the components of a specified quaternion by a scalar factor. + The source quaternion. + The scalar value. + The scaled quaternion. + + + Reverses the sign of each component of the quaternion. + The quaternion to negate. + The negated quaternion. + + + Divides each component of a specified by its length. + The quaternion to normalize. + The normalized quaternion. + + + Adds each element in one quaternion with its corresponding element in a second quaternion. + The first quaternion. + The second quaternion. + The quaternion that contains the summed values of value1 and value2. + + + Divides one quaternion by a second quaternion. + The dividend. + The divisor. + The quaternion that results from dividing value1 by value2. + + + Returns a value that indicates whether two quaternions are equal. + The first quaternion to compare. + The second quaternion to compare. + true if the two quaternions are equal; otherwise, false. + + + Returns a value that indicates whether two quaternions are not equal. + The first quaternion to compare. + The second quaternion to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the quaternion that results from scaling all the components of a specified quaternion by a scalar factor. + The source quaternion. + The scalar value. + The scaled quaternion. + + + Returns the quaternion that results from multiplying two quaternions together. + The first quaternion. + The second quaternion. + The product quaternion. + + + Subtracts each element in a second quaternion from its corresponding element in a first quaternion. + The first quaternion. + The second quaternion. + The quaternion containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Reverses the sign of each component of the quaternion. + The quaternion to negate. + The negated quaternion. + + + Interpolates between two quaternions, using spherical linear interpolation. + The first quaternion. + The second quaternion. + The relative weight of the second quaternion in the interpolation. + The interpolated quaternion. + + + Subtracts each element in a second quaternion from its corresponding element in a first quaternion. + The first quaternion. + The second quaternion. + The quaternion containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this quaternion. + The string representation of this quaternion. + + + The rotation component of the quaternion. + + + + The X value of the vector component of the quaternion. + + + + The Y value of the vector component of the quaternion. + + + + The Z value of the vector component of the quaternion. + + + + Represents a single vector of a specified numeric type that is suitable for low-level optimization of parallel algorithms. + The vector type. T can be any primitive numeric type. + + + Creates a vector whose components are of a specified type. + The numeric type that defines the type of the components in the vector. + + + Creates a vector from a specified array. + A numeric array. + values is null. + + + Creates a vector from a specified array starting at a specified index position. + A numeric array. + The starting index position from which to create the vector. + values is null. + index is less than zero. + -or- + The length of values minus index is less than . + + + Copies the vector instance to a specified destination array. + The array to receive a copy of the vector values. + destination is null. + The number of elements in the current vector is greater than the number of elements available in the destination array. + + + Copies the vector instance to a specified destination array starting at a specified index position. + The array to receive a copy of the vector values. + The starting index in destination at which to begin the copy operation. + destination is null. + The number of elements in the current instance is greater than the number of elements available from startIndex to the end of the destination array. + index is less than zero or greater than the last index in destination. + + + Returns the number of elements stored in the vector. + The number of elements stored in the vector. + Access to the property getter via reflection is not supported. + + + Returns a value that indicates whether this instance is equal to a specified vector. + The vector to compare with this instance. + true if the current instance and other are equal; otherwise, false. + + + Returns a value that indicates whether this instance is equal to a specified object. + The object to compare with this instance. + true if the current instance and obj are equal; otherwise, false. The method returns false if obj is null, or if obj is a vector of a different type than the current instance. + + + Returns the hash code for this instance. + The hash code. + + + Gets the element at a specified index. + The index of the element to return. + The element at index index. + index is less than zero. + -or- + index is greater than or equal to . + + + Returns a vector containing all ones. + A vector containing all ones. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Returns a new vector by performing a bitwise And operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise And of left and right. + + + Returns a new vector by performing a bitwise Or operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise Or of the elements in left and right. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Returns a value that indicates whether each pair of elements in two specified vectors are equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a new vector by performing a bitwise XOr operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise XOr of the elements in left and right. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Returns a value that indicates whether any single pair of elements in the specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if any element pairs in left and right are equal. false if no element pairs are equal. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar value. + The source vector. + A scalar value. + The scaled vector. + + + Multiplies a vector by the given scalar. + The scalar value. + The source vector. + The scaled vector. + + + Returns a new vector whose elements are obtained by taking the one's complement of a specified vector's elements. + The source vector. + The one's complement vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates a given vector. + The vector to negate. + The negated vector. + + + Returns the string representation of this vector using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Returns the string representation of this vector using default formatting. + The string representation of this vector. + + + Returns the string representation of this vector using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns a vector containing all zeroes. + A vector containing all zeroes. + + + Provides a collection of static convenience methods for creating, manipulating, combining, and converting generic vectors. + + + Returns a new vector whose elements are the absolute values of the given vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The absolute value vector. + + + Returns a new vector whose values are the sum of each pair of elements from two given vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The summed vector. + + + Returns a new vector by performing a bitwise And Not operation on each pair of corresponding elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned bytes. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a double-precision floating-point vector. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of 16-bit integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of long integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of signed bytes. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a single-precision floating-point vector. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned 16-bit integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned long integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Returns a new vector by performing a bitwise And operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a new vector by performing a bitwise Or operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Creates a new single-precision vector with elements selected between two specified single-precision source vectors based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The new vector with elements selected based on the mask. + + + Creates a new double-precision vector with elements selected between two specified double-precision source vectors based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The new vector with elements selected based on the mask. + + + Creates a new vector of a specified type with elements selected between two specified source vectors of the same type based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The vector type. T can be any primitive numeric type. + The new vector with elements selected based on the mask. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector whose values are the result of dividing the first vector's elements by the corresponding elements in the second vector. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The divided vector. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The dot product. + + + Returns a new integral vector whose elements signal whether the elements in two specified double-precision vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in two specified integral vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in two specified long integer vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in two specified single-precision vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector of a specified type whose elements signal whether the elements in two specified vectors of the same type are equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether each pair of elements in the given vectors is equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left and right are equal; otherwise, false. + + + Returns a value that indicates whether any single pair of elements in the given vectors is equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element pair in left and right is equal; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are greater than their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are greater than their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are greater than their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision floating-point vector are greater than their corresponding elements in a second single-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector of a specified type are greater than their corresponding elements in the second vector of the same time. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are greater than the corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left are greater than the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is greater than the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is greater than the corresponding element in right; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one vector are greater than or equal to their corresponding elements in the single-precision floating-point second vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are greater than or equal to their corresponding elements in the second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are greater than or equal to their corresponding elements in the second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one vector are greater than or equal to their corresponding elements in the second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector of a specified type are greater than or equal to their corresponding elements in the second vector of the same type. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are greater than or equal to all the corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left are greater than or equal to the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is greater than or equal to the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is greater than or equal to the corresponding element in right; otherwise, false. + + + Gets a value that indicates whether vector operations are subject to hardware acceleration through JIT intrinsic support. + true if vector operations are subject to hardware acceleration; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are less than their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are less than their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are less than their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision vector are less than their corresponding elements in a second single-precision vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector of a specified type whose elements signal whether the elements in one vector are less than their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all of the elements in the first vector are less than their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all of the elements in left are less than the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is less than the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is less than the corresponding element in right; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are less than or equal to their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are less than or equal to their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are less or equal to their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision floating-point vector are less than or equal to their corresponding elements in a second single-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector are less than or equal to their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are less than or equal to their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all of the elements in left are less than or equal to the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is less than or equal to the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is less than or equal to the corresponding element in right; otherwise, false. + + + Returns a new vector whose elements are the maximum of each pair of elements in the two given vectors. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The maximum vector. + + + Returns a new vector whose elements are the minimum of each pair of elements in the two given vectors. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The minimum vector. + + + Returns a new vector whose values are a scalar value multiplied by each of the values of a specified vector. + The scalar value. + The vector. + The vector type. T can be any primitive numeric type. + The scaled vector. + + + Returns a new vector whose values are the product of each pair of elements in two specified vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The product vector. + + + Returns a new vector whose values are the values of a specified vector each multiplied by a scalar value. + The vector. + The scalar value. + The vector type. T can be any primitive numeric type. + The scaled vector. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector whose elements are the negation of the corresponding element in the specified vector. + The source vector. + The vector type. T can be any primitive numeric type. + The negated vector. + + + Returns a new vector whose elements are obtained by taking the one's complement of a specified vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a new vector whose elements are the square roots of a specified vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The square root vector. + + + Returns a new vector whose values are the difference between the elements in the second vector and their corresponding elements in the first vector. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The difference vector. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector by performing a bitwise exclusive Or (XOr) operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Represents a vector with two single-precision floating-point values. + + + Creates a new object whose two elements have the same value. + The value to assign to both elements. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of the vector. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 2 elements are equal to one. + A vector whose two elements are equal to one (that is, it returns the vector (1,1). + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns the reflection of a vector off a surface that has the specified normal. + The source vector. + The normal of the surface being reflected off. + The reflected vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a vector by a specified 3x2 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a vector normal by the given 3x2 matrix. + The source vector. + The matrix. + The transformed vector. + + + Transforms a vector normal by the given 4x4 matrix. + The source vector. + The matrix. + The transformed vector. + + + Gets the vector (1,0). + The vector (1,0). + + + Gets the vector (0,1). + The vector (0,1). + + + The X component of the vector. + + + + The Y component of the vector. + + + + Returns a vector whose 2 elements are equal to zero. + A vector whose two elements are equal to zero (that is, it returns the vector (0,0). + + + Represents a vector with three single-precision floating-point values. + + + Creates a new object whose three elements have the same value. + The value to assign to all three elements. + + + Creates a new object from the specified object and the specified value. + The vector with two elements. + The additional value to assign to the field. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the cross product of two vectors. + The first vector. + The second vector. + The cross product. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of this vector object. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 3 elements are equal to one. + A vector whose three elements are equal to one (that is, it returns the vector (1,1,1). + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns the reflection of a vector off a surface that has the specified normal. + The source vector. + The normal of the surface being reflected off. + The reflected vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a vector normal by the given 4x4 matrix. + The source vector. + The matrix. + The transformed vector. + + + Gets the vector (1,0,0). + The vector (1,0,0). + + + Gets the vector (0,1,0). + The vector (0,1,0).. + + + Gets the vector (0,0,1). + The vector (0,0,1). + + + The X component of the vector. + + + + The Y component of the vector. + + + + The Z component of the vector. + + + + Gets a vector whose 3 elements are equal to zero. + A vector whose three elements are equal to zero (that is, it returns the vector (0,0,0). + + + Represents a vector with four single-precision floating-point values. + + + Creates a new object whose four elements have the same value. + The value to assign to all four elements. + + + Constructs a new object from the specified object and a W component. + The vector to use for the X, Y, and Z components. + The W component. + + + Creates a new object from the specified object and a Z and a W component. + The vector to use for the X and Y components. + The Z component. + The W component. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of this vector object. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 4 elements are equal to one. + Returns . + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a four-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a four-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a three-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a two-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a two-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a three-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Gets the vector (0,0,0,1). + The vector (0,0,0,1). + + + Gets the vector (1,0,0,0). + The vector (1,0,0,0). + + + Gets the vector (0,1,0,0). + The vector (0,1,0,0).. + + + Gets a vector whose 4 elements are equal to zero. + The vector (0,0,1,0). + + + The W component of the vector. + + + + The X component of the vector. + + + + The Y component of the vector. + + + + The Z component of the vector. + + + + Gets a vector whose 4 elements are equal to zero. + A vector whose four elements are equal to zero (that is, it returns the vector (0,0,0,0). + + + \ No newline at end of file diff --git a/packages/System.Numerics.Vectors.4.5.0/ref/netstandard2.0/System.Numerics.Vectors.dll b/packages/System.Numerics.Vectors.4.5.0/ref/netstandard2.0/System.Numerics.Vectors.dll new file mode 100644 index 0000000..ba0aa0c Binary files /dev/null and b/packages/System.Numerics.Vectors.4.5.0/ref/netstandard2.0/System.Numerics.Vectors.dll differ diff --git a/packages/System.Numerics.Vectors.4.5.0/ref/netstandard2.0/System.Numerics.Vectors.xml b/packages/System.Numerics.Vectors.4.5.0/ref/netstandard2.0/System.Numerics.Vectors.xml new file mode 100644 index 0000000..da34d39 --- /dev/null +++ b/packages/System.Numerics.Vectors.4.5.0/ref/netstandard2.0/System.Numerics.Vectors.xml @@ -0,0 +1,2621 @@ + + + System.Numerics.Vectors + + + + Represents a 3x2 matrix. + + + Creates a 3x2 matrix from the specified components. + The value to assign to the first element in the first row. + The value to assign to the second element in the first row. + The value to assign to the first element in the second row. + The value to assign to the second element in the second row. + The value to assign to the first element in the third row. + The value to assign to the second element in the third row. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values of value1 and value2. + + + Creates a rotation matrix using the given rotation in radians. + The amount of rotation, in radians. + The rotation matrix. + + + Creates a rotation matrix using the specified rotation in radians and a center point. + The amount of rotation, in radians. + The center point. + The rotation matrix. + + + Creates a scaling matrix from the specified X and Y components. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The scaling matrix. + + + Creates a scaling matrix that scales uniformly with the specified scale with an offset from the specified center. + The uniform scale to use. + The center offset. + The scaling matrix. + + + Creates a scaling matrix that is offset by a given center point. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The center point. + The scaling matrix. + + + Creates a scaling matrix that scales uniformly with the given scale. + The uniform scale to use. + The scaling matrix. + + + Creates a scaling matrix from the specified vector scale. + The scale to use. + The scaling matrix. + + + Creates a scaling matrix from the specified vector scale with an offset from the specified center point. + The scale to use. + The center offset. + The scaling matrix. + + + Creates a skew matrix from the specified angles in radians. + The X angle, in radians. + The Y angle, in radians. + The skew matrix. + + + Creates a skew matrix from the specified angles in radians and a center point. + The X angle, in radians. + The Y angle, in radians. + The center point. + The skew matrix. + + + Creates a translation matrix from the specified 2-dimensional vector. + The translation position. + The translation matrix. + + + Creates a translation matrix from the specified X and Y components. + The X position. + The Y position. + The translation matrix. + + + Returns a value that indicates whether this instance and another 3x2 matrix are equal. + The other matrix. + true if the two matrices are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Calculates the determinant for this matrix. + The determinant. + + + Returns the hash code for this instance. + The hash code. + + + Gets the multiplicative identity matrix. + The multiplicative identify matrix. + + + Inverts the specified matrix. The return value indicates whether the operation succeeded. + The matrix to invert. + When this method returns, contains the inverted matrix if the operation succeeded. + true if matrix was converted successfully; otherwise, false. + + + Indicates whether the current matrix is the identity matrix. + true if the current matrix is the identity matrix; otherwise, false. + + + Performs a linear interpolation from one matrix to a second matrix based on a value that specifies the weighting of the second matrix. + The first matrix. + The second matrix. + The relative weighting of matrix2. + The interpolated matrix. + + + The first element of the first row. + + + + The second element of the first row. + + + + The first element of the second row. + + + + The second element of the second row. + + + + The first element of the third row. + + + + The second element of the third row. + + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values. + + + Returns a value that indicates whether the specified matrices are equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether the specified matrices are not equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this matrix. + The string representation of this matrix. + + + Gets or sets the translation component of this matrix. + The translation component of the current instance. + + + Represents a 4x4 matrix. + + + Creates a object from a specified object. + A 3x2 matrix. + + + Creates a 4x4 matrix from the specified components. + The value to assign to the first element in the first row. + The value to assign to the second element in the first row. + The value to assign to the third element in the first row. + The value to assign to the fourth element in the first row. + The value to assign to the first element in the second row. + The value to assign to the second element in the second row. + The value to assign to the third element in the second row. + The value to assign to the third element in the second row. + The value to assign to the first element in the third row. + The value to assign to the second element in the third row. + The value to assign to the third element in the third row. + The value to assign to the fourth element in the third row. + The value to assign to the first element in the fourth row. + The value to assign to the second element in the fourth row. + The value to assign to the third element in the fourth row. + The value to assign to the fourth element in the fourth row. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values of value1 and value2. + + + Creates a spherical billboard that rotates around a specified object position. + The position of the object that the billboard will rotate around. + The position of the camera. + The up vector of the camera. + The forward vector of the camera. + The created billboard. + + + Creates a cylindrical billboard that rotates around a specified axis. + The position of the object that the billboard will rotate around. + The position of the camera. + The axis to rotate the billboard around. + The forward vector of the camera. + The forward vector of the object. + The billboard matrix. + + + Creates a matrix that rotates around an arbitrary vector. + The axis to rotate around. + The angle to rotate around axis, in radians. + The rotation matrix. + + + Creates a rotation matrix from the specified Quaternion rotation value. + The source Quaternion. + The rotation matrix. + + + Creates a rotation matrix from the specified yaw, pitch, and roll. + The angle of rotation, in radians, around the Y axis. + The angle of rotation, in radians, around the X axis. + The angle of rotation, in radians, around the Z axis. + The rotation matrix. + + + Creates a view matrix. + The position of the camera. + The target towards which the camera is pointing. + The direction that is "up" from the camera's point of view. + The view matrix. + + + Creates an orthographic perspective matrix from the given view volume dimensions. + The width of the view volume. + The height of the view volume. + The minimum Z-value of the view volume. + The maximum Z-value of the view volume. + The orthographic projection matrix. + + + Creates a customized orthographic projection matrix. + The minimum X-value of the view volume. + The maximum X-value of the view volume. + The minimum Y-value of the view volume. + The maximum Y-value of the view volume. + The minimum Z-value of the view volume. + The maximum Z-value of the view volume. + The orthographic projection matrix. + + + Creates a perspective projection matrix from the given view volume dimensions. + The width of the view volume at the near view plane. + The height of the view volume at the near view plane. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a perspective projection matrix based on a field of view, aspect ratio, and near and far view plane distances. + The field of view in the y direction, in radians. + The aspect ratio, defined as view space width divided by height. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + fieldOfView is less than or equal to zero. + -or- + fieldOfView is greater than or equal to . + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a customized perspective projection matrix. + The minimum x-value of the view volume at the near view plane. + The maximum x-value of the view volume at the near view plane. + The minimum y-value of the view volume at the near view plane. + The maximum y-value of the view volume at the near view plane. + The distance to the near view plane. + The distance to the far view plane. + The perspective projection matrix. + nearPlaneDistance is less than or equal to zero. + -or- + farPlaneDistance is less than or equal to zero. + -or- + nearPlaneDistance is greater than or equal to farPlaneDistance. + + + Creates a matrix that reflects the coordinate system about a specified plane. + The plane about which to create a reflection. + A new matrix expressing the reflection. + + + Creates a matrix for rotating points around the X axis. + The amount, in radians, by which to rotate around the X axis. + The rotation matrix. + + + Creates a matrix for rotating points around the X axis from a center point. + The amount, in radians, by which to rotate around the X axis. + The center point. + The rotation matrix. + + + The amount, in radians, by which to rotate around the Y axis from a center point. + The amount, in radians, by which to rotate around the Y-axis. + The center point. + The rotation matrix. + + + Creates a matrix for rotating points around the Y axis. + The amount, in radians, by which to rotate around the Y-axis. + The rotation matrix. + + + Creates a matrix for rotating points around the Z axis. + The amount, in radians, by which to rotate around the Z-axis. + The rotation matrix. + + + Creates a matrix for rotating points around the Z axis from a center point. + The amount, in radians, by which to rotate around the Z-axis. + The center point. + The rotation matrix. + + + Creates a scaling matrix from the specified vector scale. + The scale to use. + The scaling matrix. + + + Creates a uniform scaling matrix that scale equally on each axis. + The uniform scaling factor. + The scaling matrix. + + + Creates a scaling matrix with a center point. + The vector that contains the amount to scale on each axis. + The center point. + The scaling matrix. + + + Creates a uniform scaling matrix that scales equally on each axis with a center point. + The uniform scaling factor. + The center point. + The scaling matrix. + + + Creates a scaling matrix from the specified X, Y, and Z components. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The value to scale by on the Z axis. + The scaling matrix. + + + Creates a scaling matrix that is offset by a given center point. + The value to scale by on the X axis. + The value to scale by on the Y axis. + The value to scale by on the Z axis. + The center point. + The scaling matrix. + + + Creates a matrix that flattens geometry into a specified plane as if casting a shadow from a specified light source. + The direction from which the light that will cast the shadow is coming. + The plane onto which the new matrix should flatten geometry so as to cast a shadow. + A new matrix that can be used to flatten geometry onto the specified plane from the specified direction. + + + Creates a translation matrix from the specified 3-dimensional vector. + The amount to translate in each axis. + The translation matrix. + + + Creates a translation matrix from the specified X, Y, and Z components. + The amount to translate on the X axis. + The amount to translate on the Y axis. + The amount to translate on the Z axis. + The translation matrix. + + + Creates a world matrix with the specified parameters. + The position of the object. + The forward direction of the object. + The upward direction of the object. Its value is usually [0, 1, 0]. + The world matrix. + + + Attempts to extract the scale, translation, and rotation components from the given scale, rotation, or translation matrix. The return value indicates whether the operation succeeded. + The source matrix. + When this method returns, contains the scaling component of the transformation matrix if the operation succeeded. + When this method returns, contains the rotation component of the transformation matrix if the operation succeeded. + When the method returns, contains the translation component of the transformation matrix if the operation succeeded. + true if matrix was decomposed successfully; otherwise, false. + + + Returns a value that indicates whether this instance and another 4x4 matrix are equal. + The other matrix. + true if the two matrices are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Calculates the determinant of the current 4x4 matrix. + The determinant. + + + Returns the hash code for this instance. + The hash code. + + + Gets the multiplicative identity matrix. + Gets the multiplicative identity matrix. + + + Inverts the specified matrix. The return value indicates whether the operation succeeded. + The matrix to invert. + When this method returns, contains the inverted matrix if the operation succeeded. + true if matrix was converted successfully; otherwise, false. + + + Indicates whether the current matrix is the identity matrix. + true if the current matrix is the identity matrix; otherwise, false. + + + Performs a linear interpolation from one matrix to a second matrix based on a value that specifies the weighting of the second matrix. + The first matrix. + The second matrix. + The relative weighting of matrix2. + The interpolated matrix. + + + The first element of the first row. + + + + The second element of the first row. + + + + The third element of the first row. + + + + The fourth element of the first row. + + + + The first element of the second row. + + + + The second element of the second row. + + + + The third element of the second row. + + + + The fourth element of the second row. + + + + The first element of the third row. + + + + The second element of the third row. + + + + The third element of the third row. + + + + The fourth element of the third row. + + + + The first element of the fourth row. + + + + The second element of the fourth row. + + + + The third element of the fourth row. + + + + The fourth element of the fourth row. + + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Adds each element in one matrix with its corresponding element in a second matrix. + The first matrix. + The second matrix. + The matrix that contains the summed values. + + + Returns a value that indicates whether the specified matrices are equal. + The first matrix to compare. + The second matrix to care + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether the specified matrices are not equal. + The first matrix to compare. + The second matrix to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the matrix that results from scaling all the elements of a specified matrix by a scalar factor. + The matrix to scale. + The scaling value to use. + The scaled matrix. + + + Returns the matrix that results from multiplying two matrices together. + The first matrix. + The second matrix. + The product matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Negates the specified matrix by multiplying all its values by -1. + The matrix to negate. + The negated matrix. + + + Subtracts each element in a second matrix from its corresponding element in a first matrix. + The first matrix. + The second matrix. + The matrix containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this matrix. + The string representation of this matrix. + + + Transforms the specified matrix by applying the specified Quaternion rotation. + The matrix to transform. + The rotation t apply. + The transformed matrix. + + + Gets or sets the translation component of this matrix. + The translation component of the current instance. + + + Transposes the rows and columns of a matrix. + The matrix to transpose. + The transposed matrix. + + + Represents a three-dimensional plane. + + + Creates a object from a specified four-dimensional vector. + A vector whose first three elements describe the normal vector, and whose defines the distance along that normal from the origin. + + + Creates a object from a specified normal and the distance along the normal from the origin. + The plane's normal vector. + The plane's distance from the origin along its normal vector. + + + Creates a object from the X, Y, and Z components of its normal, and its distance from the origin on that normal. + The X component of the normal. + The Y component of the normal. + The Z component of the normal. + The distance of the plane along its normal from the origin. + + + Creates a object that contains three specified points. + The first point defining the plane. + The second point defining the plane. + The third point defining the plane. + The plane containing the three points. + + + The distance of the plane along its normal from the origin. + + + + Calculates the dot product of a plane and a 4-dimensional vector. + The plane. + The four-dimensional vector. + The dot product. + + + Returns the dot product of a specified three-dimensional vector and the normal vector of this plane plus the distance () value of the plane. + The plane. + The 3-dimensional vector. + The dot product. + + + Returns the dot product of a specified three-dimensional vector and the vector of this plane. + The plane. + The three-dimensional vector. + The dot product. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns a value that indicates whether this instance and another plane object are equal. + The other plane. + true if the two planes are equal; otherwise, false. + + + Returns the hash code for this instance. + The hash code. + + + The normal vector of the plane. + + + + Creates a new object whose normal vector is the source plane's normal vector normalized. + The source plane. + The normalized plane. + + + Returns a value that indicates whether two planes are equal. + The first plane to compare. + The second plane to compare. + true if value1 and value2 are equal; otherwise, false. + + + Returns a value that indicates whether two planes are not equal. + The first plane to compare. + The second plane to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the string representation of this plane object. + A string that represents this object. + + + Transforms a normalized plane by a 4x4 matrix. + The normalized plane to transform. + The transformation matrix to apply to plane. + The transformed plane. + + + Transforms a normalized plane by a Quaternion rotation. + The normalized plane to transform. + The Quaternion rotation to apply to the plane. + A new plane that results from applying the Quaternion rotation. + + + Represents a vector that is used to encode three-dimensional physical rotations. + + + Creates a quaternion from the specified vector and rotation parts. + The vector part of the quaternion. + The rotation part of the quaternion. + + + Constructs a quaternion from the specified components. + The value to assign to the X component of the quaternion. + The value to assign to the Y component of the quaternion. + The value to assign to the Z component of the quaternion. + The value to assign to the W component of the quaternion. + + + Adds each element in one quaternion with its corresponding element in a second quaternion. + The first quaternion. + The second quaternion. + The quaternion that contains the summed values of value1 and value2. + + + Concatenates two quaternions. + The first quaternion rotation in the series. + The second quaternion rotation in the series. + A new quaternion representing the concatenation of the value1 rotation followed by the value2 rotation. + + + Returns the conjugate of a specified quaternion. + The quaternion. + A new quaternion that is the conjugate of value. + + + Creates a quaternion from a vector and an angle to rotate about the vector. + The vector to rotate around. + The angle, in radians, to rotate around the vector. + The newly created quaternion. + + + Creates a quaternion from the specified rotation matrix. + The rotation matrix. + The newly created quaternion. + + + Creates a new quaternion from the given yaw, pitch, and roll. + The yaw angle, in radians, around the Y axis. + The pitch angle, in radians, around the X axis. + The roll angle, in radians, around the Z axis. + The resulting quaternion. + + + Divides one quaternion by a second quaternion. + The dividend. + The divisor. + The quaternion that results from dividing value1 by value2. + + + Calculates the dot product of two quaternions. + The first quaternion. + The second quaternion. + The dot product. + + + Returns a value that indicates whether this instance and another quaternion are equal. + The other quaternion. + true if the two quaternions are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Gets a quaternion that represents no rotation. + A quaternion whose values are (0, 0, 0, 1). + + + Returns the inverse of a quaternion. + The quaternion. + The inverted quaternion. + + + Gets a value that indicates whether the current instance is the identity quaternion. + true if the current instance is the identity quaternion; otherwise, false. + + + Calculates the length of the quaternion. + The computed length of the quaternion. + + + Calculates the squared length of the quaternion. + The length squared of the quaternion. + + + Performs a linear interpolation between two quaternions based on a value that specifies the weighting of the second quaternion. + The first quaternion. + The second quaternion. + The relative weight of quaternion2 in the interpolation. + The interpolated quaternion. + + + Returns the quaternion that results from multiplying two quaternions together. + The first quaternion. + The second quaternion. + The product quaternion. + + + Returns the quaternion that results from scaling all the components of a specified quaternion by a scalar factor. + The source quaternion. + The scalar value. + The scaled quaternion. + + + Reverses the sign of each component of the quaternion. + The quaternion to negate. + The negated quaternion. + + + Divides each component of a specified by its length. + The quaternion to normalize. + The normalized quaternion. + + + Adds each element in one quaternion with its corresponding element in a second quaternion. + The first quaternion. + The second quaternion. + The quaternion that contains the summed values of value1 and value2. + + + Divides one quaternion by a second quaternion. + The dividend. + The divisor. + The quaternion that results from dividing value1 by value2. + + + Returns a value that indicates whether two quaternions are equal. + The first quaternion to compare. + The second quaternion to compare. + true if the two quaternions are equal; otherwise, false. + + + Returns a value that indicates whether two quaternions are not equal. + The first quaternion to compare. + The second quaternion to compare. + true if value1 and value2 are not equal; otherwise, false. + + + Returns the quaternion that results from scaling all the components of a specified quaternion by a scalar factor. + The source quaternion. + The scalar value. + The scaled quaternion. + + + Returns the quaternion that results from multiplying two quaternions together. + The first quaternion. + The second quaternion. + The product quaternion. + + + Subtracts each element in a second quaternion from its corresponding element in a first quaternion. + The first quaternion. + The second quaternion. + The quaternion containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Reverses the sign of each component of the quaternion. + The quaternion to negate. + The negated quaternion. + + + Interpolates between two quaternions, using spherical linear interpolation. + The first quaternion. + The second quaternion. + The relative weight of the second quaternion in the interpolation. + The interpolated quaternion. + + + Subtracts each element in a second quaternion from its corresponding element in a first quaternion. + The first quaternion. + The second quaternion. + The quaternion containing the values that result from subtracting each element in value2 from its corresponding element in value1. + + + Returns a string that represents this quaternion. + The string representation of this quaternion. + + + The rotation component of the quaternion. + + + + The X value of the vector component of the quaternion. + + + + The Y value of the vector component of the quaternion. + + + + The Z value of the vector component of the quaternion. + + + + Represents a single vector of a specified numeric type that is suitable for low-level optimization of parallel algorithms. + The vector type. T can be any primitive numeric type. + + + Creates a vector whose components are of a specified type. + The numeric type that defines the type of the components in the vector. + + + Creates a vector from a specified array. + A numeric array. + values is null. + + + Creates a vector from a specified array starting at a specified index position. + A numeric array. + The starting index position from which to create the vector. + values is null. + index is less than zero. + -or- + The length of values minus index is less than . + + + Copies the vector instance to a specified destination array. + The array to receive a copy of the vector values. + destination is null. + The number of elements in the current vector is greater than the number of elements available in the destination array. + + + Copies the vector instance to a specified destination array starting at a specified index position. + The array to receive a copy of the vector values. + The starting index in destination at which to begin the copy operation. + destination is null. + The number of elements in the current instance is greater than the number of elements available from startIndex to the end of the destination array. + index is less than zero or greater than the last index in destination. + + + Returns the number of elements stored in the vector. + The number of elements stored in the vector. + Access to the property getter via reflection is not supported. + + + Returns a value that indicates whether this instance is equal to a specified vector. + The vector to compare with this instance. + true if the current instance and other are equal; otherwise, false. + + + Returns a value that indicates whether this instance is equal to a specified object. + The object to compare with this instance. + true if the current instance and obj are equal; otherwise, false. The method returns false if obj is null, or if obj is a vector of a different type than the current instance. + + + Returns the hash code for this instance. + The hash code. + + + Gets the element at a specified index. + The index of the element to return. + The element at index index. + index is less than zero. + -or- + index is greater than or equal to . + + + Returns a vector containing all ones. + A vector containing all ones. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Returns a new vector by performing a bitwise And operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise And of left and right. + + + Returns a new vector by performing a bitwise Or operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise Or of the elements in left and right. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Returns a value that indicates whether each pair of elements in two specified vectors are equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a new vector by performing a bitwise XOr operation on each of the elements in two vectors. + The first vector. + The second vector. + The vector that results from the bitwise XOr of the elements in left and right. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Reinterprets the bits of the specified vector into a vector of type . + The vector to reinterpret. + The reinterpreted vector. + + + Returns a value that indicates whether any single pair of elements in the specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if any element pairs in left and right are equal. false if no element pairs are equal. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar value. + The source vector. + A scalar value. + The scaled vector. + + + Multiplies a vector by the given scalar. + The scalar value. + The source vector. + The scaled vector. + + + Returns a new vector whose elements are obtained by taking the one's complement of a specified vector's elements. + The source vector. + The one's complement vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates a given vector. + The vector to negate. + The negated vector. + + + Returns the string representation of this vector using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Returns the string representation of this vector using default formatting. + The string representation of this vector. + + + Returns the string representation of this vector using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns a vector containing all zeroes. + A vector containing all zeroes. + + + Provides a collection of static convenience methods for creating, manipulating, combining, and converting generic vectors. + + + Returns a new vector whose elements are the absolute values of the given vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The absolute value vector. + + + Returns a new vector whose values are the sum of each pair of elements from two given vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The summed vector. + + + Returns a new vector by performing a bitwise And Not operation on each pair of corresponding elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned bytes. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a double-precision floating-point vector. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of 16-bit integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of long integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of signed bytes. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a single-precision floating-point vector. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned 16-bit integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Reinterprets the bits of a specified vector into those of a vector of unsigned long integers. + The source vector. + The vector type. T can be any primitive numeric type. + The reinterpreted vector. + + + Returns a new vector by performing a bitwise And operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a new vector by performing a bitwise Or operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Creates a new single-precision vector with elements selected between two specified single-precision source vectors based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The new vector with elements selected based on the mask. + + + Creates a new double-precision vector with elements selected between two specified double-precision source vectors based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The new vector with elements selected based on the mask. + + + Creates a new vector of a specified type with elements selected between two specified source vectors of the same type based on an integral mask vector. + The integral mask vector used to drive selection. + The first source vector. + The second source vector. + The vector type. T can be any primitive numeric type. + The new vector with elements selected based on the mask. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector whose values are the result of dividing the first vector's elements by the corresponding elements in the second vector. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The divided vector. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The dot product. + + + Returns a new integral vector whose elements signal whether the elements in two specified double-precision vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in two specified integral vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in two specified long integer vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in two specified single-precision vectors are equal. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector of a specified type whose elements signal whether the elements in two specified vectors of the same type are equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether each pair of elements in the given vectors is equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left and right are equal; otherwise, false. + + + Returns a value that indicates whether any single pair of elements in the given vectors is equal. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element pair in left and right is equal; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are greater than their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are greater than their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are greater than their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision floating-point vector are greater than their corresponding elements in a second single-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector of a specified type are greater than their corresponding elements in the second vector of the same time. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are greater than the corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left are greater than the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is greater than the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is greater than the corresponding element in right; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one vector are greater than or equal to their corresponding elements in the single-precision floating-point second vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are greater than or equal to their corresponding elements in the second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are greater than or equal to their corresponding elements in the second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one vector are greater than or equal to their corresponding elements in the second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector of a specified type are greater than or equal to their corresponding elements in the second vector of the same type. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are greater than or equal to all the corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all elements in left are greater than or equal to the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is greater than or equal to the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is greater than or equal to the corresponding element in right; otherwise, false. + + + Gets a value that indicates whether vector operations are subject to hardware acceleration through JIT intrinsic support. + true if vector operations are subject to hardware acceleration; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are less than their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are less than their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are less than their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision vector are less than their corresponding elements in a second single-precision vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector of a specified type whose elements signal whether the elements in one vector are less than their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all of the elements in the first vector are less than their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all of the elements in left are less than the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is less than the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is less than the corresponding element in right; otherwise, false. + + + Returns a new integral vector whose elements signal whether the elements in one double-precision floating-point vector are less than or equal to their corresponding elements in a second double-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new integral vector whose elements signal whether the elements in one integral vector are less than or equal to their corresponding elements in a second integral vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new long integer vector whose elements signal whether the elements in one long integer vector are less or equal to their corresponding elements in a second long integer vector. + The first vector to compare. + The second vector to compare. + The resulting long integer vector. + + + Returns a new integral vector whose elements signal whether the elements in one single-precision floating-point vector are less than or equal to their corresponding elements in a second single-precision floating-point vector. + The first vector to compare. + The second vector to compare. + The resulting integral vector. + + + Returns a new vector whose elements signal whether the elements in one vector are less than or equal to their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a value that indicates whether all elements in the first vector are less than or equal to their corresponding elements in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if all of the elements in left are less than or equal to the corresponding elements in right; otherwise, false. + + + Returns a value that indicates whether any element in the first vector is less than or equal to the corresponding element in the second vector. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + true if any element in left is less than or equal to the corresponding element in right; otherwise, false. + + + Returns a new vector whose elements are the maximum of each pair of elements in the two given vectors. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The maximum vector. + + + Returns a new vector whose elements are the minimum of each pair of elements in the two given vectors. + The first vector to compare. + The second vector to compare. + The vector type. T can be any primitive numeric type. + The minimum vector. + + + Returns a new vector whose values are a scalar value multiplied by each of the values of a specified vector. + The scalar value. + The vector. + The vector type. T can be any primitive numeric type. + The scaled vector. + + + Returns a new vector whose values are the product of each pair of elements in two specified vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The product vector. + + + Returns a new vector whose values are the values of a specified vector each multiplied by a scalar value. + The vector. + The scalar value. + The vector type. T can be any primitive numeric type. + The scaled vector. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector whose elements are the negation of the corresponding element in the specified vector. + The source vector. + The vector type. T can be any primitive numeric type. + The negated vector. + + + Returns a new vector whose elements are obtained by taking the one's complement of a specified vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Returns a new vector whose elements are the square roots of a specified vector's elements. + The source vector. + The vector type. T can be any primitive numeric type. + The square root vector. + + + Returns a new vector whose values are the difference between the elements in the second vector and their corresponding elements in the first vector. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The difference vector. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Returns a new vector by performing a bitwise exclusive Or (XOr) operation on each pair of elements in two vectors. + The first vector. + The second vector. + The vector type. T can be any primitive numeric type. + The resulting vector. + + + Represents a vector with two single-precision floating-point values. + + + Creates a new object whose two elements have the same value. + The value to assign to both elements. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of the vector. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 2 elements are equal to one. + A vector whose two elements are equal to one (that is, it returns the vector (1,1). + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns the reflection of a vector off a surface that has the specified normal. + The source vector. + The normal of the surface being reflected off. + The reflected vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a vector by a specified 3x2 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a vector normal by the given 3x2 matrix. + The source vector. + The matrix. + The transformed vector. + + + Transforms a vector normal by the given 4x4 matrix. + The source vector. + The matrix. + The transformed vector. + + + Gets the vector (1,0). + The vector (1,0). + + + Gets the vector (0,1). + The vector (0,1). + + + The X component of the vector. + + + + The Y component of the vector. + + + + Returns a vector whose 2 elements are equal to zero. + A vector whose two elements are equal to zero (that is, it returns the vector (0,0). + + + Represents a vector with three single-precision floating-point values. + + + Creates a new object whose three elements have the same value. + The value to assign to all three elements. + + + Creates a new object from the specified object and the specified value. + The vector with two elements. + The additional value to assign to the field. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the cross product of two vectors. + The first vector. + The second vector. + The cross product. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of this vector object. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 3 elements are equal to one. + A vector whose three elements are equal to one (that is, it returns the vector (1,1,1). + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns the reflection of a vector off a surface that has the specified normal. + The source vector. + The normal of the surface being reflected off. + The reflected vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a vector normal by the given 4x4 matrix. + The source vector. + The matrix. + The transformed vector. + + + Gets the vector (1,0,0). + The vector (1,0,0). + + + Gets the vector (0,1,0). + The vector (0,1,0).. + + + Gets the vector (0,0,1). + The vector (0,0,1). + + + The X component of the vector. + + + + The Y component of the vector. + + + + The Z component of the vector. + + + + Gets a vector whose 3 elements are equal to zero. + A vector whose three elements are equal to zero (that is, it returns the vector (0,0,0). + + + Represents a vector with four single-precision floating-point values. + + + Creates a new object whose four elements have the same value. + The value to assign to all four elements. + + + Constructs a new object from the specified object and a W component. + The vector to use for the X, Y, and Z components. + The W component. + + + Creates a new object from the specified object and a Z and a W component. + The vector to use for the X and Y components. + The Z component. + The W component. + + + Creates a vector whose elements have the specified values. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + The value to assign to the field. + + + Returns a vector whose elements are the absolute values of each of the specified vector's elements. + A vector. + The absolute value vector. + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Restricts a vector between a minimum and a maximum value. + The vector to restrict. + The minimum value. + The maximum value. + The restricted vector. + + + Copies the elements of the vector to a specified array. + The destination array. + array is null. + The number of elements in the current instance is greater than in the array. + array is multidimensional. + + + Copies the elements of the vector to a specified array starting at a specified index position. + The destination array. + The index at which to copy the first element of the vector. + array is null. + The number of elements in the current instance is greater than in the array. + index is less than zero. + -or- + index is greater than or equal to the array length. + array is multidimensional. + + + Computes the Euclidean distance between the two given points. + The first point. + The second point. + The distance. + + + Returns the Euclidean distance squared between two specified points. + The first point. + The second point. + The distance squared. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector resulting from the division. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The vector that results from the division. + + + Returns the dot product of two vectors. + The first vector. + The second vector. + The dot product. + + + Returns a value that indicates whether this instance and another vector are equal. + The other vector. + true if the two vectors are equal; otherwise, false. + + + Returns a value that indicates whether this instance and a specified object are equal. + The object to compare with the current instance. + true if the current instance and obj are equal; otherwise, false. If obj is null, the method returns false. + + + Returns the hash code for this instance. + The hash code. + + + Returns the length of this vector object. + The vector's length. + + + Returns the length of the vector squared. + The vector's length squared. + + + Performs a linear interpolation between two vectors based on the given weighting. + The first vector. + The second vector. + A value between 0 and 1 that indicates the weight of value2. + The interpolated vector. + + + Returns a vector whose elements are the maximum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The maximized vector. + + + Returns a vector whose elements are the minimum of each of the pairs of elements in two specified vectors. + The first vector. + The second vector. + The minimized vector. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiplies a vector by a specified scalar. + The vector to multiply. + The scalar value. + The scaled vector. + + + Multiplies a scalar value by a specified vector. + The scaled value. + The vector. + The scaled vector. + + + Negates a specified vector. + The vector to negate. + The negated vector. + + + Returns a vector with the same direction as the specified vector, but with a length of one. + The vector to normalize. + The normalized vector. + + + Gets a vector whose 4 elements are equal to one. + Returns . + + + Adds two vectors together. + The first vector to add. + The second vector to add. + The summed vector. + + + Divides the first vector by the second. + The first vector. + The second vector. + The vector that results from dividing left by right. + + + Divides the specified vector by a specified scalar value. + The vector. + The scalar value. + The result of the division. + + + Returns a value that indicates whether each pair of elements in two specified vectors is equal. + The first vector to compare. + The second vector to compare. + true if left and right are equal; otherwise, false. + + + Returns a value that indicates whether two specified vectors are not equal. + The first vector to compare. + The second vector to compare. + true if left and right are not equal; otherwise, false. + + + Multiplies two vectors together. + The first vector. + The second vector. + The product vector. + + + Multiples the specified vector by the specified scalar value. + The vector. + The scalar value. + The scaled vector. + + + Multiples the scalar value by the specified vector. + The vector. + The scalar value. + The scaled vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The vector that results from subtracting right from left. + + + Negates the specified vector. + The vector to negate. + The negated vector. + + + Returns a vector whose elements are the square root of each of a specified vector's elements. + A vector. + The square root vector. + + + Subtracts the second vector from the first. + The first vector. + The second vector. + The difference vector. + + + Returns the string representation of the current instance using default formatting. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements. + A or that defines the format of individual elements. + The string representation of the current instance. + + + Returns the string representation of the current instance using the specified format string to format individual elements and the specified format provider to define culture-specific formatting. + A or that defines the format of individual elements. + A format provider that supplies culture-specific formatting information. + The string representation of the current instance. + + + Transforms a four-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a four-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a three-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a two-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Transforms a two-dimensional vector by the specified Quaternion rotation value. + The vector to rotate. + The rotation to apply. + The transformed vector. + + + Transforms a three-dimensional vector by a specified 4x4 matrix. + The vector to transform. + The transformation matrix. + The transformed vector. + + + Gets the vector (0,0,0,1). + The vector (0,0,0,1). + + + Gets the vector (1,0,0,0). + The vector (1,0,0,0). + + + Gets the vector (0,1,0,0). + The vector (0,1,0,0).. + + + Gets a vector whose 4 elements are equal to zero. + The vector (0,0,1,0). + + + The W component of the vector. + + + + The X component of the vector. + + + + The Y component of the vector. + + + + The Z component of the vector. + + + + Gets a vector whose 4 elements are equal to zero. + A vector whose four elements are equal to zero (that is, it returns the vector (0,0,0,0). + + + \ No newline at end of file diff --git a/packages/System.Numerics.Vectors.4.5.0/ref/uap10.0.16299/_._ b/packages/System.Numerics.Vectors.4.5.0/ref/uap10.0.16299/_._ new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Numerics.Vectors.4.5.0/ref/xamarinios10/_._ b/packages/System.Numerics.Vectors.4.5.0/ref/xamarinios10/_._ new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Numerics.Vectors.4.5.0/ref/xamarinmac20/_._ b/packages/System.Numerics.Vectors.4.5.0/ref/xamarinmac20/_._ new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Numerics.Vectors.4.5.0/ref/xamarintvos10/_._ b/packages/System.Numerics.Vectors.4.5.0/ref/xamarintvos10/_._ new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Numerics.Vectors.4.5.0/ref/xamarinwatchos10/_._ b/packages/System.Numerics.Vectors.4.5.0/ref/xamarinwatchos10/_._ new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Numerics.Vectors.4.5.0/useSharedDesignerContext.txt b/packages/System.Numerics.Vectors.4.5.0/useSharedDesignerContext.txt new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Numerics.Vectors.4.5.0/version.txt b/packages/System.Numerics.Vectors.4.5.0/version.txt new file mode 100644 index 0000000..47004a0 --- /dev/null +++ b/packages/System.Numerics.Vectors.4.5.0/version.txt @@ -0,0 +1 @@ +30ab651fcb4354552bd4891619a0bdd81e0ebdbf diff --git a/packages/System.Resources.Extensions.6.0.0/.signature.p7s b/packages/System.Resources.Extensions.6.0.0/.signature.p7s new file mode 100644 index 0000000..0ec296f Binary files /dev/null and b/packages/System.Resources.Extensions.6.0.0/.signature.p7s differ diff --git a/packages/System.Resources.Extensions.6.0.0/Icon.png b/packages/System.Resources.Extensions.6.0.0/Icon.png new file mode 100644 index 0000000..a0f1fdb Binary files /dev/null and b/packages/System.Resources.Extensions.6.0.0/Icon.png differ diff --git a/packages/System.Resources.Extensions.6.0.0/LICENSE.TXT b/packages/System.Resources.Extensions.6.0.0/LICENSE.TXT new file mode 100644 index 0000000..984713a --- /dev/null +++ b/packages/System.Resources.Extensions.6.0.0/LICENSE.TXT @@ -0,0 +1,23 @@ +The MIT License (MIT) + +Copyright (c) .NET Foundation and Contributors + +All rights reserved. + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/packages/System.Resources.Extensions.6.0.0/System.Resources.Extensions.6.0.0.nupkg b/packages/System.Resources.Extensions.6.0.0/System.Resources.Extensions.6.0.0.nupkg new file mode 100644 index 0000000..0c67612 Binary files /dev/null and b/packages/System.Resources.Extensions.6.0.0/System.Resources.Extensions.6.0.0.nupkg differ diff --git a/packages/System.Resources.Extensions.6.0.0/THIRD-PARTY-NOTICES.TXT b/packages/System.Resources.Extensions.6.0.0/THIRD-PARTY-NOTICES.TXT new file mode 100644 index 0000000..89c59b2 --- /dev/null +++ b/packages/System.Resources.Extensions.6.0.0/THIRD-PARTY-NOTICES.TXT @@ -0,0 +1,939 @@ +.NET Runtime uses third-party libraries or other resources that may be +distributed under licenses different than the .NET Runtime software. + +In the event that we accidentally failed to list a required notice, please +bring it to our attention. Post an issue or email us: + + dotnet@microsoft.com + +The attached notices are provided for information only. + +License notice for ASP.NET +------------------------------- + +Copyright (c) .NET Foundation. All rights reserved. +Licensed under the Apache License, Version 2.0. + +Available at +https://github.com/dotnet/aspnetcore/blob/main/LICENSE.txt + +License notice for Slicing-by-8 +------------------------------- + +http://sourceforge.net/projects/slicing-by-8/ + +Copyright (c) 2004-2006 Intel Corporation - All Rights Reserved + + +This software program is licensed subject to the BSD License, available at +http://www.opensource.org/licenses/bsd-license.html. + + +License notice for Unicode data +------------------------------- + +https://www.unicode.org/license.html + +Copyright © 1991-2020 Unicode, Inc. All rights reserved. +Distributed under the Terms of Use in https://www.unicode.org/copyright.html. + +Permission is hereby granted, free of charge, to any person obtaining +a copy of the Unicode data files and any associated documentation +(the "Data Files") or Unicode software and any associated documentation +(the "Software") to deal in the Data Files or Software +without restriction, including without limitation the rights to use, +copy, modify, merge, publish, distribute, and/or sell copies of +the Data Files or Software, and to permit persons to whom the Data Files +or Software are furnished to do so, provided that either +(a) this copyright and permission notice appear with all copies +of the Data Files or Software, or +(b) this copyright and permission notice appear in associated +Documentation. + +THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT WARRANTY OF +ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE +WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +NONINFRINGEMENT OF THIRD PARTY RIGHTS. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS +NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL +DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, +DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER +TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR +PERFORMANCE OF THE DATA FILES OR SOFTWARE. + +Except as contained in this notice, the name of a copyright holder +shall not be used in advertising or otherwise to promote the sale, +use or other dealings in these Data Files or Software without prior +written authorization of the copyright holder. + +License notice for Zlib +----------------------- + +https://github.com/madler/zlib +http://zlib.net/zlib_license.html + +/* zlib.h -- interface of the 'zlib' general purpose compression library + version 1.2.11, January 15th, 2017 + + Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler + + This software is provided 'as-is', without any express or implied + warranty. In no event will the authors be held liable for any damages + arising from the use of this software. + + Permission is granted to anyone to use this software for any purpose, + including commercial applications, and to alter it and redistribute it + freely, subject to the following restrictions: + + 1. The origin of this software must not be misrepresented; you must not + claim that you wrote the original software. If you use this software + in a product, an acknowledgment in the product documentation would be + appreciated but is not required. + 2. Altered source versions must be plainly marked as such, and must not be + misrepresented as being the original software. + 3. This notice may not be removed or altered from any source distribution. + + Jean-loup Gailly Mark Adler + jloup@gzip.org madler@alumni.caltech.edu + +*/ + +License notice for Mono +------------------------------- + +http://www.mono-project.com/docs/about-mono/ + +Copyright (c) .NET Foundation Contributors + +MIT License + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the Software), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE +LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION +WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +License notice for International Organization for Standardization +----------------------------------------------------------------- + +Portions (C) International Organization for Standardization 1986: + Permission to copy in any form is granted for use with + conforming SGML systems and applications as defined in + ISO 8879, provided this notice is included in all copies. + +License notice for Intel +------------------------ + +"Copyright (c) 2004-2006 Intel Corporation - All Rights Reserved + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this +list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, +this list of conditions and the following disclaimer in the documentation +and/or other materials provided with the distribution. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +License notice for Xamarin and Novell +------------------------------------- + +Copyright (c) 2015 Xamarin, Inc (http://www.xamarin.com) + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. + +Copyright (c) 2011 Novell, Inc (http://www.novell.com) + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. + +Third party notice for W3C +-------------------------- + +"W3C SOFTWARE AND DOCUMENT NOTICE AND LICENSE +Status: This license takes effect 13 May, 2015. +This work is being provided by the copyright holders under the following license. +License +By obtaining and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with the following terms and conditions. +Permission to copy, modify, and distribute this work, with or without modification, for any purpose and without fee or royalty is hereby granted, provided that you include the following on ALL copies of the work or portions thereof, including modifications: +The full text of this NOTICE in a location viewable to users of the redistributed or derivative work. +Any pre-existing intellectual property disclaimers, notices, or terms and conditions. If none exist, the W3C Software and Document Short Notice should be included. +Notice of any changes or modifications, through a copyright statement on the new code or document such as "This software or document includes material copied from or derived from [title and URI of the W3C document]. Copyright © [YEAR] W3C® (MIT, ERCIM, Keio, Beihang)." +Disclaimers +THIS WORK IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENT WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. +COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR DOCUMENT. +The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the work without specific, written prior permission. Title to copyright in this work will at all times remain with copyright holders." + +License notice for Bit Twiddling Hacks +-------------------------------------- + +Bit Twiddling Hacks + +By Sean Eron Anderson +seander@cs.stanford.edu + +Individually, the code snippets here are in the public domain (unless otherwise +noted) — feel free to use them however you please. The aggregate collection and +descriptions are © 1997-2005 Sean Eron Anderson. The code and descriptions are +distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY and +without even the implied warranty of merchantability or fitness for a particular +purpose. + +License notice for Brotli +-------------------------------------- + +Copyright (c) 2009, 2010, 2013-2016 by the Brotli Authors. + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. + +compress_fragment.c: +Copyright (c) 2011, Google Inc. +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: + + * Redistributions of source code must retain the above copyright +notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above +copyright notice, this list of conditions and the following disclaimer +in the documentation and/or other materials provided with the +distribution. + * Neither the name of Google Inc. nor the names of its +contributors may be used to endorse or promote products derived from +this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +""AS IS"" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +decode_fuzzer.c: +Copyright (c) 2015 The Chromium Authors. All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: + + * Redistributions of source code must retain the above copyright +notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above +copyright notice, this list of conditions and the following disclaimer +in the documentation and/or other materials provided with the +distribution. + * Neither the name of Google Inc. nor the names of its +contributors may be used to endorse or promote products derived from +this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +""AS IS"" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." + +License notice for Json.NET +------------------------------- + +https://github.com/JamesNK/Newtonsoft.Json/blob/master/LICENSE.md + +The MIT License (MIT) + +Copyright (c) 2007 James Newton-King + +Permission is hereby granted, free of charge, to any person obtaining a copy of +this software and associated documentation files (the "Software"), to deal in +the Software without restriction, including without limitation the rights to +use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +the Software, and to permit persons to whom the Software is furnished to do so, +subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +License notice for vectorized base64 encoding / decoding +-------------------------------------------------------- + +Copyright (c) 2005-2007, Nick Galbreath +Copyright (c) 2013-2017, Alfred Klomp +Copyright (c) 2015-2017, Wojciech Mula +Copyright (c) 2016-2017, Matthieu Darbois +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: + +- Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + +- Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED +TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +License notice for RFC 3492 +--------------------------- + +The punycode implementation is based on the sample code in RFC 3492 + +Copyright (C) The Internet Society (2003). All Rights Reserved. + +This document and translations of it may be copied and furnished to +others, and derivative works that comment on or otherwise explain it +or assist in its implementation may be prepared, copied, published +and distributed, in whole or in part, without restriction of any +kind, provided that the above copyright notice and this paragraph are +included on all such copies and derivative works. However, this +document itself may not be modified in any way, such as by removing +the copyright notice or references to the Internet Society or other +Internet organizations, except as needed for the purpose of +developing Internet standards in which case the procedures for +copyrights defined in the Internet Standards process must be +followed, or as required to translate it into languages other than +English. + +The limited permissions granted above are perpetual and will not be +revoked by the Internet Society or its successors or assigns. + +This document and the information contained herein is provided on an +"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING +TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING +BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION +HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF +MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. + +License notice for Algorithm from Internet Draft document "UUIDs and GUIDs" +--------------------------------------------------------------------------- + +Copyright (c) 1990- 1993, 1996 Open Software Foundation, Inc. +Copyright (c) 1989 by Hewlett-Packard Company, Palo Alto, Ca. & +Digital Equipment Corporation, Maynard, Mass. +To anyone who acknowledges that this file is provided "AS IS" +without any express or implied warranty: permission to use, copy, +modify, and distribute this file for any purpose is hereby +granted without fee, provided that the above copyright notices and +this notice appears in all source code copies, and that none of +the names of Open Software Foundation, Inc., Hewlett-Packard +Company, or Digital Equipment Corporation be used in advertising +or publicity pertaining to distribution of the software without +specific, written prior permission. Neither Open Software +Foundation, Inc., Hewlett-Packard Company, Microsoft, nor Digital Equipment +Corporation makes any representations about the suitability of +this software for any purpose. + +Copyright(C) The Internet Society 1997. All Rights Reserved. + +This document and translations of it may be copied and furnished to others, +and derivative works that comment on or otherwise explain it or assist in +its implementation may be prepared, copied, published and distributed, in +whole or in part, without restriction of any kind, provided that the above +copyright notice and this paragraph are included on all such copies and +derivative works.However, this document itself may not be modified in any +way, such as by removing the copyright notice or references to the Internet +Society or other Internet organizations, except as needed for the purpose of +developing Internet standards in which case the procedures for copyrights +defined in the Internet Standards process must be followed, or as required +to translate it into languages other than English. + +The limited permissions granted above are perpetual and will not be revoked +by the Internet Society or its successors or assigns. + +This document and the information contained herein is provided on an "AS IS" +basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE +DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO +ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY +RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A +PARTICULAR PURPOSE. + +License notice for Algorithm from RFC 4122 - +A Universally Unique IDentifier (UUID) URN Namespace +---------------------------------------------------- + +Copyright (c) 1990- 1993, 1996 Open Software Foundation, Inc. +Copyright (c) 1989 by Hewlett-Packard Company, Palo Alto, Ca. & +Digital Equipment Corporation, Maynard, Mass. +Copyright (c) 1998 Microsoft. +To anyone who acknowledges that this file is provided "AS IS" +without any express or implied warranty: permission to use, copy, +modify, and distribute this file for any purpose is hereby +granted without fee, provided that the above copyright notices and +this notice appears in all source code copies, and that none of +the names of Open Software Foundation, Inc., Hewlett-Packard +Company, Microsoft, or Digital Equipment Corporation be used in +advertising or publicity pertaining to distribution of the software +without specific, written prior permission. Neither Open Software +Foundation, Inc., Hewlett-Packard Company, Microsoft, nor Digital +Equipment Corporation makes any representations about the +suitability of this software for any purpose." + +License notice for The LLVM Compiler Infrastructure +--------------------------------------------------- + +Developed by: + + LLVM Team + + University of Illinois at Urbana-Champaign + + http://llvm.org + +Permission is hereby granted, free of charge, to any person obtaining a copy of +this software and associated documentation files (the "Software"), to deal with +the Software without restriction, including without limitation the rights to +use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies +of the Software, and to permit persons to whom the Software is furnished to do +so, subject to the following conditions: + + * Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimers. + + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimers in the + documentation and/or other materials provided with the distribution. + + * Neither the names of the LLVM Team, University of Illinois at + Urbana-Champaign, nor the names of its contributors may be used to + endorse or promote products derived from this Software without specific + prior written permission. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE +SOFTWARE. + +License notice for Bob Jenkins +------------------------------ + +By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this +code any way you wish, private, educational, or commercial. It's free. + +License notice for Greg Parker +------------------------------ + +Greg Parker gparker@cs.stanford.edu December 2000 +This code is in the public domain and may be copied or modified without +permission. + +License notice for libunwind based code +---------------------------------------- + +Permission is hereby granted, free of charge, to any person obtaining +a copy of this software and associated documentation files (the +"Software"), to deal in the Software without restriction, including +without limitation the rights to use, copy, modify, merge, publish, +distribute, sublicense, and/or sell copies of the Software, and to +permit persons to whom the Software is furnished to do so, subject to +the following conditions: + +The above copyright notice and this permission notice shall be +included in all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE +LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION +WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +License notice for Printing Floating-Point Numbers (Dragon4) +------------------------------------------------------------ + +/****************************************************************************** + Copyright (c) 2014 Ryan Juckett + http://www.ryanjuckett.com/ + + This software is provided 'as-is', without any express or implied + warranty. In no event will the authors be held liable for any damages + arising from the use of this software. + + Permission is granted to anyone to use this software for any purpose, + including commercial applications, and to alter it and redistribute it + freely, subject to the following restrictions: + + 1. The origin of this software must not be misrepresented; you must not + claim that you wrote the original software. If you use this software + in a product, an acknowledgment in the product documentation would be + appreciated but is not required. + + 2. Altered source versions must be plainly marked as such, and must not be + misrepresented as being the original software. + + 3. This notice may not be removed or altered from any source + distribution. +******************************************************************************/ + +License notice for Printing Floating-point Numbers (Grisu3) +----------------------------------------------------------- + +Copyright 2012 the V8 project authors. All rights reserved. +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following + disclaimer in the documentation and/or other materials provided + with the distribution. + * Neither the name of Google Inc. nor the names of its + contributors may be used to endorse or promote products derived + from this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +License notice for xxHash +------------------------- + +xxHash Library +Copyright (c) 2012-2014, Yann Collet +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + +* Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +* Redistributions in binary form must reproduce the above copyright notice, this + list of conditions and the following disclaimer in the documentation and/or + other materials provided with the distribution. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR +ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON +ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +License notice for Berkeley SoftFloat Release 3e +------------------------------------------------ + +https://github.com/ucb-bar/berkeley-softfloat-3 +https://github.com/ucb-bar/berkeley-softfloat-3/blob/master/COPYING.txt + +License for Berkeley SoftFloat Release 3e + +John R. Hauser +2018 January 20 + +The following applies to the whole of SoftFloat Release 3e as well as to +each source file individually. + +Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 The Regents of the +University of California. All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions, and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions, and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the University nor the names of its contributors + may be used to endorse or promote products derived from this software + without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY +EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE +DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY +DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND +ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF +THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +License notice for xoshiro RNGs +-------------------------------- + +Written in 2018 by David Blackman and Sebastiano Vigna (vigna@acm.org) + +To the extent possible under law, the author has dedicated all copyright +and related and neighboring rights to this software to the public domain +worldwide. This software is distributed without any warranty. + +See . + +License for fastmod (https://github.com/lemire/fastmod) and ibm-fpgen (https://github.com/nigeltao/parse-number-fxx-test-data) +-------------------------------------- + + Copyright 2018 Daniel Lemire + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. + +License notice for The C++ REST SDK +----------------------------------- + +C++ REST SDK + +The MIT License (MIT) + +Copyright (c) Microsoft Corporation + +All rights reserved. + +Permission is hereby granted, free of charge, to any person obtaining a copy of +this software and associated documentation files (the "Software"), to deal in +the Software without restriction, including without limitation the rights to +use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +the Software, and to permit persons to whom the Software is furnished to do so, +subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. + +License notice for MessagePack-CSharp +------------------------------------- + +MessagePack for C# + +MIT License + +Copyright (c) 2017 Yoshifumi Kawai + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. + +License notice for lz4net +------------------------------------- + +lz4net + +Copyright (c) 2013-2017, Milosz Krajewski + +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: + +Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. + +Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +License notice for Nerdbank.Streams +----------------------------------- + +The MIT License (MIT) + +Copyright (c) Andrew Arnott + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. + +License notice for RapidJSON +---------------------------- + +Tencent is pleased to support the open source community by making RapidJSON available. + +Copyright (C) 2015 THL A29 Limited, a Tencent company, and Milo Yip. All rights reserved. + +Licensed under the MIT License (the "License"); you may not use this file except +in compliance with the License. You may obtain a copy of the License at + +http://opensource.org/licenses/MIT + +Unless required by applicable law or agreed to in writing, software distributed +under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR +CONDITIONS OF ANY KIND, either express or implied. See the License for the +specific language governing permissions and limitations under the License. + +License notice for DirectX Math Library +--------------------------------------- + +https://github.com/microsoft/DirectXMath/blob/master/LICENSE + + The MIT License (MIT) + +Copyright (c) 2011-2020 Microsoft Corp + +Permission is hereby granted, free of charge, to any person obtaining a copy of this +software and associated documentation files (the "Software"), to deal in the Software +without restriction, including without limitation the rights to use, copy, modify, +merge, publish, distribute, sublicense, and/or sell copies of the Software, and to +permit persons to whom the Software is furnished to do so, subject to the following +conditions: + +The above copyright notice and this permission notice shall be included in all copies +or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, +INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A +PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT +HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF +CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE +OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +License notice for ldap4net +--------------------------- + +The MIT License (MIT) + +Copyright (c) 2018 Alexander Chermyanin + +Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +License notice for vectorized sorting code +------------------------------------------ + +MIT License + +Copyright (c) 2020 Dan Shechter + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. + +License notice for musl +----------------------- + +musl as a whole is licensed under the following standard MIT license: + +Copyright © 2005-2020 Rich Felker, et al. + +Permission is hereby granted, free of charge, to any person obtaining +a copy of this software and associated documentation files (the +"Software"), to deal in the Software without restriction, including +without limitation the rights to use, copy, modify, merge, publish, +distribute, sublicense, and/or sell copies of the Software, and to +permit persons to whom the Software is furnished to do so, subject to +the following conditions: + +The above copyright notice and this permission notice shall be +included in all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. +IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY +CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, +TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE +SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + + +License notice for "Faster Unsigned Division by Constants" +------------------------------ + +Reference implementations of computing and using the "magic number" approach to dividing +by constants, including codegen instructions. The unsigned division incorporates the +"round down" optimization per ridiculous_fish. + +This is free and unencumbered software. Any copyright is dedicated to the Public Domain. + + +License notice for mimalloc +----------------------------------- + +MIT License + +Copyright (c) 2019 Microsoft Corporation, Daan Leijen + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/packages/System.Resources.Extensions.6.0.0/buildTransitive/net461/System.Resources.Extensions.targets b/packages/System.Resources.Extensions.6.0.0/buildTransitive/net461/System.Resources.Extensions.targets new file mode 100644 index 0000000..a227a07 --- /dev/null +++ b/packages/System.Resources.Extensions.6.0.0/buildTransitive/net461/System.Resources.Extensions.targets @@ -0,0 +1,8 @@ + + + + + + diff --git a/packages/System.Resources.Extensions.6.0.0/buildTransitive/netcoreapp2.0/System.Resources.Extensions.targets b/packages/System.Resources.Extensions.6.0.0/buildTransitive/netcoreapp2.0/System.Resources.Extensions.targets new file mode 100644 index 0000000..3c60aef --- /dev/null +++ b/packages/System.Resources.Extensions.6.0.0/buildTransitive/netcoreapp2.0/System.Resources.Extensions.targets @@ -0,0 +1,6 @@ + + + + + diff --git a/packages/System.Resources.Extensions.6.0.0/buildTransitive/netcoreapp3.1/_._ b/packages/System.Resources.Extensions.6.0.0/buildTransitive/netcoreapp3.1/_._ new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Resources.Extensions.6.0.0/lib/net461/System.Resources.Extensions.dll b/packages/System.Resources.Extensions.6.0.0/lib/net461/System.Resources.Extensions.dll new file mode 100644 index 0000000..2d3084e Binary files /dev/null and b/packages/System.Resources.Extensions.6.0.0/lib/net461/System.Resources.Extensions.dll differ diff --git a/packages/System.Resources.Extensions.6.0.0/lib/net461/System.Resources.Extensions.xml b/packages/System.Resources.Extensions.6.0.0/lib/net461/System.Resources.Extensions.xml new file mode 100644 index 0000000..7ed5f5d --- /dev/null +++ b/packages/System.Resources.Extensions.6.0.0/lib/net461/System.Resources.Extensions.xml @@ -0,0 +1,361 @@ + + + + System.Resources.Extensions + + + + + Adds a resource of specified type represented by a string value. + If the type is a primitive type, the value will be converted using TypeConverter by the writer + to that primitive type and stored in the resources in binary format. + If the type is not a primitive type, the string value will be stored in the resources as a + string and converted with a TypeConverter for the type when reading the resource. + This is done to avoid activating arbitrary types during resource writing. + + Resource name + Value of the resource in string form understood by the type's TypeConverter + Assembly qualified type name of the resource + + + + Adds a resource of specified type represented by a byte[] value which will be + passed to the type's TypeConverter when reading the resource. + + Resource name + Value of the resource in byte[] form understood by the type's TypeConverter + Assembly qualified type name of the resource + + + + Adds a resource of specified type represented by a byte[] value which will be + passed to BinaryFormatter when reading the resource. + + Resource name + Value of the resource in byte[] form understood by BinaryFormatter + Assembly qualified type name of the resource + + + + Adds a resource of specified type represented by a Stream value which will be + passed to the type's constructor when reading the resource. + + Resource name + Value of the resource in Stream form understood by the types constructor + Assembly qualified type name of the resource + Indicates that the stream should be closed after resources have been written + + + + Compares type names as strings, ignoring version. + When type names are missing, mscorlib is assumed. + This comparer is not meant to capture all scenarios (eg: TypeForwards) + but is meant to serve as a best effort, avoiding false positives, in the + absense of real type metadata. + + + + + Indicates that the specified method requires dynamic access to code that is not referenced + statically, for example through . + + + This allows tools to understand which methods are unsafe to call when removing unreferenced + code from an application. + + + + + Initializes a new instance of the class + with the specified message. + + + A message that contains information about the usage of unreferenced code. + + + + + Gets a message that contains information about the usage of unreferenced code. + + + + + Gets or sets an optional URL that contains more information about the method, + why it requries unreferenced code, and what options a consumer has to deal with it. + + + + + Suppresses reporting of a specific rule violation, allowing multiple suppressions on a + single code artifact. + + + is different than + in that it doesn't have a + . So it is always preserved in the compiled assembly. + + + + + Initializes a new instance of the + class, specifying the category of the tool and the identifier for an analysis rule. + + The category for the attribute. + The identifier of the analysis rule the attribute applies to. + + + + Gets the category identifying the classification of the attribute. + + + The property describes the tool or tool analysis category + for which a message suppression attribute applies. + + + + + Gets the identifier of the analysis tool rule to be suppressed. + + + Concatenated together, the and + properties form a unique check identifier. + + + + + Gets or sets the scope of the code that is relevant for the attribute. + + + The Scope property is an optional argument that specifies the metadata scope for which + the attribute is relevant. + + + + + Gets or sets a fully qualified path that represents the target of the attribute. + + + The property is an optional argument identifying the analysis target + of the attribute. An example value is "System.IO.Stream.ctor():System.Void". + Because it is fully qualified, it can be long, particularly for targets such as parameters. + The analysis tool user interface should be capable of automatically formatting the parameter. + + + + + Gets or sets an optional argument expanding on exclusion criteria. + + + The property is an optional argument that specifies additional + exclusion where the literal metadata target is not sufficiently precise. For example, + the cannot be applied within a method, + and it may be desirable to suppress a violation against a statement in the method that will + give a rule violation, but not against all statements in the method. + + + + + Gets or sets the justification for suppressing the code analysis message. + + + + Specifies that null is allowed as an input even if the corresponding type disallows it. + + + Specifies that null is disallowed as an input even if the corresponding type allows it. + + + Specifies that an output may be null even if the corresponding type disallows it. + + + Specifies that an output will not be null even if the corresponding type allows it. Specifies that an input argument was not null when the call returns. + + + Specifies that when a method returns , the parameter may be null even if the corresponding type disallows it. + + + Initializes the attribute with the specified return value condition. + + The return value condition. If the method returns this value, the associated parameter may be null. + + + + Gets the return value condition. + + + Specifies that when a method returns , the parameter will not be null even if the corresponding type allows it. + + + Initializes the attribute with the specified return value condition. + + The return value condition. If the method returns this value, the associated parameter will not be null. + + + + Gets the return value condition. + + + Specifies that the output will be non-null if the named parameter is non-null. + + + Initializes the attribute with the associated parameter name. + + The associated parameter name. The output will be non-null if the argument to the parameter specified is non-null. + + + + Gets the associated parameter name. + + + Applied to a method that will never return under any circumstance. + + + Specifies that the method will not return if the associated Boolean parameter is passed the specified value. + + + Initializes the attribute with the specified parameter value. + + The condition parameter value. Code after the method will be considered unreachable by diagnostics if the argument to + the associated parameter matches this value. + + + + Gets the condition parameter value. + + + Specifies that the method or property will ensure that the listed field and property members have not-null values. + + + Initializes the attribute with a field or property member. + + The field or property member that is promised to be not-null. + + + + Initializes the attribute with the list of field and property members. + + The list of field and property members that are promised to be not-null. + + + + Gets field or property member names. + + + Specifies that the method or property will ensure that the listed field and property members have not-null values when returning with the specified return value condition. + + + Initializes the attribute with the specified return value condition and a field or property member. + + The return value condition. If the method returns this value, the associated parameter will not be null. + + + The field or property member that is promised to be not-null. + + + + Initializes the attribute with the specified return value condition and list of field and property members. + + The return value condition. If the method returns this value, the associated parameter will not be null. + + + The list of field and property members that are promised to be not-null. + + + + Gets the return value condition. + + + Gets field or property member names. + + + Stream length must be non-negative and less than 2^31 - 1 - origin. + + + Stream was not readable + + + Stream was not writable. + + + The ResourceReader class does not know how to read this version of .resources files. Expected version: {0} This file: {1} + + + Corrupt .resources file. The specified type doesn't exist. + + + Corrupt .resources file. String length must be non-negative. + + + Corrupt .resources file. The specified data length '{0}' is not a valid position in the stream. + + + Corrupt .resources file. A resource name extends past the end of the stream. + + + Corrupt .resources file. The resource name for name index {0} extends past the end of the stream. + + + Corrupt .resources file. Invalid offset '{0}' into data section. + + + Corrupt .resources file. Unable to read resources from this file because of invalid header information. Try regenerating the .resources file. + + + Corrupt .resources file. String for name index '{0}' extends past the end of the file. + + + Corrupt .resources file. Invalid offset '{0}' into name section. + + + Corrupt .resources file. Resource name extends past the end of the file. + + + The type serialized in the .resources file was not the same type that the .resources file said it contained. Expected '{0}' but read '{1}'. + + + Corrupt .resources file. The specified type doesn't match the available data in the stream. + + + Too many bytes in what should have been a 7 bit encoded Int32. + + + Enumeration already finished. + + + Enumeration has not started. Call MoveNext. + + + Resource was of type '{0}' instead of String - call GetObject instead. + + + The resource writer has already been closed and cannot be edited. + + + This platform does not support binary serialized resources. + + + Cannot read resources that depend on serialization. + + + Stream does not support seeking. + + + This .resources file should not be read with this reader. The resource reader type is "{0}". + + + Cannot access a closed resource set. + + + Use of ResourceManager for custom types is disabled. Set the MSBuild Property CustomResourceTypesSupport to true in order to enable it. + + + ResourceReader is closed. + + + Stream is not a valid resource file. + + + Could not load a converter for type {0}. + + + diff --git a/packages/System.Resources.Extensions.6.0.0/lib/net6.0/System.Resources.Extensions.dll b/packages/System.Resources.Extensions.6.0.0/lib/net6.0/System.Resources.Extensions.dll new file mode 100644 index 0000000..dde0325 Binary files /dev/null and b/packages/System.Resources.Extensions.6.0.0/lib/net6.0/System.Resources.Extensions.dll differ diff --git a/packages/System.Resources.Extensions.6.0.0/lib/net6.0/System.Resources.Extensions.xml b/packages/System.Resources.Extensions.6.0.0/lib/net6.0/System.Resources.Extensions.xml new file mode 100644 index 0000000..9e850a4 --- /dev/null +++ b/packages/System.Resources.Extensions.6.0.0/lib/net6.0/System.Resources.Extensions.xml @@ -0,0 +1,148 @@ + + + + System.Resources.Extensions + + + + + Adds a resource of specified type represented by a string value. + If the type is a primitive type, the value will be converted using TypeConverter by the writer + to that primitive type and stored in the resources in binary format. + If the type is not a primitive type, the string value will be stored in the resources as a + string and converted with a TypeConverter for the type when reading the resource. + This is done to avoid activating arbitrary types during resource writing. + + Resource name + Value of the resource in string form understood by the type's TypeConverter + Assembly qualified type name of the resource + + + + Adds a resource of specified type represented by a byte[] value which will be + passed to the type's TypeConverter when reading the resource. + + Resource name + Value of the resource in byte[] form understood by the type's TypeConverter + Assembly qualified type name of the resource + + + + Adds a resource of specified type represented by a byte[] value which will be + passed to BinaryFormatter when reading the resource. + + Resource name + Value of the resource in byte[] form understood by BinaryFormatter + Assembly qualified type name of the resource + + + + Adds a resource of specified type represented by a Stream value which will be + passed to the type's constructor when reading the resource. + + Resource name + Value of the resource in Stream form understood by the types constructor + Assembly qualified type name of the resource + Indicates that the stream should be closed after resources have been written + + + + Compares type names as strings, ignoring version. + When type names are missing, mscorlib is assumed. + This comparer is not meant to capture all scenarios (eg: TypeForwards) + but is meant to serve as a best effort, avoiding false positives, in the + absense of real type metadata. + + + + Stream length must be non-negative and less than 2^31 - 1 - origin. + + + Stream was not readable + + + Stream was not writable. + + + The ResourceReader class does not know how to read this version of .resources files. Expected version: {0} This file: {1} + + + Corrupt .resources file. The specified type doesn't exist. + + + Corrupt .resources file. String length must be non-negative. + + + Corrupt .resources file. The specified data length '{0}' is not a valid position in the stream. + + + Corrupt .resources file. A resource name extends past the end of the stream. + + + Corrupt .resources file. The resource name for name index {0} extends past the end of the stream. + + + Corrupt .resources file. Invalid offset '{0}' into data section. + + + Corrupt .resources file. Unable to read resources from this file because of invalid header information. Try regenerating the .resources file. + + + Corrupt .resources file. String for name index '{0}' extends past the end of the file. + + + Corrupt .resources file. Invalid offset '{0}' into name section. + + + Corrupt .resources file. Resource name extends past the end of the file. + + + The type serialized in the .resources file was not the same type that the .resources file said it contained. Expected '{0}' but read '{1}'. + + + Corrupt .resources file. The specified type doesn't match the available data in the stream. + + + Too many bytes in what should have been a 7 bit encoded Int32. + + + Enumeration already finished. + + + Enumeration has not started. Call MoveNext. + + + Resource was of type '{0}' instead of String - call GetObject instead. + + + The resource writer has already been closed and cannot be edited. + + + This platform does not support binary serialized resources. + + + Cannot read resources that depend on serialization. + + + Stream does not support seeking. + + + This .resources file should not be read with this reader. The resource reader type is "{0}". + + + Cannot access a closed resource set. + + + Use of ResourceManager for custom types is disabled. Set the MSBuild Property CustomResourceTypesSupport to true in order to enable it. + + + ResourceReader is closed. + + + Stream is not a valid resource file. + + + Could not load a converter for type {0}. + + + diff --git a/packages/System.Resources.Extensions.6.0.0/lib/netstandard2.0/System.Resources.Extensions.dll b/packages/System.Resources.Extensions.6.0.0/lib/netstandard2.0/System.Resources.Extensions.dll new file mode 100644 index 0000000..911cdb7 Binary files /dev/null and b/packages/System.Resources.Extensions.6.0.0/lib/netstandard2.0/System.Resources.Extensions.dll differ diff --git a/packages/System.Resources.Extensions.6.0.0/lib/netstandard2.0/System.Resources.Extensions.xml b/packages/System.Resources.Extensions.6.0.0/lib/netstandard2.0/System.Resources.Extensions.xml new file mode 100644 index 0000000..7ed5f5d --- /dev/null +++ b/packages/System.Resources.Extensions.6.0.0/lib/netstandard2.0/System.Resources.Extensions.xml @@ -0,0 +1,361 @@ + + + + System.Resources.Extensions + + + + + Adds a resource of specified type represented by a string value. + If the type is a primitive type, the value will be converted using TypeConverter by the writer + to that primitive type and stored in the resources in binary format. + If the type is not a primitive type, the string value will be stored in the resources as a + string and converted with a TypeConverter for the type when reading the resource. + This is done to avoid activating arbitrary types during resource writing. + + Resource name + Value of the resource in string form understood by the type's TypeConverter + Assembly qualified type name of the resource + + + + Adds a resource of specified type represented by a byte[] value which will be + passed to the type's TypeConverter when reading the resource. + + Resource name + Value of the resource in byte[] form understood by the type's TypeConverter + Assembly qualified type name of the resource + + + + Adds a resource of specified type represented by a byte[] value which will be + passed to BinaryFormatter when reading the resource. + + Resource name + Value of the resource in byte[] form understood by BinaryFormatter + Assembly qualified type name of the resource + + + + Adds a resource of specified type represented by a Stream value which will be + passed to the type's constructor when reading the resource. + + Resource name + Value of the resource in Stream form understood by the types constructor + Assembly qualified type name of the resource + Indicates that the stream should be closed after resources have been written + + + + Compares type names as strings, ignoring version. + When type names are missing, mscorlib is assumed. + This comparer is not meant to capture all scenarios (eg: TypeForwards) + but is meant to serve as a best effort, avoiding false positives, in the + absense of real type metadata. + + + + + Indicates that the specified method requires dynamic access to code that is not referenced + statically, for example through . + + + This allows tools to understand which methods are unsafe to call when removing unreferenced + code from an application. + + + + + Initializes a new instance of the class + with the specified message. + + + A message that contains information about the usage of unreferenced code. + + + + + Gets a message that contains information about the usage of unreferenced code. + + + + + Gets or sets an optional URL that contains more information about the method, + why it requries unreferenced code, and what options a consumer has to deal with it. + + + + + Suppresses reporting of a specific rule violation, allowing multiple suppressions on a + single code artifact. + + + is different than + in that it doesn't have a + . So it is always preserved in the compiled assembly. + + + + + Initializes a new instance of the + class, specifying the category of the tool and the identifier for an analysis rule. + + The category for the attribute. + The identifier of the analysis rule the attribute applies to. + + + + Gets the category identifying the classification of the attribute. + + + The property describes the tool or tool analysis category + for which a message suppression attribute applies. + + + + + Gets the identifier of the analysis tool rule to be suppressed. + + + Concatenated together, the and + properties form a unique check identifier. + + + + + Gets or sets the scope of the code that is relevant for the attribute. + + + The Scope property is an optional argument that specifies the metadata scope for which + the attribute is relevant. + + + + + Gets or sets a fully qualified path that represents the target of the attribute. + + + The property is an optional argument identifying the analysis target + of the attribute. An example value is "System.IO.Stream.ctor():System.Void". + Because it is fully qualified, it can be long, particularly for targets such as parameters. + The analysis tool user interface should be capable of automatically formatting the parameter. + + + + + Gets or sets an optional argument expanding on exclusion criteria. + + + The property is an optional argument that specifies additional + exclusion where the literal metadata target is not sufficiently precise. For example, + the cannot be applied within a method, + and it may be desirable to suppress a violation against a statement in the method that will + give a rule violation, but not against all statements in the method. + + + + + Gets or sets the justification for suppressing the code analysis message. + + + + Specifies that null is allowed as an input even if the corresponding type disallows it. + + + Specifies that null is disallowed as an input even if the corresponding type allows it. + + + Specifies that an output may be null even if the corresponding type disallows it. + + + Specifies that an output will not be null even if the corresponding type allows it. Specifies that an input argument was not null when the call returns. + + + Specifies that when a method returns , the parameter may be null even if the corresponding type disallows it. + + + Initializes the attribute with the specified return value condition. + + The return value condition. If the method returns this value, the associated parameter may be null. + + + + Gets the return value condition. + + + Specifies that when a method returns , the parameter will not be null even if the corresponding type allows it. + + + Initializes the attribute with the specified return value condition. + + The return value condition. If the method returns this value, the associated parameter will not be null. + + + + Gets the return value condition. + + + Specifies that the output will be non-null if the named parameter is non-null. + + + Initializes the attribute with the associated parameter name. + + The associated parameter name. The output will be non-null if the argument to the parameter specified is non-null. + + + + Gets the associated parameter name. + + + Applied to a method that will never return under any circumstance. + + + Specifies that the method will not return if the associated Boolean parameter is passed the specified value. + + + Initializes the attribute with the specified parameter value. + + The condition parameter value. Code after the method will be considered unreachable by diagnostics if the argument to + the associated parameter matches this value. + + + + Gets the condition parameter value. + + + Specifies that the method or property will ensure that the listed field and property members have not-null values. + + + Initializes the attribute with a field or property member. + + The field or property member that is promised to be not-null. + + + + Initializes the attribute with the list of field and property members. + + The list of field and property members that are promised to be not-null. + + + + Gets field or property member names. + + + Specifies that the method or property will ensure that the listed field and property members have not-null values when returning with the specified return value condition. + + + Initializes the attribute with the specified return value condition and a field or property member. + + The return value condition. If the method returns this value, the associated parameter will not be null. + + + The field or property member that is promised to be not-null. + + + + Initializes the attribute with the specified return value condition and list of field and property members. + + The return value condition. If the method returns this value, the associated parameter will not be null. + + + The list of field and property members that are promised to be not-null. + + + + Gets the return value condition. + + + Gets field or property member names. + + + Stream length must be non-negative and less than 2^31 - 1 - origin. + + + Stream was not readable + + + Stream was not writable. + + + The ResourceReader class does not know how to read this version of .resources files. Expected version: {0} This file: {1} + + + Corrupt .resources file. The specified type doesn't exist. + + + Corrupt .resources file. String length must be non-negative. + + + Corrupt .resources file. The specified data length '{0}' is not a valid position in the stream. + + + Corrupt .resources file. A resource name extends past the end of the stream. + + + Corrupt .resources file. The resource name for name index {0} extends past the end of the stream. + + + Corrupt .resources file. Invalid offset '{0}' into data section. + + + Corrupt .resources file. Unable to read resources from this file because of invalid header information. Try regenerating the .resources file. + + + Corrupt .resources file. String for name index '{0}' extends past the end of the file. + + + Corrupt .resources file. Invalid offset '{0}' into name section. + + + Corrupt .resources file. Resource name extends past the end of the file. + + + The type serialized in the .resources file was not the same type that the .resources file said it contained. Expected '{0}' but read '{1}'. + + + Corrupt .resources file. The specified type doesn't match the available data in the stream. + + + Too many bytes in what should have been a 7 bit encoded Int32. + + + Enumeration already finished. + + + Enumeration has not started. Call MoveNext. + + + Resource was of type '{0}' instead of String - call GetObject instead. + + + The resource writer has already been closed and cannot be edited. + + + This platform does not support binary serialized resources. + + + Cannot read resources that depend on serialization. + + + Stream does not support seeking. + + + This .resources file should not be read with this reader. The resource reader type is "{0}". + + + Cannot access a closed resource set. + + + Use of ResourceManager for custom types is disabled. Set the MSBuild Property CustomResourceTypesSupport to true in order to enable it. + + + ResourceReader is closed. + + + Stream is not a valid resource file. + + + Could not load a converter for type {0}. + + + diff --git a/packages/System.Resources.Extensions.6.0.0/useSharedDesignerContext.txt b/packages/System.Resources.Extensions.6.0.0/useSharedDesignerContext.txt new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/.signature.p7s b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/.signature.p7s new file mode 100644 index 0000000..0b25909 Binary files /dev/null and b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/.signature.p7s differ diff --git a/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/LICENSE.TXT b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/LICENSE.TXT new file mode 100644 index 0000000..984713a --- /dev/null +++ b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/LICENSE.TXT @@ -0,0 +1,23 @@ +The MIT License (MIT) + +Copyright (c) .NET Foundation and Contributors + +All rights reserved. + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/System.Runtime.CompilerServices.Unsafe.4.5.3.nupkg b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/System.Runtime.CompilerServices.Unsafe.4.5.3.nupkg new file mode 100644 index 0000000..8519daa Binary files /dev/null and b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/System.Runtime.CompilerServices.Unsafe.4.5.3.nupkg differ diff --git a/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/THIRD-PARTY-NOTICES.TXT b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/THIRD-PARTY-NOTICES.TXT new file mode 100644 index 0000000..db542ca --- /dev/null +++ b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/THIRD-PARTY-NOTICES.TXT @@ -0,0 +1,309 @@ +.NET Core uses third-party libraries or other resources that may be +distributed under licenses different than the .NET Core software. + +In the event that we accidentally failed to list a required notice, please +bring it to our attention. Post an issue or email us: + + dotnet@microsoft.com + +The attached notices are provided for information only. + +License notice for Slicing-by-8 +------------------------------- + +http://sourceforge.net/projects/slicing-by-8/ + +Copyright (c) 2004-2006 Intel Corporation - All Rights Reserved + + +This software program is licensed subject to the BSD License, available at +http://www.opensource.org/licenses/bsd-license.html. + + +License notice for Unicode data +------------------------------- + +http://www.unicode.org/copyright.html#License + +Copyright © 1991-2017 Unicode, Inc. All rights reserved. +Distributed under the Terms of Use in http://www.unicode.org/copyright.html. + +Permission is hereby granted, free of charge, to any person obtaining +a copy of the Unicode data files and any associated documentation +(the "Data Files") or Unicode software and any associated documentation +(the "Software") to deal in the Data Files or Software +without restriction, including without limitation the rights to use, +copy, modify, merge, publish, distribute, and/or sell copies of +the Data Files or Software, and to permit persons to whom the Data Files +or Software are furnished to do so, provided that either +(a) this copyright and permission notice appear with all copies +of the Data Files or Software, or +(b) this copyright and permission notice appear in associated +Documentation. + +THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT WARRANTY OF +ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE +WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +NONINFRINGEMENT OF THIRD PARTY RIGHTS. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS +NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL +DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, +DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER +TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR +PERFORMANCE OF THE DATA FILES OR SOFTWARE. + +Except as contained in this notice, the name of a copyright holder +shall not be used in advertising or otherwise to promote the sale, +use or other dealings in these Data Files or Software without prior +written authorization of the copyright holder. + +License notice for Zlib +----------------------- + +https://github.com/madler/zlib +http://zlib.net/zlib_license.html + +/* zlib.h -- interface of the 'zlib' general purpose compression library + version 1.2.11, January 15th, 2017 + + Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler + + This software is provided 'as-is', without any express or implied + warranty. In no event will the authors be held liable for any damages + arising from the use of this software. + + Permission is granted to anyone to use this software for any purpose, + including commercial applications, and to alter it and redistribute it + freely, subject to the following restrictions: + + 1. The origin of this software must not be misrepresented; you must not + claim that you wrote the original software. If you use this software + in a product, an acknowledgment in the product documentation would be + appreciated but is not required. + 2. Altered source versions must be plainly marked as such, and must not be + misrepresented as being the original software. + 3. This notice may not be removed or altered from any source distribution. + + Jean-loup Gailly Mark Adler + jloup@gzip.org madler@alumni.caltech.edu + +*/ + +License notice for Mono +------------------------------- + +http://www.mono-project.com/docs/about-mono/ + +Copyright (c) .NET Foundation Contributors + +MIT License + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the Software), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE +LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION +WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +License notice for International Organization for Standardization +----------------------------------------------------------------- + +Portions (C) International Organization for Standardization 1986: + Permission to copy in any form is granted for use with + conforming SGML systems and applications as defined in + ISO 8879, provided this notice is included in all copies. + +License notice for Intel +------------------------ + +"Copyright (c) 2004-2006 Intel Corporation - All Rights Reserved + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this +list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, +this list of conditions and the following disclaimer in the documentation +and/or other materials provided with the distribution. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +License notice for Xamarin and Novell +------------------------------------- + +Copyright (c) 2015 Xamarin, Inc (http://www.xamarin.com) + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. + +Copyright (c) 2011 Novell, Inc (http://www.novell.com) + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. + +Third party notice for W3C +-------------------------- + +"W3C SOFTWARE AND DOCUMENT NOTICE AND LICENSE +Status: This license takes effect 13 May, 2015. +This work is being provided by the copyright holders under the following license. +License +By obtaining and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with the following terms and conditions. +Permission to copy, modify, and distribute this work, with or without modification, for any purpose and without fee or royalty is hereby granted, provided that you include the following on ALL copies of the work or portions thereof, including modifications: +The full text of this NOTICE in a location viewable to users of the redistributed or derivative work. +Any pre-existing intellectual property disclaimers, notices, or terms and conditions. If none exist, the W3C Software and Document Short Notice should be included. +Notice of any changes or modifications, through a copyright statement on the new code or document such as "This software or document includes material copied from or derived from [title and URI of the W3C document]. Copyright © [YEAR] W3C® (MIT, ERCIM, Keio, Beihang)." +Disclaimers +THIS WORK IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENT WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. +COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR DOCUMENT. +The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the work without specific, written prior permission. Title to copyright in this work will at all times remain with copyright holders." + +License notice for Bit Twiddling Hacks +-------------------------------------- + +Bit Twiddling Hacks + +By Sean Eron Anderson +seander@cs.stanford.edu + +Individually, the code snippets here are in the public domain (unless otherwise +noted) — feel free to use them however you please. The aggregate collection and +descriptions are © 1997-2005 Sean Eron Anderson. The code and descriptions are +distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY and +without even the implied warranty of merchantability or fitness for a particular +purpose. + +License notice for Brotli +-------------------------------------- + +Copyright (c) 2009, 2010, 2013-2016 by the Brotli Authors. + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. + +compress_fragment.c: +Copyright (c) 2011, Google Inc. +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: + + * Redistributions of source code must retain the above copyright +notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above +copyright notice, this list of conditions and the following disclaimer +in the documentation and/or other materials provided with the +distribution. + * Neither the name of Google Inc. nor the names of its +contributors may be used to endorse or promote products derived from +this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +""AS IS"" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +decode_fuzzer.c: +Copyright (c) 2015 The Chromium Authors. All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: + + * Redistributions of source code must retain the above copyright +notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above +copyright notice, this list of conditions and the following disclaimer +in the documentation and/or other materials provided with the +distribution. + * Neither the name of Google Inc. nor the names of its +contributors may be used to endorse or promote products derived from +this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +""AS IS"" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." + diff --git a/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/net461/System.Runtime.CompilerServices.Unsafe.dll b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/net461/System.Runtime.CompilerServices.Unsafe.dll new file mode 100644 index 0000000..de9e124 Binary files /dev/null and b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/net461/System.Runtime.CompilerServices.Unsafe.dll differ diff --git a/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/net461/System.Runtime.CompilerServices.Unsafe.xml b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/net461/System.Runtime.CompilerServices.Unsafe.xml new file mode 100644 index 0000000..6a7cfcf --- /dev/null +++ b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/net461/System.Runtime.CompilerServices.Unsafe.xml @@ -0,0 +1,200 @@ + + + System.Runtime.CompilerServices.Unsafe + + + + Contains generic, low-level functionality for manipulating pointers. + + + Adds an element offset to the given reference. + The reference to add the offset to. + The offset to add. + The type of reference. + A new reference that reflects the addition of offset to pointer. + + + Adds an element offset to the given reference. + The reference to add the offset to. + The offset to add. + The type of reference. + A new reference that reflects the addition of offset to pointer. + + + Adds a byte offset to the given reference. + The reference to add the offset to. + The offset to add. + The type of reference. + A new reference that reflects the addition of byte offset to pointer. + + + Determines whether the specified references point to the same location. + The first reference to compare. + The second reference to compare. + The type of reference. + true if left and right point to the same location; otherwise, false. + + + Casts the given object to the specified type. + The object to cast. + The type which the object will be cast to. + The original object, casted to the given type. + + + Reinterprets the given reference as a reference to a value of type TTo. + The reference to reinterpret. + The type of reference to reinterpret.. + The desired type of the reference. + A reference to a value of type TTo. + + + Returns a pointer to the given by-ref parameter. + The object whose pointer is obtained. + The type of object. + A pointer to the given value. + + + Reinterprets the given location as a reference to a value of type T. + The location of the value to reference. + The type of the interpreted location. + A reference to a value of type T. + + + Determines the byte offset from origin to target from the given references. + The reference to origin. + The reference to target. + The type of reference. + Byte offset from origin to target i.e. target - origin. + + + Copies a value of type T to the given location. + The location to copy to. + A reference to the value to copy. + The type of value to copy. + + + Copies a value of type T to the given location. + The location to copy to. + A pointer to the value to copy. + The type of value to copy. + + + Copies bytes from the source address to the destination address. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Copies bytes from the source address to the destination address. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Copies bytes from the source address to the destination address +without assuming architecture dependent alignment of the addresses. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Copies bytes from the source address to the destination address +without assuming architecture dependent alignment of the addresses. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Initializes a block of memory at the given location with a given initial value. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Initializes a block of memory at the given location with a given initial value. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Initializes a block of memory at the given location with a given initial value +without assuming architecture dependent alignment of the address. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Initializes a block of memory at the given location with a given initial value +without assuming architecture dependent alignment of the address. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Reads a value of type T from the given location. + The location to read from. + The type to read. + An object of type T read from the given location. + + + Reads a value of type T from the given location +without assuming architecture dependent alignment of the addresses. + The location to read from. + The type to read. + An object of type T read from the given location. + + + Reads a value of type T from the given location +without assuming architecture dependent alignment of the addresses. + The location to read from. + The type to read. + An object of type T read from the given location. + + + Returns the size of an object of the given type parameter. + The type of object whose size is retrieved. + The size of an object of type T. + + + Subtracts an element offset from the given reference. + The reference to subtract the offset from. + The offset to subtract. + The type of reference. + A new reference that reflects the subraction of offset from pointer. + + + Subtracts an element offset from the given reference. + The reference to subtract the offset from. + The offset to subtract. + The type of reference. + A new reference that reflects the subraction of offset from pointer. + + + Subtracts a byte offset from the given reference. + The reference to subtract the offset from. + + The type of reference. + A new reference that reflects the subraction of byte offset from pointer. + + + Writes a value of type T to the given location. + The location to write to. + The value to write. + The type of value to write. + + + Writes a value of type T to the given location +without assuming architecture dependent alignment of the addresses. + The location to write to. + The value to write. + The type of value to write. + + + Writes a value of type T to the given location +without assuming architecture dependent alignment of the addresses. + The location to write to. + The value to write. + The type of value to write. + + + \ No newline at end of file diff --git a/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/netcoreapp2.0/System.Runtime.CompilerServices.Unsafe.dll b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/netcoreapp2.0/System.Runtime.CompilerServices.Unsafe.dll new file mode 100644 index 0000000..e717510 Binary files /dev/null and b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/netcoreapp2.0/System.Runtime.CompilerServices.Unsafe.dll differ diff --git a/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/netcoreapp2.0/System.Runtime.CompilerServices.Unsafe.xml b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/netcoreapp2.0/System.Runtime.CompilerServices.Unsafe.xml new file mode 100644 index 0000000..6a7cfcf --- /dev/null +++ b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/netcoreapp2.0/System.Runtime.CompilerServices.Unsafe.xml @@ -0,0 +1,200 @@ + + + System.Runtime.CompilerServices.Unsafe + + + + Contains generic, low-level functionality for manipulating pointers. + + + Adds an element offset to the given reference. + The reference to add the offset to. + The offset to add. + The type of reference. + A new reference that reflects the addition of offset to pointer. + + + Adds an element offset to the given reference. + The reference to add the offset to. + The offset to add. + The type of reference. + A new reference that reflects the addition of offset to pointer. + + + Adds a byte offset to the given reference. + The reference to add the offset to. + The offset to add. + The type of reference. + A new reference that reflects the addition of byte offset to pointer. + + + Determines whether the specified references point to the same location. + The first reference to compare. + The second reference to compare. + The type of reference. + true if left and right point to the same location; otherwise, false. + + + Casts the given object to the specified type. + The object to cast. + The type which the object will be cast to. + The original object, casted to the given type. + + + Reinterprets the given reference as a reference to a value of type TTo. + The reference to reinterpret. + The type of reference to reinterpret.. + The desired type of the reference. + A reference to a value of type TTo. + + + Returns a pointer to the given by-ref parameter. + The object whose pointer is obtained. + The type of object. + A pointer to the given value. + + + Reinterprets the given location as a reference to a value of type T. + The location of the value to reference. + The type of the interpreted location. + A reference to a value of type T. + + + Determines the byte offset from origin to target from the given references. + The reference to origin. + The reference to target. + The type of reference. + Byte offset from origin to target i.e. target - origin. + + + Copies a value of type T to the given location. + The location to copy to. + A reference to the value to copy. + The type of value to copy. + + + Copies a value of type T to the given location. + The location to copy to. + A pointer to the value to copy. + The type of value to copy. + + + Copies bytes from the source address to the destination address. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Copies bytes from the source address to the destination address. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Copies bytes from the source address to the destination address +without assuming architecture dependent alignment of the addresses. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Copies bytes from the source address to the destination address +without assuming architecture dependent alignment of the addresses. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Initializes a block of memory at the given location with a given initial value. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Initializes a block of memory at the given location with a given initial value. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Initializes a block of memory at the given location with a given initial value +without assuming architecture dependent alignment of the address. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Initializes a block of memory at the given location with a given initial value +without assuming architecture dependent alignment of the address. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Reads a value of type T from the given location. + The location to read from. + The type to read. + An object of type T read from the given location. + + + Reads a value of type T from the given location +without assuming architecture dependent alignment of the addresses. + The location to read from. + The type to read. + An object of type T read from the given location. + + + Reads a value of type T from the given location +without assuming architecture dependent alignment of the addresses. + The location to read from. + The type to read. + An object of type T read from the given location. + + + Returns the size of an object of the given type parameter. + The type of object whose size is retrieved. + The size of an object of type T. + + + Subtracts an element offset from the given reference. + The reference to subtract the offset from. + The offset to subtract. + The type of reference. + A new reference that reflects the subraction of offset from pointer. + + + Subtracts an element offset from the given reference. + The reference to subtract the offset from. + The offset to subtract. + The type of reference. + A new reference that reflects the subraction of offset from pointer. + + + Subtracts a byte offset from the given reference. + The reference to subtract the offset from. + + The type of reference. + A new reference that reflects the subraction of byte offset from pointer. + + + Writes a value of type T to the given location. + The location to write to. + The value to write. + The type of value to write. + + + Writes a value of type T to the given location +without assuming architecture dependent alignment of the addresses. + The location to write to. + The value to write. + The type of value to write. + + + Writes a value of type T to the given location +without assuming architecture dependent alignment of the addresses. + The location to write to. + The value to write. + The type of value to write. + + + \ No newline at end of file diff --git a/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/netstandard1.0/System.Runtime.CompilerServices.Unsafe.dll b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/netstandard1.0/System.Runtime.CompilerServices.Unsafe.dll new file mode 100644 index 0000000..b50dbc4 Binary files /dev/null and b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/netstandard1.0/System.Runtime.CompilerServices.Unsafe.dll differ diff --git a/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/netstandard1.0/System.Runtime.CompilerServices.Unsafe.xml b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/netstandard1.0/System.Runtime.CompilerServices.Unsafe.xml new file mode 100644 index 0000000..6a7cfcf --- /dev/null +++ b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/netstandard1.0/System.Runtime.CompilerServices.Unsafe.xml @@ -0,0 +1,200 @@ + + + System.Runtime.CompilerServices.Unsafe + + + + Contains generic, low-level functionality for manipulating pointers. + + + Adds an element offset to the given reference. + The reference to add the offset to. + The offset to add. + The type of reference. + A new reference that reflects the addition of offset to pointer. + + + Adds an element offset to the given reference. + The reference to add the offset to. + The offset to add. + The type of reference. + A new reference that reflects the addition of offset to pointer. + + + Adds a byte offset to the given reference. + The reference to add the offset to. + The offset to add. + The type of reference. + A new reference that reflects the addition of byte offset to pointer. + + + Determines whether the specified references point to the same location. + The first reference to compare. + The second reference to compare. + The type of reference. + true if left and right point to the same location; otherwise, false. + + + Casts the given object to the specified type. + The object to cast. + The type which the object will be cast to. + The original object, casted to the given type. + + + Reinterprets the given reference as a reference to a value of type TTo. + The reference to reinterpret. + The type of reference to reinterpret.. + The desired type of the reference. + A reference to a value of type TTo. + + + Returns a pointer to the given by-ref parameter. + The object whose pointer is obtained. + The type of object. + A pointer to the given value. + + + Reinterprets the given location as a reference to a value of type T. + The location of the value to reference. + The type of the interpreted location. + A reference to a value of type T. + + + Determines the byte offset from origin to target from the given references. + The reference to origin. + The reference to target. + The type of reference. + Byte offset from origin to target i.e. target - origin. + + + Copies a value of type T to the given location. + The location to copy to. + A reference to the value to copy. + The type of value to copy. + + + Copies a value of type T to the given location. + The location to copy to. + A pointer to the value to copy. + The type of value to copy. + + + Copies bytes from the source address to the destination address. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Copies bytes from the source address to the destination address. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Copies bytes from the source address to the destination address +without assuming architecture dependent alignment of the addresses. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Copies bytes from the source address to the destination address +without assuming architecture dependent alignment of the addresses. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Initializes a block of memory at the given location with a given initial value. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Initializes a block of memory at the given location with a given initial value. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Initializes a block of memory at the given location with a given initial value +without assuming architecture dependent alignment of the address. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Initializes a block of memory at the given location with a given initial value +without assuming architecture dependent alignment of the address. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Reads a value of type T from the given location. + The location to read from. + The type to read. + An object of type T read from the given location. + + + Reads a value of type T from the given location +without assuming architecture dependent alignment of the addresses. + The location to read from. + The type to read. + An object of type T read from the given location. + + + Reads a value of type T from the given location +without assuming architecture dependent alignment of the addresses. + The location to read from. + The type to read. + An object of type T read from the given location. + + + Returns the size of an object of the given type parameter. + The type of object whose size is retrieved. + The size of an object of type T. + + + Subtracts an element offset from the given reference. + The reference to subtract the offset from. + The offset to subtract. + The type of reference. + A new reference that reflects the subraction of offset from pointer. + + + Subtracts an element offset from the given reference. + The reference to subtract the offset from. + The offset to subtract. + The type of reference. + A new reference that reflects the subraction of offset from pointer. + + + Subtracts a byte offset from the given reference. + The reference to subtract the offset from. + + The type of reference. + A new reference that reflects the subraction of byte offset from pointer. + + + Writes a value of type T to the given location. + The location to write to. + The value to write. + The type of value to write. + + + Writes a value of type T to the given location +without assuming architecture dependent alignment of the addresses. + The location to write to. + The value to write. + The type of value to write. + + + Writes a value of type T to the given location +without assuming architecture dependent alignment of the addresses. + The location to write to. + The value to write. + The type of value to write. + + + \ No newline at end of file diff --git a/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/netstandard2.0/System.Runtime.CompilerServices.Unsafe.dll b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/netstandard2.0/System.Runtime.CompilerServices.Unsafe.dll new file mode 100644 index 0000000..b17135b Binary files /dev/null and b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/netstandard2.0/System.Runtime.CompilerServices.Unsafe.dll differ diff --git a/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/netstandard2.0/System.Runtime.CompilerServices.Unsafe.xml b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/netstandard2.0/System.Runtime.CompilerServices.Unsafe.xml new file mode 100644 index 0000000..6a7cfcf --- /dev/null +++ b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/lib/netstandard2.0/System.Runtime.CompilerServices.Unsafe.xml @@ -0,0 +1,200 @@ + + + System.Runtime.CompilerServices.Unsafe + + + + Contains generic, low-level functionality for manipulating pointers. + + + Adds an element offset to the given reference. + The reference to add the offset to. + The offset to add. + The type of reference. + A new reference that reflects the addition of offset to pointer. + + + Adds an element offset to the given reference. + The reference to add the offset to. + The offset to add. + The type of reference. + A new reference that reflects the addition of offset to pointer. + + + Adds a byte offset to the given reference. + The reference to add the offset to. + The offset to add. + The type of reference. + A new reference that reflects the addition of byte offset to pointer. + + + Determines whether the specified references point to the same location. + The first reference to compare. + The second reference to compare. + The type of reference. + true if left and right point to the same location; otherwise, false. + + + Casts the given object to the specified type. + The object to cast. + The type which the object will be cast to. + The original object, casted to the given type. + + + Reinterprets the given reference as a reference to a value of type TTo. + The reference to reinterpret. + The type of reference to reinterpret.. + The desired type of the reference. + A reference to a value of type TTo. + + + Returns a pointer to the given by-ref parameter. + The object whose pointer is obtained. + The type of object. + A pointer to the given value. + + + Reinterprets the given location as a reference to a value of type T. + The location of the value to reference. + The type of the interpreted location. + A reference to a value of type T. + + + Determines the byte offset from origin to target from the given references. + The reference to origin. + The reference to target. + The type of reference. + Byte offset from origin to target i.e. target - origin. + + + Copies a value of type T to the given location. + The location to copy to. + A reference to the value to copy. + The type of value to copy. + + + Copies a value of type T to the given location. + The location to copy to. + A pointer to the value to copy. + The type of value to copy. + + + Copies bytes from the source address to the destination address. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Copies bytes from the source address to the destination address. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Copies bytes from the source address to the destination address +without assuming architecture dependent alignment of the addresses. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Copies bytes from the source address to the destination address +without assuming architecture dependent alignment of the addresses. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Initializes a block of memory at the given location with a given initial value. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Initializes a block of memory at the given location with a given initial value. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Initializes a block of memory at the given location with a given initial value +without assuming architecture dependent alignment of the address. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Initializes a block of memory at the given location with a given initial value +without assuming architecture dependent alignment of the address. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Reads a value of type T from the given location. + The location to read from. + The type to read. + An object of type T read from the given location. + + + Reads a value of type T from the given location +without assuming architecture dependent alignment of the addresses. + The location to read from. + The type to read. + An object of type T read from the given location. + + + Reads a value of type T from the given location +without assuming architecture dependent alignment of the addresses. + The location to read from. + The type to read. + An object of type T read from the given location. + + + Returns the size of an object of the given type parameter. + The type of object whose size is retrieved. + The size of an object of type T. + + + Subtracts an element offset from the given reference. + The reference to subtract the offset from. + The offset to subtract. + The type of reference. + A new reference that reflects the subraction of offset from pointer. + + + Subtracts an element offset from the given reference. + The reference to subtract the offset from. + The offset to subtract. + The type of reference. + A new reference that reflects the subraction of offset from pointer. + + + Subtracts a byte offset from the given reference. + The reference to subtract the offset from. + + The type of reference. + A new reference that reflects the subraction of byte offset from pointer. + + + Writes a value of type T to the given location. + The location to write to. + The value to write. + The type of value to write. + + + Writes a value of type T to the given location +without assuming architecture dependent alignment of the addresses. + The location to write to. + The value to write. + The type of value to write. + + + Writes a value of type T to the given location +without assuming architecture dependent alignment of the addresses. + The location to write to. + The value to write. + The type of value to write. + + + \ No newline at end of file diff --git a/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/ref/net461/System.Runtime.CompilerServices.Unsafe.dll b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/ref/net461/System.Runtime.CompilerServices.Unsafe.dll new file mode 100644 index 0000000..ac64866 Binary files /dev/null and b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/ref/net461/System.Runtime.CompilerServices.Unsafe.dll differ diff --git a/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/ref/net461/System.Runtime.CompilerServices.Unsafe.xml b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/ref/net461/System.Runtime.CompilerServices.Unsafe.xml new file mode 100644 index 0000000..6a7cfcf --- /dev/null +++ b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/ref/net461/System.Runtime.CompilerServices.Unsafe.xml @@ -0,0 +1,200 @@ + + + System.Runtime.CompilerServices.Unsafe + + + + Contains generic, low-level functionality for manipulating pointers. + + + Adds an element offset to the given reference. + The reference to add the offset to. + The offset to add. + The type of reference. + A new reference that reflects the addition of offset to pointer. + + + Adds an element offset to the given reference. + The reference to add the offset to. + The offset to add. + The type of reference. + A new reference that reflects the addition of offset to pointer. + + + Adds a byte offset to the given reference. + The reference to add the offset to. + The offset to add. + The type of reference. + A new reference that reflects the addition of byte offset to pointer. + + + Determines whether the specified references point to the same location. + The first reference to compare. + The second reference to compare. + The type of reference. + true if left and right point to the same location; otherwise, false. + + + Casts the given object to the specified type. + The object to cast. + The type which the object will be cast to. + The original object, casted to the given type. + + + Reinterprets the given reference as a reference to a value of type TTo. + The reference to reinterpret. + The type of reference to reinterpret.. + The desired type of the reference. + A reference to a value of type TTo. + + + Returns a pointer to the given by-ref parameter. + The object whose pointer is obtained. + The type of object. + A pointer to the given value. + + + Reinterprets the given location as a reference to a value of type T. + The location of the value to reference. + The type of the interpreted location. + A reference to a value of type T. + + + Determines the byte offset from origin to target from the given references. + The reference to origin. + The reference to target. + The type of reference. + Byte offset from origin to target i.e. target - origin. + + + Copies a value of type T to the given location. + The location to copy to. + A reference to the value to copy. + The type of value to copy. + + + Copies a value of type T to the given location. + The location to copy to. + A pointer to the value to copy. + The type of value to copy. + + + Copies bytes from the source address to the destination address. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Copies bytes from the source address to the destination address. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Copies bytes from the source address to the destination address +without assuming architecture dependent alignment of the addresses. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Copies bytes from the source address to the destination address +without assuming architecture dependent alignment of the addresses. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Initializes a block of memory at the given location with a given initial value. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Initializes a block of memory at the given location with a given initial value. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Initializes a block of memory at the given location with a given initial value +without assuming architecture dependent alignment of the address. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Initializes a block of memory at the given location with a given initial value +without assuming architecture dependent alignment of the address. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Reads a value of type T from the given location. + The location to read from. + The type to read. + An object of type T read from the given location. + + + Reads a value of type T from the given location +without assuming architecture dependent alignment of the addresses. + The location to read from. + The type to read. + An object of type T read from the given location. + + + Reads a value of type T from the given location +without assuming architecture dependent alignment of the addresses. + The location to read from. + The type to read. + An object of type T read from the given location. + + + Returns the size of an object of the given type parameter. + The type of object whose size is retrieved. + The size of an object of type T. + + + Subtracts an element offset from the given reference. + The reference to subtract the offset from. + The offset to subtract. + The type of reference. + A new reference that reflects the subraction of offset from pointer. + + + Subtracts an element offset from the given reference. + The reference to subtract the offset from. + The offset to subtract. + The type of reference. + A new reference that reflects the subraction of offset from pointer. + + + Subtracts a byte offset from the given reference. + The reference to subtract the offset from. + + The type of reference. + A new reference that reflects the subraction of byte offset from pointer. + + + Writes a value of type T to the given location. + The location to write to. + The value to write. + The type of value to write. + + + Writes a value of type T to the given location +without assuming architecture dependent alignment of the addresses. + The location to write to. + The value to write. + The type of value to write. + + + Writes a value of type T to the given location +without assuming architecture dependent alignment of the addresses. + The location to write to. + The value to write. + The type of value to write. + + + \ No newline at end of file diff --git a/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/ref/netstandard1.0/System.Runtime.CompilerServices.Unsafe.dll b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/ref/netstandard1.0/System.Runtime.CompilerServices.Unsafe.dll new file mode 100644 index 0000000..7f71a4b Binary files /dev/null and b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/ref/netstandard1.0/System.Runtime.CompilerServices.Unsafe.dll differ diff --git a/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/ref/netstandard1.0/System.Runtime.CompilerServices.Unsafe.xml b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/ref/netstandard1.0/System.Runtime.CompilerServices.Unsafe.xml new file mode 100644 index 0000000..6a7cfcf --- /dev/null +++ b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/ref/netstandard1.0/System.Runtime.CompilerServices.Unsafe.xml @@ -0,0 +1,200 @@ + + + System.Runtime.CompilerServices.Unsafe + + + + Contains generic, low-level functionality for manipulating pointers. + + + Adds an element offset to the given reference. + The reference to add the offset to. + The offset to add. + The type of reference. + A new reference that reflects the addition of offset to pointer. + + + Adds an element offset to the given reference. + The reference to add the offset to. + The offset to add. + The type of reference. + A new reference that reflects the addition of offset to pointer. + + + Adds a byte offset to the given reference. + The reference to add the offset to. + The offset to add. + The type of reference. + A new reference that reflects the addition of byte offset to pointer. + + + Determines whether the specified references point to the same location. + The first reference to compare. + The second reference to compare. + The type of reference. + true if left and right point to the same location; otherwise, false. + + + Casts the given object to the specified type. + The object to cast. + The type which the object will be cast to. + The original object, casted to the given type. + + + Reinterprets the given reference as a reference to a value of type TTo. + The reference to reinterpret. + The type of reference to reinterpret.. + The desired type of the reference. + A reference to a value of type TTo. + + + Returns a pointer to the given by-ref parameter. + The object whose pointer is obtained. + The type of object. + A pointer to the given value. + + + Reinterprets the given location as a reference to a value of type T. + The location of the value to reference. + The type of the interpreted location. + A reference to a value of type T. + + + Determines the byte offset from origin to target from the given references. + The reference to origin. + The reference to target. + The type of reference. + Byte offset from origin to target i.e. target - origin. + + + Copies a value of type T to the given location. + The location to copy to. + A reference to the value to copy. + The type of value to copy. + + + Copies a value of type T to the given location. + The location to copy to. + A pointer to the value to copy. + The type of value to copy. + + + Copies bytes from the source address to the destination address. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Copies bytes from the source address to the destination address. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Copies bytes from the source address to the destination address +without assuming architecture dependent alignment of the addresses. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Copies bytes from the source address to the destination address +without assuming architecture dependent alignment of the addresses. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Initializes a block of memory at the given location with a given initial value. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Initializes a block of memory at the given location with a given initial value. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Initializes a block of memory at the given location with a given initial value +without assuming architecture dependent alignment of the address. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Initializes a block of memory at the given location with a given initial value +without assuming architecture dependent alignment of the address. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Reads a value of type T from the given location. + The location to read from. + The type to read. + An object of type T read from the given location. + + + Reads a value of type T from the given location +without assuming architecture dependent alignment of the addresses. + The location to read from. + The type to read. + An object of type T read from the given location. + + + Reads a value of type T from the given location +without assuming architecture dependent alignment of the addresses. + The location to read from. + The type to read. + An object of type T read from the given location. + + + Returns the size of an object of the given type parameter. + The type of object whose size is retrieved. + The size of an object of type T. + + + Subtracts an element offset from the given reference. + The reference to subtract the offset from. + The offset to subtract. + The type of reference. + A new reference that reflects the subraction of offset from pointer. + + + Subtracts an element offset from the given reference. + The reference to subtract the offset from. + The offset to subtract. + The type of reference. + A new reference that reflects the subraction of offset from pointer. + + + Subtracts a byte offset from the given reference. + The reference to subtract the offset from. + + The type of reference. + A new reference that reflects the subraction of byte offset from pointer. + + + Writes a value of type T to the given location. + The location to write to. + The value to write. + The type of value to write. + + + Writes a value of type T to the given location +without assuming architecture dependent alignment of the addresses. + The location to write to. + The value to write. + The type of value to write. + + + Writes a value of type T to the given location +without assuming architecture dependent alignment of the addresses. + The location to write to. + The value to write. + The type of value to write. + + + \ No newline at end of file diff --git a/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/ref/netstandard2.0/System.Runtime.CompilerServices.Unsafe.dll b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/ref/netstandard2.0/System.Runtime.CompilerServices.Unsafe.dll new file mode 100644 index 0000000..50bf259 Binary files /dev/null and b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/ref/netstandard2.0/System.Runtime.CompilerServices.Unsafe.dll differ diff --git a/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/ref/netstandard2.0/System.Runtime.CompilerServices.Unsafe.xml b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/ref/netstandard2.0/System.Runtime.CompilerServices.Unsafe.xml new file mode 100644 index 0000000..6a7cfcf --- /dev/null +++ b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/ref/netstandard2.0/System.Runtime.CompilerServices.Unsafe.xml @@ -0,0 +1,200 @@ + + + System.Runtime.CompilerServices.Unsafe + + + + Contains generic, low-level functionality for manipulating pointers. + + + Adds an element offset to the given reference. + The reference to add the offset to. + The offset to add. + The type of reference. + A new reference that reflects the addition of offset to pointer. + + + Adds an element offset to the given reference. + The reference to add the offset to. + The offset to add. + The type of reference. + A new reference that reflects the addition of offset to pointer. + + + Adds a byte offset to the given reference. + The reference to add the offset to. + The offset to add. + The type of reference. + A new reference that reflects the addition of byte offset to pointer. + + + Determines whether the specified references point to the same location. + The first reference to compare. + The second reference to compare. + The type of reference. + true if left and right point to the same location; otherwise, false. + + + Casts the given object to the specified type. + The object to cast. + The type which the object will be cast to. + The original object, casted to the given type. + + + Reinterprets the given reference as a reference to a value of type TTo. + The reference to reinterpret. + The type of reference to reinterpret.. + The desired type of the reference. + A reference to a value of type TTo. + + + Returns a pointer to the given by-ref parameter. + The object whose pointer is obtained. + The type of object. + A pointer to the given value. + + + Reinterprets the given location as a reference to a value of type T. + The location of the value to reference. + The type of the interpreted location. + A reference to a value of type T. + + + Determines the byte offset from origin to target from the given references. + The reference to origin. + The reference to target. + The type of reference. + Byte offset from origin to target i.e. target - origin. + + + Copies a value of type T to the given location. + The location to copy to. + A reference to the value to copy. + The type of value to copy. + + + Copies a value of type T to the given location. + The location to copy to. + A pointer to the value to copy. + The type of value to copy. + + + Copies bytes from the source address to the destination address. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Copies bytes from the source address to the destination address. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Copies bytes from the source address to the destination address +without assuming architecture dependent alignment of the addresses. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Copies bytes from the source address to the destination address +without assuming architecture dependent alignment of the addresses. + The destination address to copy to. + The source address to copy from. + The number of bytes to copy. + + + Initializes a block of memory at the given location with a given initial value. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Initializes a block of memory at the given location with a given initial value. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Initializes a block of memory at the given location with a given initial value +without assuming architecture dependent alignment of the address. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Initializes a block of memory at the given location with a given initial value +without assuming architecture dependent alignment of the address. + The address of the start of the memory block to initialize. + The value to initialize the block to. + The number of bytes to initialize. + + + Reads a value of type T from the given location. + The location to read from. + The type to read. + An object of type T read from the given location. + + + Reads a value of type T from the given location +without assuming architecture dependent alignment of the addresses. + The location to read from. + The type to read. + An object of type T read from the given location. + + + Reads a value of type T from the given location +without assuming architecture dependent alignment of the addresses. + The location to read from. + The type to read. + An object of type T read from the given location. + + + Returns the size of an object of the given type parameter. + The type of object whose size is retrieved. + The size of an object of type T. + + + Subtracts an element offset from the given reference. + The reference to subtract the offset from. + The offset to subtract. + The type of reference. + A new reference that reflects the subraction of offset from pointer. + + + Subtracts an element offset from the given reference. + The reference to subtract the offset from. + The offset to subtract. + The type of reference. + A new reference that reflects the subraction of offset from pointer. + + + Subtracts a byte offset from the given reference. + The reference to subtract the offset from. + + The type of reference. + A new reference that reflects the subraction of byte offset from pointer. + + + Writes a value of type T to the given location. + The location to write to. + The value to write. + The type of value to write. + + + Writes a value of type T to the given location +without assuming architecture dependent alignment of the addresses. + The location to write to. + The value to write. + The type of value to write. + + + Writes a value of type T to the given location +without assuming architecture dependent alignment of the addresses. + The location to write to. + The value to write. + The type of value to write. + + + \ No newline at end of file diff --git a/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/useSharedDesignerContext.txt b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/useSharedDesignerContext.txt new file mode 100644 index 0000000..e69de29 diff --git a/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/version.txt b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/version.txt new file mode 100644 index 0000000..8d6cdd6 --- /dev/null +++ b/packages/System.Runtime.CompilerServices.Unsafe.4.5.3/version.txt @@ -0,0 +1 @@ +7601f4f6225089ffb291dc7d58293c7bbf5c5d4f